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ABSTRACT

We present a model for estimation of  the probabilities of  future earthquakes
of  magnitudes m ≥ 4.95 in Italy. This model is a modified version of  that
proposed for California, USA, by Helmstetter et al. [2007] and Werner et al.
[2010a], and it approximates seismicity using a spatially heterogeneous,
temporally homogeneous Poisson point process. The temporal, spatial
and magnitude dimensions are entirely decoupled. Magnitudes are
independently and identically distributed according to a tapered Gutenberg-
Richter magnitude distribution. We have estimated the spatial distribution
of  future seismicity by smoothing the locations of  past earthquakes listed in
two Italian catalogs: a short instrumental catalog, and a longer
instrumental and historic catalog. The bandwidth of  the adaptive spatial
kernel is estimated by optimizing the predictive power of  the kernel estimate
of  the spatial earthquake density in retrospective forecasts. When available
and reliable, we used small earthquakes of  m ≥ 2.95 to reveal active fault
structures and 29 probable future epicenters. By calibrating the model with
these two catalogs of  different durations to create two forecasts, we intend
to quantify the loss (or gain) of  predictability incurred when only a short,
but recent, data record is available. Both forecasts were scaled to five and
ten years, and have been submitted to the Italian prospective forecasting
experiment of  the global Collaboratory for the Study of  Earthquake
Predictability (CSEP). An earlier forecast from the model was submitted by
Helmstetter et al. [2007] to the Regional Earthquake Likelihood Model
(RELM) experiment in California, and with more than half  of  the five-year
experimental period over, the forecast has performed better than the others.

1. Introduction
Here, we document the calibration of  a previously

published, time-independent model of  earthquake occurrences
in the region of  Italy. We extracted probabilities of  future
m ≥ 4.95 shocks for five-year and ten-year periods in a format
suitable for prospective testing within the Italian earthquake
predictability experiment [Schorlemmer et al. 2010a].
Previously, Helmstetter et al. [2007] calculated a probabilistic
earthquake forecast for m ≥ 4.95 for the region of  California,
USA, over a five-year duration. The forecast is currently being

tested within the Regional Earthquake Likelihood Model
(RELM) experiment [Field 2007]. After more than half  of  the
five years over, the forecast has not been rejected following a
suite of  tests, and has performed better than other forecasts
[Schorlemmer et al. 2010b]. Werner et al. [2010a] made some
modifications to the model by Helmstetter et al. [2007] and
re-calibrated it on up-dated data to generate a new
earthquake forecast for California. This forecast is under test
within the California branch of  the global Collaboratory for
the Study of  Earthquake Predictability (CSEP) [Jordan 2006,
Zechar et al. 2009]. To calculate future earthquake potential
in Italy, we used the same model, with some minor
modifications. One modification relates to the estimation of
the completeness threshold, which was difficult to estimate
on the small spatial scales here, which were possible with the
high-quality dataset available in California [Werner et al.
2010a, Helmstetter et al. 2007]. Instead, we set a single
magnitude threshold for the entire region.

Smoothed seismicity models, such as the present one,
usually do not incorporate geological or tectonic observations.
Rather, the models are calibrated on the seismicity data
available from earthquake catalogs. One can justifiably
question the hypothesized validity that the short (decadal)
periods covered by high-quality instrumental catalogs are
sufficient to forecast locations of  future large earthquakes that
have very low occurrence probabilities. Even if  the spatial
distribution of  seismicity is reasonably stable up to geological
timescales, estimating this distribution from a short time
window of  observations is difficult.

A partial solution to this problem is to estimate a
predictive spatial distribution, rather than the observed spatial
distribution. That is, rather than estimating the density of  past
earthquakes, the available data is divided into separate
learning and target sets, to estimate a predictive density from
the learning catalog that can be evaluated and optimized on
the target earthquakes. This cross-validation method was
used here, and it generated smoother forecasts than a simple
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kernel-density estimation method because the locations of
future – rather than past – earthquakes are predicted, and
these locations can be in regions of  little previous seismicity.
Nonetheless, this is only a partial solution: Kagan and Jackson
[1994] conjectured that the optimal predictive horizon of  a
forecast based on smoothed seismicity will scale
proportionally with the learning catalog because of  spatio-
temporal clustering. Thus, the forecasts by [Werner et al.
2010a] and Helmstetter et al. [2007], which were calculated
from about 25 years of  high-quality Californian data, should
perform well for moderate earthquakes over similar time
scales, but the longer periods that are relevant for seismic
hazard estimates and building codes might require longer
input datasets. On the other hand, according to Kagan and
Jackson [1994], it remains an untested hypothesis that
seismicity estimates based on geological observations, i.e. the
earthquake history of  several thousands of  years, can provide
more predictive and relevant information for engineering
design than high-quality, low-threshold instrumental catalogs.
Their argument was based on two points: first, the quality of
geological observations for seismic hazard is often low
compared to the quality of  modern earthquake catalogs;
secondly, seismicity shows long-term spatio-temporal
variations that necessitate an appropriate weighting of  the
information contained in observations of  recent earthquakes
and those that occurred in the distant past.

To begin to quantify the impact of  the duration of  the
learning catalog on the predictive power of  smoothed
seismicity forecasts, we calculated two forecasts of  the
smoothed seismicity model by calibrating the model on two
catalogs of  different durations. One forecast was based on
the most recent 30 years of  instrumental data, while the
other one was calculated from 100 years of  combined
historic and instrumental data. We have submitted the
forecasts to the European CSEP Testing Center at ETH
Zurich, to be tested and compared with other forecasts
within the framework of  the Italian earthquake predictability
experiment, CSEP-Italy [see Schorlemmer et al. 2010a].
Comparing the performances of  these two forecasts might
shed light on the impact of  the length of  the learning catalog.

The present study is structured as follows. In Section 2,
we describe the Italian earthquake catalogs from which we
estimated the future earthquake potential in Italy. Section 3
describes the model and its calibration on the two datasets,
while in Section 4 we present the earthquake forecasts; we
discuss our conclusions in Section 5.

2. Data

2.1. The CSI 1.1: 1981-2002
For more details about the catalogs discussed here and

below, see [Schorlemmer et al. 2010a] and references therein.
As the primary data source for the forecast based on smoothed

instrumental seismicity, we used the catalog of  Italian
seismicity (Catalogo della Sismicità Italiana, CSI 1.1) [Castello
et al. 2007, Chiarabba et al. 2005], which is available from
http://www.cseptesting.org/regions/italy. The CSI spans the
time period from 1981 until 2002, and it reports the local
magnitudes, in agreement with the magnitude scale that will
be used during the prospective evaluation of  these forecasts.
Schorlemmer et al. [2010a] reported a clear change in the
earthquake numbers per year in 1984 due to the numerous
network changes in the early 1980s, and they recommended
using the CSI data from mid-1984 onwards. We therefore
selected the earthquakes listed in the CSI from July 1, 1984, to
December 31, 2002, within the CSEP-Italy collection
region defined by Schorlemmer et al. [2010a]. To avoid
possible contamination from quarry blasts and volcanic
microseismicity, we set a uniform completeness magnitude
threshold of  mt = 2.95 for the entire collection region, which
was higher than the threshold of  mt = 2.5 calculated by
Schorlemmer et al. [2010a] for onshore seismicity.

2.2. The BSI catalog: 2003-2009
For prospective tests of  the forecasts submitted [see

Schorlemmer et al. 2010a], we used the Italian seismic
bulletin (Bollettino Sismico Italiano, BSI) earthquake
catalog that is recorded by the Istituto Nazionale di
Geofisica e Vulcanologia (INGV) [BSI Working Group
2002, Amato et al. 2006]. The BSI is available at
http://bollettinosismico.rm.ingv.it, and since July 2007 at
http://ISIDe.rm.ingv.it/. We used earthquakes listed in the
BSI from January 1, 2003, until June 25, 2009. As the quality
of  the data for small earthquakes in the BSI catalog between
2003 and 2005 was questionable, we applied a relatively
high magnitude threshold of  mt = 2.95. For the forecast
based on recent instrumental observations, we merged the
BSI and CSI catalogs (hereinafter referred to as the «merged
instrumental catalog», MIC).

2.3. The CPTI08, 1901-2006
For the forecast based on instrumental and historic

seismicity, we used the parametric catalog of  Italian
earthquakes (Catalogo Parametrico dei Terremoti Italiani,
version CPTI08) [Rovida and the CPTI Working Group
2008], which was available from http://www.cseptesting.
org/regions/italy. The CPTI08 is a preliminary revision of  the
2004 CPTI04 [CPTI Working Group 2004]. It covered the
period from 1901 to 2006, and it was based on both
instrumental and historic observations. The CPTI08 lists the
moment magnitudes that were either estimated from
macroseismic data or calculated using linear («ad hoc» [Rovida
and the CPTI Working Group 2008]) regression relationships
between surface waves, body waves or local magnitudes [MPS
Working Group 2004]. Castellaro et al. [2006] showed that
standard linear regression can lead to biased and uncertain

SMOOTHED SEISMICITY EARTHQUAKE FORECASTS

108



109

magnitude conversions, because magnitude observations and
the associated errors can violate the simplifying assumptions
of  standard linear regression. To remedy this, Castellaro et al.
[2006] advocated the use of  general orthogonal regression.
Therefore, the CPTI08 can be expected to include bias and
large uncertainties (like most historic catalogs) that might affect
the quality of  the earthquake forecasts. In their global forecasts,
Kagan and Jackson [2010a] therefore used more homogeneous
catalogs: the global Centroid Moment Tensor catalog [Ekström
et al. 2005] and the global Preliminary Determination of
Epicenters catalog by the U.S. Geological Survey [U.S.
Geological Survey 2001]. Nonetheless, the CPTI08 offers a
much longer training catalog (100 years) than either of  these
two global catalogs (30 to 40 years), which allowed our
investigation of  the effects of  the length of  the training catalog
on the forecasts generated. Therefore, we accepted these
potential shortcomings of  the CPTI08 for this study. As the
prospective experiment used local magnitudes, we converted
the moment magnitudes to local magnitudes using the same
regression equation that was used to convert the original local
magnitudes to moment magnitudes for the creation of  the
CPTI [MPS Working Group 2004, Schorlemmer et al. 2010a]:

(1)

As for the BSI catalog and the CSI, we only selected
shocks within the collection region and with depths of  less
than 30 km. Some of  the earthquakes were not assigned
depths, mostly during the early part of  the CPTI. We
included these earthquakes as observations within the testing
region because it was very unlikely that these were deeper
than 30 km [see also Schorlemmer et al. 2010a]. We selected
the earthquakes with moment magnitudes mW ≥ 4.75
[Schorlemmer et al. 2010a], which corresponded to local
magnitudes of  mL ≥ 4.45.

3. Model calibration
This model has previously been documented by

Helmstetter et al. [2007] and Werner et al. [2010a], and so we
provide only a brief  overview of  it here. First, the earthquake
catalogs were declustered to remove the strong influence of
triggered sequences (Section 3.1); without declustering, there
would be the need to use a more complicated, time-dependent
model that used the Omori-Utsu law to remove the influence
of  aftershocks [Omori 1894, Utsu et al. 1995]. Once
declustered, the seismicity was smoothed with an adaptive
power-law kernel (Section 3.2). The bandwidth of  the kernel
at each earthquake epicenter was adapted to the distance to
the k-th nearest neighbor. To estimate the optimal number of
neighbors to include in the smoothing, we divided the catalogs
into two non-overlapping sets: a learning catalog and a testing
catalog. In Section 3.3, we determine the optimal number of
neighbors by calculating the spatial density of  seismicity from

the learning catalog and evaluating its predictive power on the
testing catalog. The spatial density was scaled to the number
of  expected earthquakes by using the mean number of
observed earthquakes (Section 3.6). Finally, to obtain a rate-
space-magnitude forecast, we multiplied the scaled spatial
density by a tapered Gutenberg-Richter magnitude-frequency
distribution (Section 3.5). In contrast to the model presented
by Helmstetter et al. [2007] and Werner et al. [2010a], we used
a homogeneous threshold for the completeness magnitude as
the previous method that estimated the threshold as a function
of  space did not perform well for Italy.

3.1. Declustering
To estimate the spatial distribution of  spontaneous

earthquakes, we used the declustering algorithm proposed
by Reasenberg [1985], as modified by Helmstetter et al.
[2007] and Werner et al. [2010a]. As in these prior studies, we
set the input parameters to rfact = 8, xk = 0.5, p1 = 0.95, xmin = 1
day and xmax = 5 days. We varied xmeff according to the
different learning catalogs used. As the interaction distance,
we used the scaling r = 0.01 × 100.5M km, as suggested by
Wells and Coppersmith [1994], instead of  r = 0.011 × 100.4M

km and r< 30 km in the Reasenberg algorithm. Like Werner
et al. [2010a], we set the localization errors to 1 km
horizontal and 2 km vertical. We found that about 80% of
the earthquakes in the MIC were spontaneous, while in the
CPTI, about 92% of  all of  the shocks were independent,
according to the Reasenberg classification.

3.2 Adaptive kernel smoothing of  declustered seismicity
We estimated the density of  spontaneous seismicity in

each 0.1˚× 0.1  ̊cell by smoothing the location of each earthquake
i with an isotropic adaptive power-law kernel           :

(2)

where di is the adaptive smoothing distance, and C (di) is a
normalizing factor, so that the integral of           over an
infinite area was equal to 1.0.

We measured the smoothing distance di associated with
an earthquake i as the horizontal distance between event i
and its k-th closest neighbor. The number of  neighbors, k,
was an adjustable parameter that was estimated by optimizing
the forecasts (see Section 3.3). We imposed di > 0.5 km to
account for location uncertainty. The kernel bandwith di thus
decreased if  the density of  the seismicity was high at the
location ri of  the earthquake i, so that we had higher
resolution (smaller di) where the density was higher.

The density at any point       was estimated by:

(3)

where Nl is the total number of  earthquakes in the learning
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Model t1 t2 mt Nl t1 t2 mmin Nt L G k

1 1984 2003 2.95 2,632 2004 2008 4.95 6 −45.4 2.12 5 14.2

2 1984 2003 3.45 755 2004 2008 4.95 6 −45.0 2.26 4 25.5

3 1984 2003 3.95 223 2004 2008 4.95 6 −44.5 2.44 2 32.5

4 1984 2003 4.45 63 2004 2008 4.95 6 −44.1 2.60 1 48.8

5 1984 2003 4.95 19 2004 2008 4.95 6 −45.5 2.07 1 95.6

6 1984 2003 5.45 5 2004 2008 4.95 6 −48.1 1.34 1 221.3

7* 1984 1998 2.95 1,900 1999 2003 4.95 8 −65.4* 0.94* 50* 60.1

8 1984 1998 3.45 550 1999 2003 4.95 8 −64.6 1.04 48 123.3

9 1984 2003 3.95 147 1999 2003 4.95 8 −63.0 1.27 27 206.3

10 1984 2003 4.45 27 1999 2003 4.95 8 −63.1 1.25 8 248.7

11 1984 2003 4.95 12 1999 2003 4.95 8 −63.3 1.22 4 290.9

12 1984 2003 5.45 4 1999 2003 4.95 8 −63.7 1.16 2 500.9

13 1984 1993 2.95 1,145 1994 1998 4.95 13 −86.3 3.14 1 7.8

14 1984 1993 3.45 328 1994 1998 4.95 13 −86.5 3.09 1 16.1

15 1984 1993 3.95 81 1994 1998 4.95 13 −99.4 1.15 5 107.5

16 1984 1993 4.45 15 1994 1998 4.95 13 −97.2 1.37 6 407.1

17 1984 1993 4.95 4 1994 1998 4.95 13 −97.3 1.35 1 388.4

18 1984 1993 5.45 0 1994 1998 4.95 13 _ _ _

19 1984 2009 2.95 3,522 2004 2008 4.95 6 −37.8 7.48 1 5.0

20! 1984 2009 2.95 3,522 2004 2008 4.95 6 −41.6! 3.98! 6! 13.8

Imput Catalog (MIC) Target Catalog (MIC) Results

Model t1 t2 mt Nl t1 t2 mmin Nt L G k

1 1901 2001 4.45 605 2002 2006 4.95 7 −55.5 1.39 35 95.9

2 1901 2001 4.95 166 2002 2006 4.95 7 −54.8 1.54 12 102.9

3 1901 2001 5.45 51 2002 2006 4.95 7 −55.2 1.46 6 127.8

4 1901 1996 4.45 576 1997 2001 4.95 15 −97.1 3.41 17 63.7

5 1901 1996 4.95 155 1997 2001 4.95 15 −101.8 2.49 8 84.6

6 1901 1996 5.45 46 1997 2001 4.95 15 −104.3 2.12 5 120.8

7 1901 1991 4.45 565 1992 1996 4.95 2 −15.9 4.41 2 17.8

8 1901 1991 4.95 153 1992 1996 4.95 2 −16.5 3.17 1 22.7

9 1901 1991 5.45 46 1992 1996 4.95 2 −18.0 1.53 8 199.3

10 1901 1986 4.45 551 1987 1991 4.95 6 −46.6 1.72 2 18.0

11 1901 1986 4.95 147 1987 1991 4.95 6 −46.2 1.84 1 22.6

12 1901 1986 5.45 44 1987 1991 4.95 6 −48.2 1.32 4 101.7

13 1901 2006 4.45 623 2002 2006 4.95 7 −39.4 13.78 1 11.3

14 1901 2006 4.45 623 2002 2006 4.95 7 −39.4! 1.35! 6! 34.1

Imput Catalog (CPTI) Target Catalog (CPTI) Results

Table 1. Results of  the optimization of  the spatial density estimate using the MIC from July 1, 1984, to June 25, 2009. We varied the learning and target
catalogs. The target catalog is the MIC in the testing region. The input catalog is the declustered MIC in the collection region. t1: first year of  data taken from
the learning or target catalog; t2: last year of  data taken from the learning or target catalog; mt: magnitude threshold of  the learning catalog; mmin: magnitude
threshold of  the target catalog; Nl and Nt: number of  earthquakes in the learning and testing catalogs, respectively; L: log-likelihood score of  a model; G: model
probability gain per earthquake over a spatially uniform model; k: optimal number of  neighbors to include in the bandwidth of  the smoothing kernel;
(di): mean adaptive bandwidth (km);  

! : indication where kwas not optimized, but constrained to k= 6; *: maximum k= 50 of  the range [1, 50] was attained.

Table 2.As for Table 1, but using the CPTI from 1901 to 2006 as the dataset.  ! indicates that kwas not optimized, but constrained. See Table 1 for further details.

di

di
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catalog. However, the forecasts were given as an expected
number of  events in each cell of  0.1˚. We therefore
integrated Equation (2) over each cell and summed over all
of  the contributing earthquakes, to obtain the seismicity
rate of  each cell.

3.3. Optimizing the spatial smoothing
We estimated the parameter k, the number of  neighbors

used to compute the smoothing distance di in Equation (3),
by maximizing the likelihood of  the model. We built the
model n´(ix, iy) in each cell (ix, iy) from the data in the learning
catalog, and evaluated the likelihood of  target earthquakes in
the testing catalog. As we assumed independence of  the
spatial density from the magnitude distribution and the total
expected number of  events, we optimized the normalized
spatial density estimate in each cell (ix, iy) using:

(4)

where Nt is the number of  observed target events. The
expected number of  events for the model n* was thus equal
to the observed number Nt.

The log-likelihood of  the model is given by:

(5)

where n is the number of  events that occurred in cell (ix, iy).
To adhere to the rules of  the CSEP-Italy predictability
experiment, we assumed that the probability p of  observing
n events in cell (ix, iy) given a forecast of  n*(ix, iy) in that cell
was given by the Poisson distribution:

(6)

We built a large set of  background models n* by varying:
(i) the start times, end times and magnitude thresholds of  the
learning and testing catalogs; and (ii) the catalog (either the
MIC or the CPTI). We evaluated the performance of  each
model by calculating its probability gain per target
earthquake relative to a model with a uniform spatial density:

(7)

where L0 is the log-likelihood of  the spatially homogeneous
model.

3.4. Results of  the spatial optimization
Tables 1 and 2 show the results of  the spatial optimization

on the MIC and the CPTI, respectively. For each model, we
determined the optimal smoothing parameter k in the range
[1, 50] by choosing the value that maximized the likelihood of
the target earthquakes in the target catalog, given the
smoothed spatial density estimated from the learning catalog.

We varied the magnitude threshold of  the input catalog to test
whether including small earthquakes results in greater
predictability of  future m ≥ 4.95 earthquakes. We also changed
the target periods to test the robustness of  the results.

In Figure 1, we show the probability gains per
earthquake against the magnitude threshold of  the two
learning catalogs. For comparisons, we also included the
gains obtained for the five-year period of  2004-2008
(inclusive) in California by Werner et al. [2010a]. The gains
obtained in Italy fluctuated strongly for different target
periods, and it was difficult to detect a systematic trend in
the gain as a function of  the magnitude threshold of  the
learning catalog. In contrast to California, where around 25
earthquakes of  m ≥ 4.95 tend to occur every five years, Italy
has experienced far fewer shocks of  such sizes; during the
1992-1996 period in the CPTI, the gains were calculated from
only two target earthquakes. The small sample size of  these
target earthquakes might explain the observed fluctuations in
the calculated gains (see also below, and Section 5).

For the target period 1994-1998 of  the MIC, the gains
were especially small for low thresholds. For mt = 2.95, the
smoothing parameter reached the maximum value of  50
(Table 1, model 7), providing a gain smaller than unity, i.e.
the uniform forecast outperformed the smoothed seismicity
forecast (further increasing the amount of  smoothing
eventually leads to a uniform density, such that the gain
would be equal to unity). The long-range smoothing
required by the target events can be traced back to the
occurrence of  three earthquakes in 2002: the September 6
Sicily earthquake north-east of  Palermo, and the October 31
Molise earthquake and one of  its aftershocks. The predicted
densities in the relevant cells was increased by a factor of
almost ten as the algorithm increased the smoothing from

SMOOTHED SEISMICITY EARTHQUAKE FORECASTS

Figure 1. Probability gain per earthquake versus magnitude threshold of
the learning catalogs for various five-year target periods: blue, MIC; red,
CPTI; Cal. 2004-2008, gains obtained for California by Werner et al. [2010a];
homogeneous, reference gain of  a spatially homogeneous forecast.
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k = 1 to k = 50 (see also discussion in Section 5).
Whenever target earthquakes occur in previously active

regions, the optimal amount of  smoothing is small (k = 1)
and the gains tend to be higher (see, e.g., Table 1, model 13
for the 1994-1998 target period, which included the 1997
Colfiorito earthquake sequence). However, exceptions exist
to the expected anti-correlation between k and G: the 15
targeted earthquakes during the 1997-2001 target period of  the
CPTI were forecast best with a smoothing parameter k= 15,
although they realized a gain per earthquake of  G = 3.41.

To calculate the spatial densities for the final forecasts
for the predictability experiment (Table 1, model 20!obtained
from the MIC, and Table 2, model 14! obtained from the
CPTI), we had to decide which magnitude threshold to apply
to the learning catalog, which smoothing parameter to use,
and whether to use all of  the existing data up to the end of
the two catalogs. We decided to use all of  the available data
in each catalog for the final density estimates so that the
forecasts would benefit from as much data as possible.
Moreover, despite the observed variability in gains against
the magnitude threshold of  the input catalog (discussed
above), Figure 1 shows that, on average, there appears to be
an advantage in including small earthquakes for estimating
the predictive spatial density (see also discussion in Section 5).
Therefore, to calculate the spatial densities for the final
forecasts, we used the lowest reliable magnitude threshold
for each catalog. Finally, we used an optimal smoothing
parameter of  k = 6 despite the large variability across the
magnitude thresholds and target periods, because the
resulting density was slightly smoother than that obtained
from the median (k= 5) of  the optimal values for the lowest
magnitude thresholds, and because both Werner et al.
[2010a] and Helmstetter et al. [2007] used the same value.
The two final predictive spatial densities based on the MIC
and the CPTI were model 20! in Table 1 and model 14! in
Table 2, respectively. We discuss future improvements of  the
spatial optimization method in Section 5.

3.5. Magnitude distribution
We assumed that the cumulative magnitude probability

distribution followed a tapered Gutenberg-Richter magnitude
frequency distribution [Gutenberg and Richter 1944] with a
uniform b-value and corner magnitude mc [Helmstetter et al.
2007, Equation (10)]:

(8)

with a minimum target magnitude mmin= 4.95 (for the five-
year and ten-year CSEP forecast groups). Bird and Kagan
[2004, p. 2393] classified the tectonic setting of  Italy as an
orogen situated at a continental convergent boundary and
estimated mc= . Kagan et al. [2010: fig. 1, table 1]
assigned onshore Italy to the category of  «active continent»

with mc =                and the southern off-shore region of  Italy
to «trench» with mc=                  . For simplicity, we set a uniform
value of  mc = 8.0, to reflect these studies. This is likely to be a
conservative choice for the most seismically active region of
onshore Italy. We further used a b-value of  1.0 (a maximum
likelihood estimate based on magnitudes above mt = 2.95 in
the MIC resulted in = 1.07). We integrated the magnitude
distribution of  Equation (8) in discrete bins of  width of  0.1 to
conform to the rules of  the experiment.

3.6. Expected number of  events
The expected number of  events per year in each space-

magnitude bin (ix, iy, im) was calculated from:

(9)

where n* is the normalized spatial background density, P (im)
is the integrated probability of  an earthquake in magnitude
bin (im) defined according to Equation (8), and m is the
expected number of  earthquakes over a five-year or ten-year
period. To estimate the expected number of  earthquakes, we
counted the total number of  observed m ≥ 4.95 earthquakes
in each (non-declustered) catalog and divided by the duration
to obtain the mean number of  events of  m ≥ 4.95 per year.
For the MIC, we estimated mmic = 1.24 per year, while there
was an average of  mcpti = 1.72 earthquakes of  m ≥ 4.95 per
year in the CPTI. To obtain the five-year and ten-year
forecasts, we simply multiplied m by the number of  years.
Thus, based on the shorter MIC, we expect 6.2 (12.4)
earthquakes from January 1, 2010 to December 31, 2014 (to
December 31, 2019), while based on the longer CPTI, we
predict 8.6 (17.2) earthquakes over the same periods.

4. Five-year and ten-year m ≥ 4.95 forecasts
The five-year forecasts based on the MIC and the CPTI

are shown in Figures 2 and 3, respectively. To obtain the ten-
year forecasts, we doubled the rates in each space magnitude
bin because we assumed a temporally homogeneous Poisson
process. The forecast based on the CPTI is smoother than
the map based on the shorter MIC, because the 3,522
earthquakes of  mostly small magnitude in the MIC (m ≥ 2.95)
clustered more strongly than the 623 events of  larger
magnitude in the CPTI (m≥ 4.45). The more evenly distributed
epicenters of  the CPTI were more uncertain than those from
the MIC, resulting in less clustering.

We can compare the forecasts in Figures 2 and 3 with
those of  Kagan and Jackson [2010a: fig. 4] and Zechar and
Jordan [2010: fig. 2]. Kagan and Jackson [2010a] used a fixed-
bandwidth power-law kernel with an optimized bandwidth
rs = 5 km, to smooth the seismicity in Italy listed in the
Preliminary Determination of  Epicenters catalog above a
threshold mt = 4.7. By visual inspection, their forecast was
similar to the forecast based on the CPTI in Figure 3,
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although their fixed bandwidth of  rs = 5 km was much
smaller than the average of  our optimal adaptive bandwidths
(di) = 34.1 (Table 2, model 14

!). The optimal smoothing
bandwidths are different because Kagan and Jackson [2010a]
optimized their bandwidth for the 2004-2006 target period
and smoothed earthquakes from a different data source.
Given the observed dependence of  the optimal smoothing
distance on the chosen target period, we should expect to see
differences in the optimal bandwidths.

Zechar and Jordan [2010] smoothed the CSI, the CPTI
and a merged («hybrid») catalog with an optimized fixed-
bandwidth Gaussian kernel. Again, different choices for the
magnitude threshold and the learning data make direct
comparisons difficult, except for the forecasts based on the
CPTI optimized for the 2002-2006 target period. Figure 1 of
Zechar and Jordan [2010] shows that the optimal smoothing
lengthscale is v = 75 km, while we obtained a mean
bandwidth of ≈ 95.6 (Table 2, model 1), indicating broad
agreement between the two methods. Neither Kagan and
Jackson [2010a] nor Zechar and Jordan [2010] investigated
whether the optimal smoothing length scale varied with
target periods.

5. Discussion and conclusions
Werner et al. [2010b] evaluated all of  the time-

independent five-year and ten-year forecasts of  the
CSEP-Italy experiment retrospectively on data from the CSI
and CPTI. Using the forecasts from the first round of
submissions from August 1, 2009, they found that several of
the modelers had committed errors in the calibration of  their
models for the calculation of  their forecasts, principally in
the conversion of  the moment magnitude scale of  the CPTI

to the local magnitude scale that is used for prospective
testing. Our first submission of  the forecast based on the
CPTI also contained an error, because of  a mistake in the
conversion formula we used (see Equation 1). In this report,
we only discuss the corrected forecasts that we submitted
during the second round ( January 1, 2010).

In the future, we would like to make a number of
improvements to the model. First, we used a relatively
arbitrary declustering procedure based on Reasenberg's
algorithm [Reasenberg 1985], although there are more
objective methods that can be used [e.g. Zhuang et al. 2002,
Console et al. 2010]. Secondly, contrary to the studies of
Helmstetter et al. [2007] and Werner et al. [2010a], we could
not estimate the completeness threshold as a function of
space using their method and then attempt to correct for
missing small earthquakes because the results were not
stable. In the future, we intend to use a more robust method
for estimating the completeness threshold. Thirdly, we found
that the optimal smoothing parameter varied substantially
for different target periods, much more so than observed by
Werner et al. [2010a]. The small number of  target
earthquakes might have caused these fluctuations. In the
future, the optimal smoothing parameter should be
optimized jointly over many target periods. More generally,
we intend to assess the influence of  the choice of  kernel
function. For example, do anisotropic kernels [e.g., Kagan
and Jackson 1994] improve spatial forecasts? Does the
optimal kernel choice depend on the tectonic regime [e.g.,
Kagan and Jackson 2010a, Kagan and Jackson 2010b]? Should
large earthquakes count more towards the density than small
earthquakes [e.g., Kagan et al. 2007]?

Smoothed seismicity models make the implicit
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Figure 2.Earthquake forecast based on the MIC. Expected number of earthquakes
of  mL ≥ 4.95 over the five-year period from January 1, 2010, to December
31, 2014 per 0.1˚× 0.1˚ based on smoothing the locations of  earthquakes
of  mL ≥ 2.95 in the instrumental catalog from July 1, 1984, to June 25, 2009.

Figure 3. Earthquake forecast based on the CPTI. Expected number of
earthquakesof  mL ≥ 4.95 over the five-year period from January 1, 2010, to
December 31, 2014, per 0.1˚× 0.1˚ based on smoothing the locations of
earthquakes of  mL ≥ 4.45 in the CPTI from 1901 to 2006.

di



assumption that the available earthquake catalogs are long
enough to estimate predictive spatial densities. Kagan and
Jackson [1994], however, conjectured that the optimal
forecast horizon of  an earthquake forecast based on
smoothed seismicity is related to the duration of  the learning
catalog. To begin to address this question, we provided two
earthquake forecasts: one based on a relatively short (30
years) dataset with a lower magnitude threshold, and the
other based on a longer (100 years) catalog with a higher
magnitude threshold. If  the conjecture by Kagan and Jackson
[1994] is correct, the forecast based on the MIC should
perform better than the forecast based on the CPTI over
shorter periods, while the CPTI-based forecast should show
more predictive accuracy at longer time scales.

Helmstetter et al. [2007] and Werner et al. [2010a] have
previously provided evidence for the hypothesis that in
California, including the locations of  small earthquakes
improved the forecasts of  future epicenters of  m ≥ 4.95
earthquakes [see also Hanks 1992, Marsan 2005, Helmstetter
et al. 2005, Sornette and Werner 2005a, Sornette and Werner
2005b, for perspectives on the importance of  small
earthquakes]. The results of  the present study do not provide
conclusive evidence for or against this hypothesis, perhaps
because of  the fluctuations induced by the small number of
target earthquakes. A more robust cross-validation method
for the optimal smoothing parameter might be able to
address this outstanding issue.

Like its predecessor, the RELM experiment, the CSEP-
Italy experiment required the use of  a Poisson distribution
for the number of  earthquakes per space-magnitude bin
[Schorlemmer et al. 2010a, Schorlemmer et al. 2007]. In
principle, however, each model should provide its own model-
dependent uncertainty bounds [Werner and Sornette 2008].
For the time-independent Poisson process model described
here, the distribution of  the number of  shocks over the
relevant five-year or ten-year time scales is assumed to be
time-independent. However, a negative binomial distribution
fits the number distribution better than the Poisson
distribution [Schorlemmer et al. 2010b, Kagan 2010,
Werner et al. 2010a, Werner et al. 2010b]. Therefore, in
future iterations of  the model, Poisson distributions should
be replaced by appropriate alternatives in each space-
magnitude bin. A difficulty with this approach will be the
estimation of  parameter values based on small and
possibly correlated samples.

Nonetheless, despite the simplicity of  the model and
its approximations, the five-year forecast submitted by
Helmstetter et al. [2007] to the RELM experiment is
outperforming others after the first 2.5 years [Schorlemmer
et al. 2010b]. Whether the model will perform similarly in
Italy, which is different tectonically from the much more
seismically active California, will be an interesting test of
the universal applicability of  the model assumptions.

Data and sharing resources
We used three earthquake catalogs for this study: the

parametric catalog of  Italian earthquakes (Catalogo
Parametrico dei Terremoti Italiani, CPTI08) [Rovida and the
CPTI Working Group 2008], the catalog of  Italian seismicity
(Catalogo della Sismicità Italiana, CSI 1.1) [Castello et al.
2007, Chiarabba et al. 2005], and the Italian seismic bulletin
(Bollettino Sismico Italiano, BSI) catalog [BSI Working
Group 2002, Amato et al. 2006]. The BSI catalog is available
at http://bollettinosismico.rm.ingv.it, and since July 2007, at
http://ISIDe.rm.ingv.it/. The particular versions of  the CSI
and CPTI used are available at http://www.cseptesting.org/
regions/italy.
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