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S U M M A R Y
We propose a mechanistic model to compute and to invert self-potential log data in sedimentary
basins and for near-surface geophysical applications. The framework of our analysis is founded
in a unified electrical conductivity and self-potential petrophysical model. This model is based
on an explicit dependence of these properties on porosity, water saturation, temperature, brine
salinity, cementation and saturation (Archie) exponents and the volumetric charge density per
unit pore volume associated with the clay fraction. This model is consistent with empirical laws
widely used to interpret self-potential logs according to the two limiting cases corresponding
to a clean sand and a pure shale. We present a finite element calculation of the self-potential
signal produced by sand reservoirs interstratified with shale layers. For layered strata normal
to the well, we demonstrate that the 3-D Poisson equation governing the occurrence of self-
potentials in a borehole can be simplified to a 2-D axisymmetric partial differential equation
solved at each depth providing a common self-potential reference can be defined between these
different depths. This simplification is very accurate as long as the vertical salinity gradients
are not too strong over distances corresponding to the borehole diameter. The inversion
of borehole data (self-potential, resistivity and density well logs, incorporating information
derived from neutron porosity and gamma-ray log data) is performed with the Adaptive
Metropolis Algorithm (AMA). We start by formulating an approximate analytical solution for
the six model parameters (water saturation, porosity, the two Archie’s exponents, the pore water
conductivity and the volumetric charge density of the diffuse layer). This solution is used for
the AMA algorithm to converge in less than 60 iterations at each depth for the real case study.
The posterior probability distributions are computed using 50–60 additional realizations. Our
approach is applied to a case study concerning a small sedimentary sequence in the Piceance
Basin, Colorado, in a series of tight gas reservoirs.

Key words: Electrical properties; Electromagnetic theory; Hydrogeophysics; Permeability
and porosity.

1 I N T RO D U C T I O N

Self-potential signals are passively recorded electrical potentials at
the surface of the Earth or in boreholes. They evidence underlying
non-equilibrium physical and chemical processes occurring natu-
rally in the conductive ground. Common examples include the flow
of the ground water (Sill 1983) or the existence of gradients in the
activity of ionic species and redox potentials (Maineult et al. 2005,
2006; Arora et al. 2007; Minsley et al. 2007a,b; Mendonça 2008;
Revil et al. 2009). The development of the self-potential method as
a quantitative tool is fairly recent in hydrogeophysics. For instance,
this method has been used to reconstruct the shape of the water table

and to determine permeability and storativity for ground water flow
problems (Jardani et al. 2007, 2008, 2009; Minsley et al. 2007a),
to determine the distribution of the redox potential in contaminant
plumes (Linde & Revil 2007; Minsley et al. 2007b) and to locate ore
bodies in mineral exploration (Mendonça 2008). A general mech-
anistic theory for self-potential signals in porous media has been
developed recently by Revil & Linde (2006) and Revil (2007). Com-
plementary investigations for the redox component can be found in
Arora et al. (2007) for contaminant plumes and in Castermant et al.
(2008) for the corrosion of ore bodies or metallic pipes.

Self-potential wireline surveys are among the oldest geophys-
ical methods and are still commonly performed nowadays to
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characterize oil and gas reservoirs. In addition, the development of
new logging tools with multisensors including self-potential (e.g.
Winter et al. 1991; Pezard et al. 2009) motivate the development of
new analysis of borehole measurements. Indeed the challenge un-
derlined by the inversion of self-potential data in boreholes, jointly
to complementary measurements, is motivated not just by the in-
terpretation of several logs together but also by the use of these
new type of logging tools for shallow uncased boreholes filled with
water. In deeper boreholes drilled by the oil industry, downhole
self-potential measurements comprising regularly spaced in situ
measurements of the electrical potential in the borehole environ-
ment (filled with mud) using a pair of electrodes (e.g. Worthington
& Meldau 1958; Segesman 1962). Historically, self-potential log
data have been used in conjunction with resistivity log data to deter-
mine the salinity of connate (pore) water and cementation exponent
(Salazar et al. 2008). Borehole self-potential measurements have
also been used as a qualitative indicator of permeability associated
with fractures (Hötzl & Merkler 1989; Hunt & Worthington 2000), a
shale marker for stratigraphic correlation purposes and to determine
the formation thickness or dip angle (Doll 1949; Pirson 1963). Stoll
et al. (1995) have used the in situ measurement of self-potentials
to determine the redox component of the self-potential anomaly
associated with the presence of graphite in a fault plane.

Despite the simplicity of the method, the treatment and analysis
of self-potential data is largely empirical in the literature. Relatively
few papers have provided a quantitative approach to interpret self-
potential signals in boreholes. Even in recent works (Zhang & Wang
1999; Salazar et al. 2008; Pan et al. 2009), the so-called static spon-
taneous potential (SSP) approximation (described in detail below)
remains the basis for self-potential data analysis in sedimentary
basins.

We present below a quantitative theory of self-potential signals
recorded in boreholes drilled in sedimentary basins. Relevant ap-
plications for the theory include the analysis and interpretation of
self-potential signals in oil and gas reservoirs and the estimation of
petrophysical properties of clay-rock formations potentially suited
for long-term storage of nuclear wastes. In general, this theory can
be implemented in any problem related to the characterization of
in situ properties of geological systems including in the shallow
subsurface. The general theory is described in details in Section
2. In Section 3, we provide details on a methodology for forward
and stochastic inverse modelling of borehole measurements includ-
ing self-potential data. A synthetic case is discussed in Section 4 to
benchmark a simplified 2-D axisymmetric model and prove that our
algorithm converges to the true solution. The inversion algorithm
and an application to a case study are described in Section 5.

2 T H E O RY

2.1 Principle

Self-potential signals result from a difference of electrical potential
between a reference electrode and a moving electrode without the
injection of electrical current. The reference electrode is located
close to the borehole, at the ground surface. The moving electrode
traverses the subsurface in an uncased borehole and is in electrical
contact with the formation through the mud filling the borehole
for oil industry-related applications and through water for near-
surface geophysical applications. Measurements are recorded as
a difference of electrical potential between the two electrodes at
regular depth intervals using a DC-voltmeter with a high input

impedance (typically >10 Mohm) and a high resolution (at least
0.1 mV). Repeatability of the measurements is usually 2 mV in
baseline shift (Ellis & Singer 2007).

2.2 Underlying theory

The self-potential log is usually governed by the difference in the
electrochemical potential of the charge carriers (ions in the present
case) between the formation and the drilling fluid. In addition, a
streaming potential component can occurs if the drilling fluid infil-
trates the formations or if the formation water flows into the borehole
(Hearst & Nelson 1985; Taherian et al. 1995). In boreholes drilled
by the oil industry, the mud pressure is adjusted to compensate for
the fluid over- or underpressures with respect to hydrostatic.

In a porous material saturated by brine, the total electrical current
density j (in A m−2) is given by (Sill 1983; Jardani et al. 2007, 2008,
2009; Minsley et al. 2007a,b and references therein),

j = σ0 E + jS, (1)

where E is the electrical field (in V m−1; in the quasistatic limit
of the Maxwell equations E = −∇ψ , where ψ is the electrical
potential expressed in V), σ 0 is the DC-electrical conductivity of
the porous material (in S m−1) and jS is a source current density (in
A m−2) associated with any potential disturbance that can affect the
movement of charge carriers. Eq. (1) stands for a generalized Ohm’s
law and the first term on the right-hand-side of eq. (1) corresponds
to the classical conduction term (classical Ohm’s law). In addition
to the previous constitutive equation, we need a continuity equation
to determine a field equation for the electrostatic potential ψ . The
continuity equation for the conservation of the electrical charge, in
the low-frequency limit of the Maxwell equations, is ∇ · j = 0 (the
total current density is conservative).

Revil & Linde (2006) have built a model to capture both the
effect of porosity and the multicomponent ionic characteristics of
the electrolyte upon the source current density. For a brine-saturated
porous material, the total source current density is given by (Revil
& Linde 2006, eq. 182),

jS = Q̄V u − kbT
N∑

i=1

Tiσ0

qi
∇ ln{i}, (2)

where kb is the Boltzmann constant (1.381 × 10−23 J K−1), {i}
is the activity of species i (taken equal to the concentration of
species i for an ideal solution), Q̄V is the volumetric (moveable)
charge per unit pore volume at saturation (expressed in C m−3 and
related to the electrical diffuse layer), u represents the Darcy velocity
(in m s−1), qi is the charge of species i dissolved in water (in C)
and T i (dimensionless) is the macroscopic Hittorf number of the
ionic species i in the porous material (i.e. the fraction of electrical
current carried by this species). Eq. (2) can be easily generalized
for unsaturated materials yielding,

jS = Q̄V

sw

u − kbT
N∑

i=1

Ti (sw)σ0(sw)

qi
∇ ln{i}, (3)

where 0 ≤ sw ≤ 1 represent the (relative) water saturation (see
Linde et al. 2007 and Revil et al. 2007 for the electrokinetic com-
ponent and Revil 1999 and Revil et al. 2009, for the electrochemical
component).

In the following, we assume that the pore water can be treated
as a binary symmetric 1:1 electrolyte like NaCl, to simplify the
presentation, although keeping in mind that using true pore water
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composition (through in situ sampling) is still a possible choice.
Several models have been developed to describe the conductiv-
ity and diffusion potential responses of porous media (see Revil
et al. 1998; Revil 1999 and references therein), according to which
electrical conductivity has two contributions: a contribution coming
from electrical conduction through the bulk pore water and a surface
contribution from the electrical double layer coating the hydrated
mineral surface (Bolève et al. 2007; Mojid & Cho 2008; Ugbo et al.
2009). In the following, for its simplicity and robustness, we use
the classical Waxman & Smits (1968) model to interpret log data;
however, other models based on the differential effective medium
approach could represent alternative options (see Revil et al. 1998
and Gelius & Wang, 2008 and references therein). The Waxman &
Smits (1968) model yields,

σ0 = σ(+) + σ(−), (4)

σ(+) = sn
w

F

(
t(+)σw + βS QV

sw

)
, (5)

σ(−) = sn
w(1 − t(+))

σw

F
, (6)

T(±) = σ(±)

σ0
, (7)

QV = ρ̃S

(
1 − φ

φ

)
CEC, (8)

where σ (±) are the contributions of cations (+) and anions (–) to
the overall rock conductivity, σw is the brine conductivity (S m−1),
βS = (1 − f )β (+) is the effective cation mobility along the mineral
surface, β (+) is the mobility of the cations in the pore water (m2 s−1

V−1), ρ̃S is the mass density of the solid phase, f is the fraction of
counterions in the Stern layer (typically equal to 0.98 for kaolinite,
0.85 for illite and 0.90 for smectite, see Leroy et al. 2007), CEC is
the cation exchange capacity of the clay fraction, F is the electrical
formation factor (dimensionless) given by Archie’s law, F = φ−m

(Archie 1942), m is called the cementation exponent (Archie’s first
exponent), sw is the relative saturation of the water phase, n is
the saturation exponent (Archie’s second exponent) and t (+) is the
microscopic Hittorf number of the cations in the brine (Revil 1999).
This microscopic Hittorf number is defined by,

t(+) = β(+)

β(+) + β(−)
, (9)

where β (−) is the mobility of the anions in the pore water. In the
absence of surface conductivity, the macroscopic Hittorf numbers
of the material T (±) are equal to the microscopic Hittorf numbers
t (±). Pore water conductivity is related to the mobility of the ions
β (±) by,

σw = eCw(β(+) + β(−)), (10)

where Cw is the salinity of the pore water (usually reported in
Mol L−1 but is expressed in m−3 in SI units). The temperature
dependence of ionic mobility is given by (Revil et al. 1998),

β(±)(T ) = β(±)(T0) [1 + αw(T − T0)] , (11)

where αw = 0.023 per ◦C. This relationship governs both the temper-
ature dependence of the connate water and surface conductivities.

The volumetric charge density of the electrical diffuse layer Q̄V

is related to the total volumetric charge density by,

Q̄V = (1 − f )QV . (12)

The partition coefficient f of the counterions can be determined
from electrical triple layer models (see Leroy et al. 2007, 2008;
Jougnot et al. 2009).

Revil (1999) showed the gradient of the logarithm of the activity
of the salt is equivalent to the gradient of the logarithm of the
conductivity of the salt. Using this change of variable, we can rewrite
the total source current as,

jS = Q̄V

sw

u − kbT

e
σ0(2T(+) − 1)∇ ln σw. (13)

Combining eq. (1) with the continuity equation for the charge ∇ · j =
0, the self-potential field ψ in a borehole is the solution to the
following Poisson equation,

∇ · (σ∇ψ) = ∇ · jS, (14)

where the volumetric source current density � = ∇ · jS (in A m−3) is
computed using eq. (13). Eqs (13) and (14) are the two fundamen-
tal equations governing the occurrence of self-potential signals in
boreholes. In the following, we solve eq. (14) using a finite element
code. It can be solved in 3-D, as the complete solution to eq. (14)
or at each depth (1-D axisymmetric approximation) assuming in
2-D layered formations normal to the well, or at each depth (2-D
axisymmetric approximation) assuming the (vertical) self-potential
contribution produced at the interfaces between geological layers
can be neglected with respect to the (radial) contributions arising
between the formations and the borehole. This last assumption will
be tested later in the paper and shown to be an excellent approxi-
mation for our analysis as long as the vertical gradient in connate
water salinity is not too severe. Fig. 1(a) shows where the current
sources can be located at the interface between the borehole and
the formations and between the invaded zone (filled with the mud
filtrate) and the uninvaded zone and between the invaded zone and
the shale layers.

2.3 Temperature correction

A temperature correction must be applied before borehole self-
potential measurements can be analysed quantitatively. Indeed, due
to the geothermal gradient along the borehole, the reference and
moving electrodes are typically at different temperatures. Because
the electrode response is intrinsically temperature dependent (Petiau
2000), a differential of electrical potential develops between the two
electrodes, even in the absence of any external source of electrical
current. As a result, the self-potential log drifts with depth, as a
function of the corresponding increase in formation temperature. A
straightforward correction can be used to remove this dependence
from the data. A first-order Taylor expansion of the electrical poten-
tial, measured by the moving electrode, with respect to temperature
is,

ψ(T ) = ψ(T0) + ψ ′(T0)(T − T0) + O(T 2), (15)

where ψ ′(T 0) is the first derivative of ψ(T ) with respect to temper-
ature. Eq. (1) is therefore just a linear approximation of the temper-
ature in the vicinity of T 0. If we assume that T 0 is the temperature
of the reference electrode and T is the temperature at position z of
the moving electrode, the difference of electrical potential between
the moving electrode and the reference electrode (assumed to be
identical) is,

δψ = ψ(T ) − ψ(T0) = α(T − T0), (16)

where α = ψ ′(T 0). The temperature coefficient α depends on the
type of electrode used. Lead, bronze and stainless electrodes are
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Figure 1. Self-potential borehole measurements. (a) The self-potential cur-
rent sources are mainly located at interface where there is a steep gradient
in the chemical potential of the brine, therefore at the interface between the
borehole and the formation and at the interface between the invaded and
uninvaded zones. Here the mud infiltrates invades a sand layer sandwiched
between two shale layers (σm represents the conductivity of the mud, σmf

represents the conductivity of the mud filtrate inside the pore of the sand in
the invaded zone and σw represents the conductivity of the pore water in
the invaded part of the sand formation). (b) Self-potential data versus in situ
temperature in a relatively homogeneous section of a borehole drilled in the
Piceance Basin, Colorado. Each point represents an average over a depth
interval. This trend (∼0.7 mV◦C−1) corresponds to the known dependence
of Cu/CuSO4 electrodes. The slope is used to correct the ‘drift’ common to
self-potential borehole data.

often used for the moving electrode. For these electrode types, the
temperature coefficient α can be determined from the Nernst equa-
tion. In the case of non-polarizing electrodes, α can be determined
experimentally (see Table 1 for some values). This coefficient can
be either positive or negative. If the type of electrode used to make
the measurements is unknown, as in the case analysed later in this
paper, the temperature coefficient can be determined by an empir-
ical first-order fit of the self-potential data versus temperature as
shown in Fig. 1(b).

After the temperature correction has been applied, the data must
be shifted to a common reference. The classical approach, widely
used in industry, incorporates a bulk shift of the data to the shale
baseline, which is picked empirically for each well. Although it

Table 1. Typical temperature dependence of some electrodes.

Electrode Temperature coefficient at around 25◦C

Pb/PbCl2 0.20 mV/◦Ca

Cu/CuSO4 0.7 mV/◦Cb, 0.9 mV/◦Cc

Ag/AgCl −0.43 mV/◦Cd , −0.73 mV/◦Ce

aPetiau (2000)
bSaturated copper sulfate, Antelman (1989)
cClennel Palmer & King (2004)
d0.1 N KCl, Antelman (1989)
e3.5 M KCl solutions, 0 < T < 100◦C (Rieger 1994)

allows for comparison of the data across a multiwell data set, this
process is entirely qualitative and can eliminate characteristic as-
pects of the self-potential curve. Due to the inherent subjectivity of
this method, as well as the detrimental effect on the data, we under-
take an alternative approach. In our treatment of the self-potential
log, the temperature corrected data is shifted to a common reference
potential (zero reference). Due to the relative nature of the measured
electrical potential to a reference voltage, a number of methods can
be used to obtain a valid reference. In this work, the reference poten-
tial is determined theoretically from the data. A detailed description
of the approach we use to define the reference potential is given in
Appendix A. Zero referencing the self-potential log has the advan-
tages of preserving the raw data, while normalizing the data set,
which is useful for both correlation and modelling purposes.

2.4 Comparison with the empirical approach

In the present section, we demonstrate our formulation is consistent
with simplified formulae widely used to determine the formation
water resistivity from the self-potential log. Neglecting the stream-
ing potential contribution (i.e. imposing the condition that the bore-
hole and the formation are at the same fluid pressure) and using the
equilibrium condition j = 0 in eqs (1) and (13) (i.e. the diffusion
current is exactly counterbalanced by the conduction current), we
obtain,

kbT

e
(2T(+) − 1)∇ ln σw + ∇ψ = 0. (17)

The difference of electrical potential between the formation water
and the fluid filling the borehole is therefore obtained from eq. (17),

	ψ = −kbT

e
(2T(+) − 1) ln

(
σm

σw

)
. (18)

To compare this formula with a classical formula found in the
literature, we denote ρm = 1/σ m as the electrical resistivity of the
drilling mud (or borehole fluid) and ρw = 1/σw as the resistivity of
the pore water.

For the end-member case of a pure diffusion potential corre-
sponding to a clean sand, surface conductivity can be neglected and
using Q̄V = 0 in eq. (7) to (9), we obtain T (+) = t (+). Therefore
the sand self-potential baseline is given by equating T (+) = t (+) in
eq. (18). This yields,

	ψSd = kbT

e
(2t(+) − 1) ln

(
ρm

ρw

)
, (19)

where kbT /e = 25.8 mV at 25◦C. The reciprocal end-member case
corresponds to a perfect membrane also called the shale baseline in
the literature (Ellis & Singer 2007). In this case, surface conductivity
dominates and T (+) = 1 (all the current is carried by the cations as
a result of the strong effect of surface conductivity in the electrical
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double layer). Considering T (+) = 1 eq. (18) yields the following
expression for the shale baseline,

	ψSh = kbT

e
ln

(
ρm

ρw

)
. (20)

This electrical potential response is also called the perfect mem-
brane potential. Eqs (19) and (20) do not contain any material prop-
erties, therefore they are model independent. They are, however,
dependent on the conductivity, or resistivity, of the pore water. Con-
sequently, they have been widely used in the literature to determine
the formation water salinity (e.g. Ellis & Singer 2007 and references
therein).

The so-called SSP is the ideal self-potential curve produced by
the transition from shale to a thick, porous, clean sand (Ellis &
Singer 2007). Using ln x = 2.303 log x, the above definition and
Eqs (19) and (20), the SSP is given by,

SSP = −K log

(
ρm

ρw

)
, (21)

K = 4.606 kbT

e
(1 − t(+)), (22)

which yields K = 72 mV at 25◦C and K = 103 mV at 150◦C using
t(+) = 0.39, the microscopic Hittorf number for a sodium chloride
solution (see Revil 1999). This is consistent with the formula found
in the literature where K = 65 + 0.24 T where T is expressed in
◦C (K = 71 mV at 25◦C and K = 101 mV at 25◦C) (see Ellis &
Singer 2007). Usually eq. (21) has to be corrected for the borehole
diameter given by the caliper log (Tabanou et al. 1987).

Salazar et al. (2008) proposed a model based on the equations
developed by Zhang & Wang (1997, 1999). Their model is equiva-
lent to a dipole layer of electrical charges with a potential difference
across the dipole layers given by the SSP model. As discussed above
this approach oversimplifies the physics of the problem because the
SSP model works only if both the clean sand and shale baselines
are both present and contiguous within the formation. Essentially,
the ideal SSP case misrepresents the true nature of the self-potential
response in the borehole environment. Many researchers still con-
sider the self-potential response in a borehole is due to a potential
generator at the interface between the formations and the borehole.
Although these boundaries may, in fact, coincide spatially with an
actual current source, the concept is unphysical. Hence this tra-
ditional view should be deprecated, since self-potential signals are
always generated by a source of current, as evidenced by the govern-
ing Poisson equation, eq. (14). We propose a more general theory, in
which the macroscopic Hittorf number T (+) may take any value be-
tween 1 (i.e. the shale baseline or the case for membrane potential)
and t(+) (i.e. the clean sand baseline or the case for pure diffusion
potential), which accounts for contributions from both positively
and negatively charged ionic species, as well as the contributions
from surface conductance. In the following section, we will develop
a method to invert in situ self-potential measurements in terms of
formation and reservoir properties.

3 F O RWA R D A N D I N V E R S E
M O D E L L I N G

3.1 Forward finite element modelling

Eq. (14) is solved to provide the distribution of self-potential ψ

using eq. (13) to determine the volumetric source current density
� = ∇ · jS . Eq. (14) can be solved with any type of numerical partial

differential equation solver. In this work, we use the finite element
software Comsol Multiphysics 3.5 to solve the forward problem nu-
merically with appropriate boundary conditions for which the nor-
mal component of the electrical field is either null at interfaces with
an insulating boundary or electrically grounded from the current
sources located at the interface between the well and the formation.
Jardani et al. (2007, 2008, 2009) described various examples of
solving the self-potential problem with Comsol Multiphysics and
the boundary conditions to be used.

If we consider a layered system in which the geological layers are
normal to the well, the volumetric (i.e. 3-D) solution to the Poisson
eq. (14) is solved using a 2-D axisymmetric space parametrized in
terms of z, the vertical component (assuming a vertical well) and r,
the radial component. We will call this model the 2-D axisymmetric
model below. We will show, to a good approximation, the resolution
of eq. (14) can be reduced to a series of 2-D problems solved in-
dependently at each depth using only the dependence of the source
current density on radial distance from the borehole axis (named
the 1-D axisymmetric model hereinafter). This ‘simplified’ model
neglects the vertical potential contribution to the self-potential sig-
nals; however, it has many advantages over the general model due
to the fact it can be parallelized, thereby decreasing computational
cost and can be applied iteratively to a data set of arbitrary size.

Regarding the boundary condition, we use a Dirichlet condition
far from the well. Rejecting the Dirichlet condition far form the
source does not improve the accuracy of the modelling of the po-
tential within the medium. This is because the further the boundary,
the bigger the surface on which this condition is given, increasing
its influence. A zero Dirichlet condition makes the potential in a
midpoint of the source and that boundary be more or less half of
the correct value. The real improvement in putting the Dirichlet
condition far from the source is to improve the potential accuracy
in the vicinity of the source itself that is in a domain small with re-
spect to the distance from the source to the external boundary. Our
approach is therefore correct only because we stay in the vicinity
of the source, that is we measure the potential inside the borehole
with a source of current mainly located at the borehole/sediment
interface.

3.2 Starting value of the model parameter vector

We propose an algorithm to invert the following six petrophys-
ical formation properties: the pore water conductivity (alterna-
tively, connate water salinity), the formation factor (alternatively,
the porosity), the water saturation, the volumetric excess charge den-
sity (alternatively, the cation exchange capacity) and the two Archie
exponents m and n using a joint inversion of various downhole
measurements including resistivity, self-potential, density, neutron
and gamma-ray logs. In this section, we use first-order approxi-
mations to determine a starting set of values for the previously
mentioned model parameters to initiate the Markov Chain Monte
Carlo (MCMC) algorithm.

The prior value for the porosity is usually determined as the
average of the porosity estimate obtained from the density log and
neutron porosity logs,

φ = 1

2
(φD + φN ) , (23)

φD = ρ̃ − ρ̃S

ρ̃w − ρ̃S
, (24)

which is valid throughout regions of uniform borehole diameter
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Inversion of self-potential log data 753

defined by the caliper log. In the following, we use ρ̃S = 2650 kg
m−3 (the mass density of silica) as a reasonable value for the mass
density of the solid phase (Revil & Leroy 2001). However, if the
borehole diameter is greater than approximately 10 per cent of the
average diameter over a discrete interval measuring less than the
length of the logging tool (< ∼10 m), which occurs frequently in
shale intervals due to washout (i.e. increased erosion) of the bore-
hole walls, the density curve exhibits anomalously low readings.
This artefact of the density measurement results from the presence
of a fluid-filled void between the logging tool and the formation
when the sonde is flush with the, otherwise relatively smooth, bore-
hole wall. The data over washed-out intervals are discarded and
replaced with an interpolated linear approximation.

The apparent resistivity, ρa (in Ohm m) can be determined from a
linear relationship between the resistivity of the invaded zone, ρXO

(in Ohm m) and the true formation resisitivity, ρ f (in Ohm m) (Ellis
& Singer 2007),

ρa = J (di )ρX O + [1 − J (di )] ρ f , (25)

ρX O = Fρm f , (26)

where ρmf is the resistivity of the mud filtrate (in Ohm m) and J (di)
is a dimensionless constant that depends on di, the diameter of the
invaded zone comprising the borehole diameter plus the depth of
invasion. For our problem, the borehole diameter is ∼0.2032 m
(8 inches). According to the charts presented by Ellis & Singer
(2007, p. 109), an appropriate value of J (di) is 0.03. Eq. (25) is used
to compute the formation resistivity using the apparent resistivity
from deep induction measurements and the caliper log.

For a formation containing fluid phases of water and gas,
the density log provides a measurement of the mass density of
the formation ρ̃, which is related in turn to the porosity φ and the
relative water saturation sw by,

ρ̃ = (1 − φ)ρ̃S + φswρ̃w + φ(1 − sw)ρ̃g, (27)

where ρ̃S and ρ̃g are the mean value of the mass density of the solid
phase and the gas phase, respectively. Because the density of the gas
is very low, the last term of eq. (27) is neglected. A first estimate of
the relative water saturation is therefore given by,

s1
w =

⎧⎪⎪⎨
⎪⎪⎩

ρ̃ − (1 − φ)ρ̃S

φρ̃w

if
ρ̃ − (1 − φ)ρ̃S

φρ̃w

≤ 1

1 if
ρ̃ − (1 − φ)ρ̃S

φρ̃w

> 1
. (28)

Assuming the starting values for m and n (the two Archie exponents)
equal 2, the electrical conductivity is taken from Eqs (4) to (8) by
the following expression,

σ0 = s2
wφ2σw + βSswφ2 QV , (29)

which is a quadratic equation with respect to sw . If we have an
estimation of the conductivity of the pore water, either from eq. (21)
or from in situ sampling, we can use eq. (29) to estimate a starting
value for the charge density per unit pore volume according to,

QV = 1/ρ f − s2
wφ2σw

βSswφ2
, (30)

where ρ f = 1/σ 0 is the formation resistivity determined from deep
induction data for instance. In eq. (30), the porosity is determined
from eq. (23). The cation exchange capacity is related to the CEC
of the clay fraction, denoted CECclay and the gamma-ray (in API
units) as (e.g. Rabaute et al. 2003),

CEC = IG RCECclay, (31)

IG R = G R − G RMin

G RMax − G RMin
, (32)

where IGR is called the gamma-ray index. In the following, we use
GRMin = 10 for sand. These equations assume radioactive minerals,
potassium for instance, are carried by the clay fraction. However,
this assumption can be invalid where radioactive feldspar is present,
in which case, sand formations are radioactive and could be misin-
terpreted as clay-rich formations. For the present case, the assump-
tion of non-feldspathic (i.e. potassium free) sands is reasonable;
thus, the total charge per unit volume is given by,

QV = ρ̃S
1 − φ

φ
IG RCECclay . (33)

Combining Eqs (30) and (33), we obtain the following equation for
the cation exchange capacity of the clay fraction,

CECclay = φ

ρ̃S(1 − φ)IG R

(
1/ρ f − s2

wφ2σw

βSswφ2

)
, (34)

A second estimate of the connate fluid saturation is given by solving
eq. (29) for the saturation term,

s2
w = −

βS QV φ2 −
√

(βS QV φ2)2 + 4σwσφ2

2φ2σw

. (35)

Hence, we have derived two equations for the determination of
a prior value, at each depth, for the saturation of connate (pore)
water. They are given by eqs (28) and (35). A relation of the density
and neutron curves generates one curve, whereas the gamma-ray
and deep resistivity curves are used to generate the second curve.
Hence, the prior value for water saturation at each depth is given by
a simple arithmetic average of these two estimates,

sw = 1

2

(
s1
w + s2

w

)
. (36)

In the absence of the ideal case for which a value of the SSP re-
sponse can be accurately calculated, a first estimation of the pore
water conductivity σw can be obtained by solving eq. (29) with the
porosity and deep resistivity logs in conjunction with fluid satura-
tions obtained from either or both of the methods described above.
A flowchart summarizing the formulation of the first estimation of
the solution is given in Fig. 2.

The concentration of dissolved ions in water is directly related
to fluid conductivity, or resistivity. The resistivity is measured as
2.0 Ohm m for the drilling mud, 1.5 Ohm m for the mud filtrate
and a prior value of 0.5 Ohm m is assumed for the pore water.
Corresponding salinities in Mol m−3 are calculated using eq. (10).

3.3 Development of a stochastic approach

We adopt a Bayesian approach to estimate posterior probability
densities of the six material properties m = [log ρw , log QV , logit φ,
logit sw , log(m − 1), log(n − 1)] from four downhole measurements:
the gamma-ray, electrical resistivity, density and self-potential logs.
We use the logarithm of the different material properties m0 to
ensure the positiveness of the random model parameters, the logit
transform logit (a) = log[a/(1 − a)] when the parameter ‘a’ is
a concentration greater than zero and less than one, 0 ≤ a ≤ 1
(see Ghorbani et al. 2007). The previous choice is used to naturally
impose the following constraints during the inversion ρw > 1, QV >

0, 0 <φ < 1, 0 < sw< 1, m, n > 1.
The Bayesian solution to the inverse problem presented here is

based on the precept of combining information from borehole data
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754 W. F. Woodruff et al.

Figure 2. Workflow for determination of the first estimates of the six model parameters at each depth. These model parameters are the two Archie’s exponents,
the porosity, the saturation in water, the charge per unit pore volume or the CEC and the conductivity of the pore water (or alternatively the salinity).

with some prior knowledge. Bayesian analysis considers both the
data vector d and the model parameter vector m of a model as ran-
dom variables defined as probability distributions. All distributions
are characterized by probability density functions (Mosegaard &
Tarantola 1995). The objective of inverse modelling is to update
the information on m given the data d and a priori knowledge of
m. Prior information can come from independent observations as
well as petrophysical or theoretical relationships. The first estimate
cannot be used directly as a prior as in principle the prior is not
based on the data. We will discuss at the end of this section how the
prior is chosen.

In a probabilistic framework, the inverse problem reduces to the
maximization of the conditional probability, or ‘likelihood’, of the
model response m given the data vector d and a petrophysical
model M. We denote P0(m|M) as the prior probability density or
the best guess for parameters m of model M and such a model
generates the probability density of likelihood P(d|m, M) corre-
sponding to the data fit. The posterior probability density π (m|d) of
the model parameters m given the data d is obtained by using Bayes
formula,

π (m|d, M) = P(d|m, M)P0(m|M)

P(d|M)
, (37)

where P(d|M), the evidence, is defined as,

P(d |M) =
∫

P0(m|M)P(d|m,M)dm. (38)

In the following, we assume the petrophysical model M (described
below) is certain and therefore we drop the term M . The posterior
probability density π (m|d)of the model parameters m given the
data d is written as,

π (m|d) ∝ P(d|m)P0(m). (39)

The Bayesian solution of the inverse problem is the posterior prob-
ability distribution of material properties over the complete range
of parameter values. An estimate of the unknown parameters can
be computed as the expected value with respect to the posterior
distribution (i.e. as the mean value) or as the maximum posterior
value, which can be interpreted as the most likely value.

It is a widely accepted practice to define the likelihood function in
terms of normally distributed range of values. The model response
g(m) is assumed to be Gaussian distributed,

P(d|m) = 1

[(2π )N det Cd ]1/2

× exp

[
−1

2
(g(m) − d)T C−1

d (g(m) − d)

]
, (40)

d = (dv, dR, drho)T, (41)

where d is an N-vector of the observed log data, Cd is the (N ×
N)-covariance matrix and g(m) is the (non-linear) forward opera-
tor for the self-potential problem (note that while P(d|m) can be
Gaussian, P(m|d) is Gaussian only if g is linear). The petrophysical
model establishes a non-linear connection between the generation
of downhole measurements and the random variations of model
parameter values. The covariance matrix comprises the error asso-
ciated with the measurement corresponding to each log, which are
assumed to be uncorrelated and are to obey Gaussian statistics (i.e.
they are defined by either normal or log normal distributions).

The prior distribution on the model parameters can be taken as
Gaussian,

P0(m) = 1

[(2π )M det Cm]1/2

× exp

[
−1

2
(m − mprior )T C−1

m (m − mprior )

]
, (42)
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Inversion of self-potential log data 755

where mprior is a vector of prior constraints, or expected values, of the
petrophysical parameters in the subsurface and Cm is the (M × M)-
covariance matrix of the model, which incorporates the uncertainty
(confidence) related to the imposed constraints. In the example
presented below, we use a null-prior as the confidence interval for the
model. In the classical Bayesian approach, the model parameter m
that best fits the geophysical observations d, maximizes the posterior
probability density π (m|d). The objective is to explore the posterior
probability density π (m|d) through repeated stochastic realization
of the model m.

The MCMC family of algorithms is well-suited to Bayesian in-
ference problems (Mosegaard & Tarantola 1995). MCMC algo-
rithms consist of random walks where different posterior states (i.e.
different-valued, random realization of a model vector) are visited
through iterative solution of the forward operator. The choice of each
subsequent state depends only on the value of the current state. Af-
ter an initial period, during which the random walker moves toward
regions of highest posterior probability, the chain returns a number
of model vectors used to construct the posterior probability distri-
bution π (m|d) of the model parameters. The vectors retained by the
algorithm represent stochastic samples of the posterior probability
density. If a sufficient number of samples of the posterior distribu-
tion have been obtained, characteristics of the posterior probability
density, like the mean and the standard deviation, or the number
of extrema, are easily determined. Memory mechanisms of MCMC
algorithms (conditions requiring the chain to remain in regions of

high probability) are responsible for a greater efficiency of the al-
gorithm by comparison to Monte Carlo methods. In this paper, we
implemented a variant of the MCMC algorithm called the Adap-
tive Metropolis Algorithm (AMA, see Haario et al. 2001, 2004).
More precisely, we use the algorithm described in Appendix A of
Tamminen (2004). The starting value of the model parameters used
to start the MCMC algorithm are those determined in Section 3.2
and Fig. 2.

The following is the petrophysical model used to perform the
inversion:

ρ̃ = (1 − φ)ρ̃S + φswρ̃w, (43)

1

ρ f
= φm

[
sn
weCw(β(+) + β(−))

+ (1 − f )(1 − φ)β(+)ρ̃S IG R

swφ
CECclay

]
, (44)

∇ ·
(

1

ρ
∇ψ

)
= kbT

e
∇ ·

[
1

ρ

(
2T(+) − 1

) ∇ ln ρw

]
, (45)

where the formation resistivity and the pore water resistivity are
given by,

ρ =
{

ρm, for 0 ≤ r ≤ R,

ρ f for r > R,
(46)

Figure 3. Borehole data used for the synthetic model. For the self-potential data, we compare the 2-D axisymmetric forward model response (plotted as black
circles) to that of the 1-D axisymmetric forward model response computed at each depth (plotted as open circles). The similar response computed with the 1-D
and 2-D axisymmetric models justifies the assumption that the vertical component of the electric field can be neglected in the analysis of the self-potential data
when the salinity of the formation is constant.
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756 W. F. Woodruff et al.

Figure 4. Results of the inversion of the six model parameters. (a) Inverted model parameters (plain circles) resulting from the 1-D axisymmetric inversion
are plotted against the true model parameters used to generate the synthetic data set (the solid lines). The mean (grey circles) and standard deviation (the small
black dots) of the posterior model distributions are shown for each depth. (b) Example of stochastic realizations of porosity, water saturation, cation exchange
capacity and salinity values sampled during the inversion at a single depth. The distribution of parameter values approaches a constant mean and standard
deviation, showing the distribution has converged. The posterior probability density of the model parameters is defined from the windowed interval.
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Inversion of self-potential log data 757

ρw =
{

ρm f , for 0 ≤ r ≤ R,

ρw = 1
eCw(β(+)+β(−))

for r > R,
(47)

respectively and the macroscopic Hittorf number is defined by,

T(+) =
⎧⎨
⎩

t(+), for 0 ≤ r ≤ R,

sw t(+)φeCw (β(+)+β(−))+(1− f )(1−φ)β(+) ρ̃S IG R CECclay

sweCw (β(+)+β(−))φ+(1− f )(1−φ)β(+) ρ̃S IG R CECclay
for r > R.

(48)

In addition, we also use eq. (32) to perform the inversion of borehole
data. Eq. (48) is obtained from Eqs (6) to (10) and eq. (33). In these
equations, R is the borehole radius determined from the caliper log,
ρ f is the resistivity of the formation, ρm is the resistivity of the mud
and ρmf is the resistivity of the mud filtrate. The fact that eq. (45) is
solved in 2-D (i.e. we solve the radial self-potential problem at each
depth z), will be discussed in the next section. These equations are
also computed at the in situ temperature using eq. (13).

Finally, we revisit the need to select a common reference for the
data and the model. One possibility is to take the voltage defined by
the median of the sand and shale baselines as the references. This
choice is discussed in Appendix A. In the synthetic case presented
in the next section, we will select the reference in a different way.
The method employed for the determination of the reference is non-
unique; as long as all the calculations are made consistently a choice
of a reference voltage for the data is valid.

The starting model established in Section 3.2 and Fig. 2 is in
fact not a true prior, since it is derived in part from the data used

in the inversion. However, the model probability density functions
are ‘whitened’ significantly to allow proper sampling of the param-
eter space. The standard deviations of the model parameters are in
fact significantly augmented (by a factor 2) for sufficient posterior
sampling.

4 S Y N T H E T I C C A S E

To test both the accuracy of the simplified model (1-D axisymmet-
ric model) with respect to the general model (2-D axisymmetric
model) and the efficacy of the inversion algorithm, a synthetic data
set was generated. This synthetic model describes the self-potential
response to a source of current derived from the electrodiffusion of
ions between a layered sedimentary sequence and the boreholes as
described by the governing field equations given above in Sections 2
and 3. The solution to the synthetic model represents the a priori re-
sponse given the data and computed according to the formulation of
the prior solution described above, excepting the assumption of us-
ing a constant connate water salinity of 110 Mol m−3. The synthetic
data set provides a platform from which to test the compatibility
of the 1-D and 2-D axisymmetric self-potential models, as well as
prove the convergence of the inversion algorithm.

The forward 1-D axisymmetric model requires the electrical re-
sponse at a given depth to depend on a set of reference voltages
at each depth. This reference corresponds to the measured volt-
ages bounding a given depth along the borehole axis. The appli-
cation of these reference points in the 2-D case compensates for

Figure 5. Posterior mean for the data at each depth resulting from the 1-D axisymmetric inversion (filled circles) are plotted against synthetic data generated
by the 2-D axisymmetric model (the plain lines). The mean (filled grey circles) and standard deviation (black dots) of the posterior data distributions are shown
for each depth. The solid lines represent the synthetic data.
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758 W. F. Woodruff et al.

Table 2. Mean and standard deviation of model parameters for the stratigraphic layers of the synthetic model
determined according to the gamma-ray index. The mean and standard deviation (in parentheses) of the posterior
distributions for each layer are tabulated. These results are in very good agreement with the true model parameter
values (see solid lines in Fig. 4a): φ is the porosity, sw is the saturation of the brine, Cw is the salinity of the
pore water (in Mol m−3), CEC is the cation exchange capacity (in C kg−1) and m and n are the two Archie’s
exponents.

Layer Lithology φ sw Cw CEC (×104) m n

1 Shale 0.07 (0.019) 0.72 (0.090) 112 (20.6) 1.94 (0.87) 1.91 (0.24) 1.94 (0.28)
2 Sand 0.08 (0.020) 0.65 (0.098) 111 (22.0) 1.28 (0.72) 1.95 (0.22) 1.97 (0.29)
3 Shale 0.08 (0.019) 0.65 (0.088) 114 (20.5) 1.39 (0.54) 1.89 (0.24) 1.98 (0.29)
4 Sand 0.10 (0.018) 0.65 (0.097) 109 (22.9) 1.22 (0.59) 1.96 (0.26) 1.95 (0.27)
5 Shale 0.08 (0.020) 0.71 (0.106) 110 (21.9) 1.97 (0.91) 1.91 (0.24) 1.95 (0.27)
6 Sand 0.09 (0.019) 0.66 (0.102) 107 (20.7) 1.56 (0.88) 1.95 (0.24) 1.95 (0.28)
7 Shale 0.08 (0.022) 0.74 (0.096) 110 (21.6) 1.93 (0.88) 1.89 (0.25) 1.93 (0.26)
8 Sand 0.11 (0.031) 0.68 (0.122) 114 (25.3) 1.44 (0.65) 2.05 (0.24) 1.86 (0.22)
9 Shale 0.09 (0.017) 0.62 (0.108) 115 (21.0) 1.42 (0.69) 1.93 (0.26) 1.92 (0.28)
10 Sand 0.11 (0.022) 0.63 (0.098) 111 (20.7) 1.42 (0.84) 1.97 (0.26) 1.97 (0.28)
11 Shale 0.07 (0.015) 0.75 (0.075) 112 (21.3) 1.96 (0.87) 1.89 (0.24) 1.94 (0.26)
12 Sand 0.08 (0.018) 0.64 (0.100) 112 (21.3) 1.51 (0.78) 2.00 (0.23) 1.90 (0.26)
13 Shale 0.08 (0.012) 0.62 (0.073) 112 (20.1) 1.15 (0.38) 1.94 (0.24) 1.97 (0.25)
14 Sand 0.09 (0.023) 0.64 (0.091) 112 (20.7) 1.15 (0.57) 1.98 (0.27) 1.95 (0.26)
15 Shale 0.08 (0.020) 0.71 (0.107) 110 (21.4) 2.05 (0.11) 1.90 (0.23) 1.94 (0.29)

Figure 6. Borehole data collected in the Piceance Basin of western Colorado. An interval over a 40 m section of low porosity interbedded sand and shale
layers was chosen for the analysis. (a) Gamma-ray index IGR used as a lithology indicator to define sand (in white) and shale (in grey) layers. The vertical
line corresponds to the critical value of the gamma-ray index used to distinguish between sand and shale layers. (b) Caliper log providing an estimate of the
borehole radius. (c) Density log. Depth intervals A and B are examples of washouts corresponding to the erosion of the walls of the borehole at these depths.
(d) Resistivity log (ILD). (e) Self-potential with a reference taken at the mid-values of the shale and sand baselines as explained in Appendix A.
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Inversion of self-potential log data 759

any over or underestimation of the electric potential due to the ab-
sence of the vertical component of the electric field. Hence, the
2-D model computes the perturbation of electric potential from a
reference defined by the data. A comparison of the forward re-
sponse of the 1-D axisymmetric model to the synthetic is shown
in Fig. 3. Since the synthetic apparent resistivity and bulk density
obey linear relationships, the response of both models is identi-
cal to the true, prior values and is not shown here. The synthetic
self-potential responses of the 2-D and 3-D numerical models are
well correlated, verifying the 2-D assumption in the case where
the salinity of the formation water is constant. The validity of the
2-D assumption simplifies the physical problem, improves compu-
tational cost and enables the iterative application of the model to
a data set of arbitrary size. Note however this assumption is only
valid as long as there is no sharp change in pore water salinity,
because such sharp changes would generate vertical components in
the self-potential field measured in the borehole, which may invali-
date the use of the 2-D numerical approach. In this case, if the 2-D
numerical modelling and inversion starts to exhibit drastic change
in the vertical distribution of the formation salinity, it is better to
use the 3-D numerical model, which accounts for such vertical
contributions.

The synthetic data was also used to test the accuracy of the in-
version algorithm. Since the true model parameter vector is known
for the synthetic, it can be used to validate the posterior distribu-
tions of the model parameters output by the inversion. Therefore,
we can test the accuracy of the convergence of the inversion as-

suming that the model is an exact solution to the physical prob-
lem. A direct comparison of the mean posterior parameter values
to the prior shows good correlation (see Fig. 4), validating the
inversion algorithm. A comparison between the posterior values
of the data and the true data values is shown in Fig. 5, illustrating
the high quality of the forward model as a proxy for reproducing
the data.

We also looked at the posterior distributions defined by collec-
tions of (separately) inverted depths, which correspond to sand and
shale layers, as defined according to the gamma-ray index applied in
the formulation of the synthetic. The results of the 2-D axisymmetric
inversion are classified and grouped with adjoining depths accord-
ing to a criteria based on the gamma-ray index. Shales are grouped
within depth intervals corresponding to a gamma-ray index greater
than 0.5, whereas sands are defined by intervals corresponding to
gamma-ray indices less than 0.5. The results of this comparison are
reported in Table 2, indentifying 15 layers in the synthetic data. For
each of these layers, we compute the average values of the posterior
mean (inverted at each depth) and associated variance. These values
are very close to the true values (e.g. m = n = 2 in the synthetic data
set and the salinity of the formation is equal to 110 Mol m−3). These
results prove the good convergence of our inversion algorithm. The
mean and variance of these composite distributions are a general-
ized measure of the material properties for each layer in the syn-
thetic stratigraphic sequence and provide statistical methodology
for the evaluation of stratigraphic relationships based on lithological
criteria.

Figure 7. Posterior probability distribution of reservoir properties showed as the mean and the confidence interval at each depth. (a) Porosity φ. (b) Water
saturation sw . (c) Salinity Cw . (d) Cation exchange capacity, CEC. For comparison, the CEC of illite is 2 × 104 C kg−1. (e) First Archie exponent m (cementation
exponent). (f) Second Archie exponent n (saturation exponent).
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5 A P P L I C AT I O N T O R E A L DATA

The Piceance Basin in western Colorado is currently an area of in-
terest for gas production in low permeability reservoirs. The strati-
graphic section known as the Mesaverde Group comprising both
fluvial and marine regression sequences of interstratified sandstone
and shale layers overlying extensive coal formations and capped by
a thin laterally continuous shale formation, is the site of a large,
basin-centred gas accumulation (Cumella & Ostby 2003; Cumella
& Scheevel 2008). We chose a 40 m section of a well exhibiting
data characteristic of the interval bounding continuous top gas to
test our model. The following borehole measurements are available
for the analysis: caliper, gamma-ray, resistivity and density, neutron
and temperature logs. They are used to construct a multilayer model
geometry and define parameter values within the model space. Al-
though regions within the model are indicated to represent sandstone
and shale layers (see the white and grey areas in Fig. 6a), the model
is, in essence, discretized vertically by the sampling interval of the
data.

5.1 Data set characteristics and material properties

Using the model described in Section 2 and the stochastic ap-
proach outlined in Section 3, a multiparameter joint inversion of
self-potential, bulk density and resistivity data was performed. The
segment of the data set chosen for this analysis is characterized by a
well-defined sequence of sand and shale layers (Fig. 6). The interval
is also characterized by low porosity (less than 0.2 according to neu-

tron and density logs), minimal invasion, volumetrically negligible
amount of K-feldspar mineral in sand and relatively thin interbed-
ding within the formations. The gamma-ray, resistivity and neutron
curves clearly delineate the interstratified sandstone shale sequence,
whereas the relatively low range of the photo-electric density curve
indicates minimal calcification of the sand intervals. For the induc-
tion curves as well as the shallow laterolog, all track are very closely
with one another. This indicates that the depth of invasion of the
drilling mud in the formation is minimal. Areas of large separa-
tion in these curves also correlate to significantly high caliper and
anomalously low density readings in shales, which are indicators of
washout.

The value for the conductivity of the mud is 0.5 S m−1 and the
conductivity of the mud filtrate is 0.667 S m−1 at 25◦C. The con-
ductivity of the connate water is assumed to be on the order of
2–6 S m−1, a range of values commonly used for formation water in
the Piceance Basin. The temperature gradient is constant throughout
the section and equal to 0.05◦C m−1.

5.2 Results of the joint inversion

The AMA algorithm is used to invert five model parameters: the
salinity (Cw), the cementation exponent (m), the saturation exponent
(n), the water saturation (Sw), the porosity (φ) and the cation ex-
change capacity (CEC). We used the self-potential, deep induction
and density well logs in the inversion. In addition to the constraints
discussed in Section 3, we use the following bounds for the model
parameters: Cw ∈ [1, 100] Mol m−3, m ∈ [1; 5], n ∈ [1; 5] and

Figure 8. Comparison between the prior and posterior probability density functions for the material properties and data assuming Gaussian distributions for
the log or the logit of the model parameters. (a) Porosity (dimensionless), (b) Connate (pore) water saturation (dimensionless). (c) Cation exchange capacity
of the clay fraction (in C kg−1). (d) Concentration of dissolved salts (salinity) in formation waters (in Mol m−3). (d, e, f) Downhole measurements (data) prior
and posterior probability distributions at a given depth.
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Figure 9. Evolution of the standard deviations of the model parameters as a function of the number of realizations using the AMA algorithm at a given
depth. This computation is performed at each depth to determine the number of realizations required for the algorithm to converge. In this case, the algorithm
converges after 50–60 realizations and the additional realizations (inside the dashed box) are used to compute the posterior probability density on each model
parameter at each depth.

CEC ∈ [1–105] C kg−1 (the porosity and the saturation are com-
prised between 0 and 1).

The data vector, d, is populated with log curves for the inter-
val discussed in Section 5.1. The misfit function is solved itera-
tively, comparing the model response, g(m), to the observed self-
potential, resistivity, density and gamma-ray logs. This is equivalent
to the maximization of the posterior probability density π (m|d).
The initial model vector is populated by reasonable prior values as
described in Section 3.2. Prior constraints on the model parame-
ter vector, m, are given using the bounds discussed above on the
model parameters or on the variables used to estimate the model
parameters.

The inversion yields the model parameters mpost at each depth.
These results are consistent with the geology of the Piceance Basin
(Fig. 7). The range of values of the parameters of interest are the
following: Cw∈ [18, 541] Mol m−3, m ∈ [1, 3.02], n ∈ [1, 3.57],
Sw ∈ [0.05, 0.99] (volume fraction), φ ∈ [0.03, 0.14] (volume frac-
tion) and CEC ∈ [500, 3.4 × 104] C kg−1. The prior and posterior
probability density functions for the model parameters are illus-
trated for the inversion of a single depth in Figs 8(a)–(d). Prior and
posterior probability densities on the data are shown in Figs 8(e)–(f)
at a single depth. The probability density for the model parameters
is computed for all the realizations made at each once the algorithm
has converged as shown in Fig. 9.

The posterior model response exhibited a satisfactory fit to the
data, which was within a mean and standard deviation of the pos-
terior model variance of 21.4 and 6.45 Ohm m, 2.23 and 0.8 mV

and 41.12 and 11.34 kg m−3 for resistivity, self-potential and bulk
density, respectively, over the entire section (Fig. 10). This degree of
accuracy was achieved within a relatively low number of iterations
(fewer than 100 per depth iterate), as the convergence criteria were
met quickly using the AMA algorithm.

6 C O N C LU D I N G S TAT E M E N T S

A mechanistic model has been developed to interpret the measure-
ments of the self-potential in boreholes. The model accounts for
both a diffusion potential due to the difference in the activity of the
charge carriers between the formation water and the drilling mud
and a streaming potential contribution due to the difference in fluid
pressure between the formation and the borehole. Self-potential data
can be inverted with additional borehole data (in the present case,
resistivity, density, neutron porosity and gamma-ray logs) to retrieve
probability densities of some key petrophysical properties such as
the porosity, the saturation of the water phase, the two Archie’s
exponents (the cementation and the saturation exponents) and a
charge per unit volume. To achieve this goal, we have used a highly
adaptable and efficient MCMC approach, which provides posterior
probability densities for both the model parameters and the data
used in the inversion. Further development of this method will lead
to a basin-wide analysis or shallow subsurface applications and the
ability to invert for additional parameters, such as in situ perme-
ability, as some of the parameters inverted in this work (especially
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Figure 10. Data Misfit. Inversion results showing the model of highest likelihood with corresponding error bars determined by the posterior probability
distribution. (a) Resistivity. (b) Self-potential. (c) Density log. The in situ measurements are shown in grey-filled circles. The inverted data are shown with the
black-filled circles. The error bars correspond to twice the standard deviations determined from the posterior probability density function on the data at each
depth.

the charge per unit pore volume) are very sensitive to permeability
(see Jardani et al. 2009).
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Hötzl, H. & Merkler, G.-P., 1989. Self-potential measurements to determine
preferred waterflow in fractured rocks in Lecture Notes in Earth Sci-
ences, in Detection of Subsurface Flow Phenomena, Vol. 27, pp. 147–156,
Springer-Berlin, Heidelberg.

Hunt, C.W. & Worthington, M.H., 2000. Borehole electrokinetic responses
in fracture dominated hydraulically conductive zones, Geophys. Res. Lett.,
27(9), 1315–1318.

Jardani, A., Revil, A., Santos, F., Fauchard, C. & Dupont, J.P., 2007. Detec-
tion of preferential infiltration pathways in sinkholes using joint inversion
of self-potential and EM-34 conductivity data, Geophys. Prospec., 55,
1–11, doi:10.1111/j.1365-2478.2007.00638.x.
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A P P E N D I X A : T H E R E F E R E N C E
P O T E N T I A L

The choice of a reference voltage for self-potential measurements
is quite arbitrary. One possible choice, for instance, is to select
the reference as the median of the sand and shale baselines given
by eq. (19) and (20), respectively. Therefore, we use the following
potential to retrieve to the sand and shale baselines:

	ψ = kbT

e
t(+) ln

(
ρm

ρw

)
, (A1)
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which corresponds to half the sum of the clean sand and pure shale
baselines. With this choice of reference potential, the sand and shale
baselines are now given by,

	ψSd = kbT

e

(
t(+) − 1

)
ln

(
ρm

ρw

)
, (A2)

	ψSh = −	ψSd , (A3)

respectively. To remain consistent within the data set, the potential
given by eq. (A1) must be retrieved for all computed potentials. For

instance eq. (18) of the main text becomes,

	ψ = −kbT

e

(
2T(+) − t(+) − 1

)
ln

(
σm

σw

)
. (A4)

If we use a finite element code to solve eq. (14), the following source
term is used in lieu of eq. (13):

jS = −kbT

e
σ0

(
2T(+) − t(+) − 1

)∇ ln σw. (A5)

Alternatively, if eq. (13) is used, the potential given by eq. (A1) must
be removed from the computed potential field to remain consistent
with the chosen reference voltage.
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