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Abstract 

We present a synthesis and a comparison of the results of two temporary passive seismic 

experiments installed for a few months across Central and Northern Zagros. The receiver 

function analysis of teleseismic earthquake records gives a high-resolution image of the Moho 

beneath the seismic transects. On both cross-sections, the crust has an average thickness of 

43±2 km beneath the Zagros fold-and-thrust belt and the Central domain. The crust is thicker 

beneath the hanging wall of the Main Zagros Reverse Fault (MZRF), with a larger maximum 

Moho depth in Central (69±2 km) than in Northern Zagros (56±2 km). The thickening affects 

a narrower region (170 km) beneath the Sanandaj-Sirjan zone of Central Zagros and a wider 

region (320 km) in Northern Zagros. We propose that this thickening is related to 

overthrusting of the crust of the Arabian margin by the crust of Central Iran along the MZRF 

considered as a major thrust fault cross-cutting the whole crust. The fault is imaged as a low-

velocity layer in the receiver function data of the Northern Zagros profile. Moreover, the 

crustal-scale thrust model reconciles the imaged seismic Moho with the Bouguer anomaly 

data measured on the Central Zagros transect. At upper mantle depth, P-wave tomography 

confirms the previously observed strong contrast between the faster velocities of the Arabian 

margin and the lower velocities of the Iranian micro-blocks. Our higher-resolution 

tomography combined with surface-wave analysis locates the suture in the shallow mantle of 

the Sanandaj-Sirjan zone beneath Central Zagros. The Arabian upper-mantle has shield-like 

shear-wave velocities, while the lower velocities of the Iranian upper mantle are likely due to 

higher temperature. But these velocities are not low enough and the low-velocity layer not 

thick enough to conclude on a delamination of the lithospheric mantle lid beneath Iran. The 

lack of a high-velocity anomaly in the mantle beneath Central Iran suggests that the 

Neotethyan oceanic lithosphere is probably detached from the Arabian margin. 

 

(end of abstract) 
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The Zagros mountain belt results from the collision of Arabia and the micro-plates of Central 

Iran after the closure of the Neotethyan Ocean. Although no consensus is reached on the age 

of the initial collision along the Zagros suture, which ranges from Late Cretaceous to Pliocene 

(Berberian and King, 1981; Allen et al., 2004), the Zagros has been considered as an example 

of a young continent-continent collision belt, for example in the pioneering thermo-

mechanical models of continental collision by Bird et al. (1975) and Bird (1978). The rather 

small shortening ratios measured in the sediment cover of the Zagros fold-and-thrust belt 

(between 45 and 85 km, 15 to 27%; Blanc et al., 2003; McQuarrie, 2004; Sherkati and 

Letouzey, 2004; Molinaro et al., 2005a) suggest that the deep structure of Zagros is less 

complicated than more evolved belts like the Alps or the Himalayas. Imaging this structure 

should give clues on the early phases of mountain building, including the part played by 

oceanic slab detachment, or the role of continental subduction in the transition from oceanic 

subduction to continental collision. Indeed, the Zagros is located in-between the oceanic 

subduction of Makran and Eastern Anatolia where a number of seismic analyses suggest that 

the lithospheric mantle is either thinned or completely removed (Şengör et al., 2003).  

As reliable data on the lithospheric structure of Iran were scarce, one of the objectives of the 

Iranian-French cooperative program in Earth Sciences was to investigate the deep structure of 

Zagros, including Moho depth variations. In that aim, we installed temporary seismic stations 

along two transects of Zagros for a few months each. The first one (Zagros01 in Figure 1) was 

located in Central Zagros, from the coast of the Persian Gulf (Busher), to the Central domain 

(Posht-e-Badam). The second one (Zagros03-Alborz03 in Fig. 1) crossed the whole Iranian 

collision zone from Northern Zagros (Khorramabad) to the Caspian Sea across the Alborz. 

The two transects are located on either side of the north-trending Kazerun strike-slip fault 

system (KF in Fig. 1) which divides the Zagros belt in two domains with different 

deformation styles. Structural (Tchalenko and Braud, 1974), seismotectonic (Talebian and 

Jackson, 2004) and geodetic (Vernant et al., 2004; Walpersdorf et al., 2006) observations 

show that Northwestern Zagros accommodates the oblique convergence of Arabia and Eurasia 

by slip partitioning between shortening within the fold-and-thrust belt, and dextral strike-slip 

on the Main Recent Fault, which is parallel and very close to the Main Zagros Reverse Fault 

(MZRF in Fig. 1). By contrast, convergence in Central Zagros is accommodated by pure 

shortening perpendicular to the MZRF. A comparison of the results of the two seismic 

experiments could give clues on possible relationships between the deformation style 

observed at the surface and the lithospheric structure. 
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The results of the Central Zagros transect have been published in Paul et al. (2006) and 

Kaviani et al. (2007), while the results of the Northern Zagros transect are still unpublished. 

This paper focuses on the comparison of the two profiles, with special emphasis of the crustal 

structure.  

 

Previous data on Zagros lithospheric structure 
Crustal structure studies published prior to our seismic transects mainly deal with gravity 

data. Dehghani and Makris (1984) produced a Bouguer anomaly map of Iran from a dense set 

of stations and computed a crustal thickness map from the gravity variations. The main 

feature of the Bouguer anomaly map is a strong negative anomaly trending northwest-

southeast centred on the MZRF. Its absolute minimum of -230 mgal is located between Shiraz 

and Esfahan. According to Dehghani and Makris (1984), this negative gravity anomaly gives 

a maximum crustal thickness of 50 to 55 km located right beneath the MZRF, and a normal 

thickness of ~40km beneath the Persian Gulf coast and Central Iran. The more detailed 

Bouguer anomaly modelling of Snyder and Barazangi (1986) is focused on the Zagros region. 

They find a maximum crustal thickness of 55 to 60 km beneath the MZRF, but they argue that 

the Zagros topographic load is insufficient to explain the observations in terms of simple 

lithospheric flexure. 

All published controlled-source seismic profiles recorded in the Zagros for oil exploration 

purposes are limited to the sediments above the thick Hormuz salt layer which acts as a 

barrier for seismic waves. Giese et al. (1984) report on refraction profiles recorded from 

quarry blast sources in southeastern Zagros, but their conclusions are not supported by reverse 

profiles and the data quality is poor. Hatzfeld et al. (2003) used receiver function analysis 

from earthquake records to infer a crustal thickness of ~46 km beneath a single station in 

Central Zagros. 

Most results published on the structure of the lithospheric mantle come from seismology. The 

only exception is the combined modelling of topography, Bouguer anomaly, and geoid data 

by Molinaro et al. (2005b) who suggest that the lithospheric mantle could be much thinner 

beneath Zagros and the Iranian margin than beneath the Persian Gulf. From a regional 

analysis of surface wave records, Maggi and Priestley (2005) show that the upper mantle (at 

100-150 km depth) of the Turkish-Iranian plateau has lower S-wave velocities than 

surrounding regions like the Persian Gulf, Northern Arabia or the Southern Caspian. They 

argue on the spatial correlation of this low-velocity anomaly with a positive long-wavelength 
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free-air gravity anomaly indicative of a less dense mantle, and with recent volcanism with 

lower mantle signature, to propose a possible delamination of the lithospheric mantle beneath 

Central Iran. The resolution of their tomography is too low (a few hundreds km) to delineate 

the low-velocity anomaly and relate it to geological features like the MZRF. This upper 

mantle low-velocity anomaly has been confirmed for both P and S waves in a recent inversion 

of body wave arrival times by Alinaghi et al. (2007). Hearn and Ni (1994) and Al-Lazki et al. 

(2004) studied the Pn phase, the conic P wave that propagates in the shallowest upper mantle 

for regional earthquake-station distances. They show that P-wave velocities are higher (8.1-

8.4 km.s-1) beneath the Zagros than beneath most of the Iranian plateau (7.9-8.1 km.s-1). The 

boundary between lower and higher velocities coincides roughly with the MZRF. Al-Lazki et 

al. (2004) interpret this observation as an indication for absent or limited underthrusting of the 

higher-velocity upper mantle of Arabia beneath the lower-velocity upper mantle of Central 

Iran.  

Alinaghi et al. (2007) show depth cross-sections of their velocity models to address the 

question of the Neotethyan slab break-off. Their images show northward-dipping high-

velocity anomalies in the mantle beneath the low-velocity anomaly of Central Iran, which can 

be interpreted as remnants of the oceanic lithosphere. However, the cross-sections are quite 

complex, some of them showing a clear continuity of the high-velocity anomaly from shallow 

(Arabian platform) to large mantle depths, while the anomaly is discontinuous in other cross-

sections located a few tens of km apart. 

 

Data acquisition and processing 
Figure 1 shows a location map of temporary seismic stations installed by French-Iranian 

teams across the Zagros. The 67 stations of the Central Zagros experiment, named Zagros01, 

were operated along a 620-km transect from November 2000 to April 2001. From southwest 

to northeast, it crosses the Zagros fold-and-thrust belt (ZFTB), the Sanandaj-Sirjan 

metamorphic zone (SSZ), the Urumieh-Dokhtar magmatic assemblage (UDMA) and reaches 

the southern tip of the Central domain (CD). Regarding the logistics, this location was the 

easiest transect across the most two-dimensional part of the range. However, the south-

easternmost part of the profile follows the Kazerun fault which is now considered as part of 

an orogen-scale fault system along which dextral slip on the Main Recent Fault is transferred 

(Authemayou et al., 2006). This major tectonic structure probably has a structural signature 

which could make the Zagros01 transect less representative of the two-dimensional Central 
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Zagros belt. The second experiment, named Zagros03, crossed Northern Zagros and the 

plateau from May to November 2003 (42 stations, 470 km). It was complemented in Central 

Alborz by a 2-D array of 25 stations from the Seis-UK and Cambridge University pools 

operated in the same time period (array name: Alborz03). Both transects were mostly 

equipped with sensors with natural period above 5s, including small sub-networks of 

broadband sensors suitable for surface–wave studies (natural periods 90s and 120s).  

The results summarized in this paper were obtained from records of teleseismic earthquakes 

with magnitude larger than 5.5. The number of events used (~100 for each experiment) is 

large enough for a fair resolution in spite of a limited azimuthal coverage (most events with 

back-azimuths in the range 20-110º).  

Mapping Moho depth is one of the major goals of this type of experiment. This information is 

obtained by receiver function analysis, an efficient tool to image sharp velocity and density 

discontinuities at depth beneath seismic stations (Vinnik 1977, Langston 1979). Receiver 

function (RF) analysis is based on a deconvolution of the first few seconds of signal after the 

arrival of the P wave in the radial component of teleseismic records. It aims at measuring the 

time delay between the primary P and the Ps phase which is a P wave converted to S at 

velocity discontinuities beneath the station. The Ps-P time difference depends on the depth to 

the discontinuity, the P-wave velocity (Vp) model and Vp/Vs ratio between the discontinuity 

and the surface. Thus reasonable assumptions on the values of Vp and Vp/Vs lead to depth 

estimates from Ps-P delay time measurements. We computed receiver functions using the 

time domain iterative deconvolution method of Ligorria and Ammon (1999), and migrated 

depth sections using the common conversion point (CCP) method of Zhu and Kanamori 

(2000). 

The tomography of the upper mantle was achieved by inversion of teleseismic traveltime 

residuals for lateral variations of P-wave velocity beneath the seismic array. P-wave arrival 

times are picked at each station for earthquakes at teleseismic distance. Then, traveltime 

residuals are computed by subtracting theoretical traveltimes computed in a standard spherical 

Earth model from observed traveltimes, and the average residual for each event is subtracted 

from the relevant absolute residuals to give relative residuals. The relative residuals are 

sensitive to lateral velocity variations beneath the array. Then, the set of residuals is inverted 

for a three-dimensional model of P-wave velocity relative variations (ΔVp/Vp) beneath the 

array. We used the “tomo3d” implementation (Judenherc, 2000) of the widely-used and 

robust ACH inversion method of teleseismic residuals by Aki et al. (1977) improved by the 

“shift-and-average” procedure of Evans & Achauer (1993) to attenuate the influence of the 
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horizontal sampling in discrete blocks. One of the drawbacks of ACH is that it does not give 

absolute velocity. Therefore, we also estimated horizontally-averaged absolute S-wave 

velocity depth models from the inversion of surface-wave dispersion curves for the Zagros01 

experiment (Kaviani et al., 2007). As absolute S-wave velocities can be interpreted in terms of 

compositional or thermal changes with depth, they are a good complement to ACH 

tomography which detects lateral velocity variations with a fair horizontal resolution of a few 

station spacings (~30 km). 

 

Crustal thickness variations from receiver function analysis 
Figures 2 and 3 show receiver function depth cross-sections for the 2 transects. They were 

computed by projection of the receiver function data on the average profiles shown as dash-

and-dot lines in Fig. 1. Figures 2b and 3b result from a CCP time-to-depth migration 

assuming the crustal velocity models of Table 1, which takes the 11-km thick sediment layer 

of the ZFTB into account for stations located southwest of the MZRF according to the model 

computed by Hatzfeld et al. (2003). For stations northeast of the MZRF where no information 

is available, we assumed a 2-layer model. The Vp/Vs ratio is a critical parameter in the time-

to-depth migration of receiver functions, which can be estimated using the multiples of the 

Moho conversion (e.g. Zhu and Kanamori, 2000). Due to a poor signal-to-noise ratio, we 

could not use the multiples in the Zagros01 profile, and we assumed the values given by 

Hatzfeld et al. (2003). The multiples are clearer on the better-quality records of the Zagros03 

transect, and we found 1.8 for the crustal average Vp/Vs, without significant variations along 

the profile. We used this value for the Zagros03 and Alborz03 transects (Table 1). The effect 

of using different Vp/Vs ratios in the migrations of the 2 Zagros profiles will be discussed 

later. 

Figures 2c and 3c display stacked radial RF with the time axis converted to a depth axis using 

the same crustal velocity models as above. We stacked all RF with a common conversion 

point at the Moho (±5 km measured along the average profile), and plotted them at the 

abscissa of the conversion point. An average of 14 radial RF have been stacked to obtain the 

62 traces plotted in Fig. 2c, and 29 of these 62 traces (47%) result from the stack of less than 

10 receiver functions. Due to the longer duration of the experiment and better-quality records, 

the cross-sections of Figure 3 have a better resolution than in Figure 2, with an average of 37 

stacked RF, and only 9 of the 66 traces (14%) resulting from the stack of less than 10 RF. The 

2 plots (migrated depth section and section of stacked RF) are different displays of the same 
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information. While the section of stacked RF shows waveforms with little processing, the 

CCP migrated section is smoother, making it easier to pick interfaces. Wavelets of positive 

amplitude (filled in red) are generated by a velocity increase with depth while wavelets of 

negative amplitude (filled in blue) correspond to a velocity decrease. The laterally continuous 

positive wavelet at ~50 km depth outlined with a thick black line is the conversion on the 

Moho. We estimate to ±2 km the uncertainty on the picks of the Moho from the migrated RF 

depth sections. The uncertainty on absolute depths is larger as we have no precise estimate of 

the crustal Vp and Vp/Vs models. For example, changing the Vp/Vs model of the Zagros01 

transect to a constant value of 1.8 (as for the Zagros03 transect) reduces the estimated Moho 

depth by 3 to 6 km. 

Assuming a constant Vp/Vs ratio of 1.8, we find an average crustal thickness of 42±2 km 

beneath the Zagros fold belt and the Central Domain (CD in Figs. 2 and 3) on both transects. 

In Central Zagros (Fig. 2), the Moho depth increases strongly from 30 km southwest of the 

MZRF to 140 km northeast of it. The maximum depth reached is 69±2 km (or 63±2 km 

assuming Vp/Vs =1.8) between 50 and 90 km northeast of the surface trace of the MZRF. No 

such spectacular bend is visible on the Moho depth profile of the northwestern transect 

(Figure 3), where the crust is thickened on a broader length (~320 km between abscissas -50 

and 270 km, instead of 170 km – between abscissas -30 and 140 km – in Zagros01) and the 

maximum depth reached (56±2 km at km 130) is smaller. The reliability of the very large 

crustal thickness found beneath the SSZ on the Zagros01 transect is thoroughly discussed in 

Paul et al. (2006). Explaining the 20-to-25-km difference in Moho depth by an artificial pull 

down in the migrated depth section would require an average crustal P-wave velocity of 5.2 

kms−1 combined with a Vp/Vs ratio of 2.0 for the crust of the SSZ, which is unreliable.  

Figure 4 shows a comparison of elevation (Fig. 4a), Bouguer anomaly (Fig. 4b) and picked 

Moho depth profiles (Fig. 4c) along the two transects. The Moho depth profile of the 

Zagros01 transect has been corrected to a constant Vp/Vs of 1.8 to enable the comparison with 

the Zagros03 data. The distance scale of the Northern profile is multiplied by 0.94 to correct 

for the difference in the width of the SSZ between the two transects. Even after this scale 

reduction, Fig. 4c shows that the region of thickened crust is much wider beneath Northern 

than beneath Central Zagros, but the maximum thickness is smaller. In both cross-sections, 

crustal thickening starts beneath the north-easternmost part of the ZFTB. The zone of thick 

crust covers the MZRF region and the SSZ in Zagros01 transect, while it also includes the 

UDMA and the southern part of the CD in Zagros03. The maximum crustal thickness is 

shifted toward the northwest in Zagros03 with respect to Zagros01. The location of the 
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maximum Moho depth does not coincide with the minimum Bouguer anomaly which is 

located in both profiles at the surface outcrop of the MZRF (Fig. 4b). To reconcile the gravity 

data with the Moho depth profile, Paul et al. (2006, Figure 6b) proposed that the crust of 

Central Iran overthrusts the crust of Zagros on the MZRF interpreted as a crustal-scale 

structure rooted at Moho depth (dashed line in Figures 2b and 2c). This model explains at 

least part of the crustal thickening by the superposition of the two crusts. The almost double 

thickness of the dense lower crust beneath the SSZ compensates for the negative gravity 

anomaly induced by the thick crust and shifts the Bouguer anomaly minimum toward the 

southeast, in agreement with observations. Only the few RF recorded at stations in the 

southwestern half of the SSZ display a negative wavelet at depths close to the trace of the 

MZRF in the model tested by gravity modelling (Fig. 2c). There is no evidence for a major 

thrust rooted at Moho depth beneath the northeastern half of the SSZ. But this might be due to 

a much lower station coverage and poor data quality. Only 2 stacked traces could be shown in 

Fig. 2c between offsets 65 and 105 km, and they were computed from only 1 (at offset 65 km) 

and 2 (at offset 85 km) individual RF. The much better-quality sections of Zagros03 (Figure 

3) display a strong amplitude converted phase with negative polarity and north-eastward dip, 

crossing the crust from the surface trace of the MZRF to Moho depth at km 250-270. Figure 

3c shows that the wavelet of negative polarity (blue-filled) is followed by a positive wavelet 

of smaller-amplitude (red-filled) in all stacked RF between abscissas 20 and 110 km. 

Waveform modelling shows that these signals can be generated by a low-velocity layer 

possibly related to the underthrusting of the sediments of the Arabian margin dragged to depth 

by the subduction of the Neotethyan Ocean (Paul et al., 2008).  

 

Lateral variations of seismic wave velocity in the lithosphere 
While receiver functions image sharp velocity discontinuities like the Moho, lateral velocity 

variations are estimated from traveltime studies. Figure 5b (redrawn from Kaviani et al., 

2007) shows the teleseismic P-wave traveltime relative residuals measured at stations of 

Zagros01. Residuals are plotted at the abscissa of the projection of the relevant station onto 

the average profile. Residuals were measured from traveltime picks of P waves on records of 

111 earthquakes at teleseismic distance (25-95º). The residual curve displays both long-

wavelength variations, with earlier arrivals (negative residuals) at stations in the southwest 

than in the northeast (positive residuals), and short-wavelength variations, with later arrivals 

in the MZRF region and earlier arrivals in the SSZ. The residuals were back-projected by the 
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ACH inversion method to a 3-D model of P-wave velocity perturbation which explains 85 per 

cent of the initial data variance. Figure 5c shows a depth cross-section in the 3-D model along 

the average profile. Relative velocity variations are displayed only where the resolution is fair 

(diagonal term of the resolution matrix larger than 0.6 for the crustal layer and 0.7 for the 

mantle layers). The ~0.9 s traveltime difference observed between the two ends of the profile 

projects to a strong velocity contrast in the upper mantle down to 200 km depth, with faster 

velocities beneath the Zagros and slower velocities beneath the UDMA and CD. Figure 5c 

also shows 2 average S-wave velocity depth models of the upper mantle estimated by Kaviani 

et al. (2007) from surface-wave dispersion measurements. They were measured in two sub-

arrays of the Central Zagros transect which cover the ZFTB (sub-array AB) and the MZRF-

SSZ-UDMA areas (sub-array BCD) respectively. S-wave velocities are rather high beneath 

the Zagros (4.5 to 4.9 km.s-1), and they increase regularly with depth. This is not the case 

beneath the MZRF-SSZ-UDMA region where a low-velocity zone (4.4 km.s-1 minimum 

velocity) is detected in the shallow mantle from the Moho to 150 km depth. Therefore, we 

have two independent arguments to conclude on a strong velocity contrast in the lithospheric 

mantle beneath the Central Zagros transect. This observation agrees with the results of the 

regional tomography studies by Maggi & Priestley (2005) and Alinaghi et al. (2007) which 

show that the upper mantle beneath the Iranian plateau has low P- and S-wave velocities. 

However, our study conducted from a local dense station array shows that the suture between 

the faster-velocity Arabian upper mantle beneath the ZFTB and the lower-velocity Iranian 

upper mantle is located beneath the MZRF or the SSZ regions. But Figure 5c shows that the 

precise location and shape of the suture are hidden by smearing of shallow velocity 

anomalies. 

The late arrivals observed at stations in the MZRF region project to a low-velocity anomaly 

concentrated at shallow depth (<100 km). As discussed by Kaviani et al. (2007), this low-

velocity anomaly could be explained by crustal thickening. But the high-velocity anomaly 

beneath the northeastern part of the SSZ in the same 2 upper layers is surprising as the crust is 

also thickened there. To explain this paradox, Kaviani et al. (2007) show that the model of 

crustal-scale thrust proposed by Paul et al. (2006) gives an acceptable fit to traveltime and 

surface wave observations if it is combined with an extension of the Zagros mantle high-

velocity anomaly beneath the SSZ.  

Figure 6 displays the relative residual variations and P-wave tomogram along the average 

profile of the Zagros03 and Alborz03 arrays. Arrival times of 138 teleseismic earthquakes 

have been used in this inversion which explains 83 per cent of the initial data variance. As for 
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Zagros01, the earliest P arrivals are observed at the southwestern end of the profile. The latest 

arrivals are picked at stations of the northeastern part of the SSZ and in the UDMA, and at 

stations on top of the southern flank of the Alborz. The contrast between the high-velocity 

upper mantle of the Arabian plate and the lower-velocity upper mantle of Central Iran 

explains the ~1.2s residual difference between the southwestern end of the profile and stations 

in the CD. Again, the location of the suture in the 50-100 km layer is blurred by a low-

velocity anomaly. Unlike the Central Zagros transect, this anomaly is spatially correlated with 

the region of thick crust, and the thickening explains at least half of the 0.3 to 0.5 s difference 

between the residuals observed in the UDMA and in the CD. No strong crustal low-velocity 

anomaly is required to explain the traveltime observations in the UDMA, in contrast with the 

strong low- and high-velocity anomalies required in the crust beneath the MZRF and SSZ in 

the Zagros01 transect (Kaviani et al., 2007).  

 

Discussion and Conclusions 

Crustal-scale thrust 
The Zagros01 and Zagros03 passive seismic experiments have provided images of the 

lithospheric structure of the Zagros mountain belt with unprecedented resolution. Assuming 

reasonable crustal Vp models and a constant crustal Vp/Vs ratio of 1.8, the receiver function 

analysis shows that the average crustal thickness beneath the ZFTB is the same for the two 

transects: 42±2 km. Thus, we could conclude as Hatzfeld et al. (2003) that the crystalline 

crust of the ZFTB has not been significantly thickened by the collision yet, in Central Zagros 

and in Northern Zagros. Indeed, the crystalline crust has about the same thickness (33-35 km, 

with 10 km of sediments) as the pre-collisional Arabian platform. However, the lack of 

precise information on the actual average crustal P-wave velocity and Vp/Vs ratio leads to an 

uncertainty as large as 5 km on the absolute Moho depth estimate, which prevents from 

drawing definite conclusions. Mouthereau et al. (2006) concluded from critical wedge 

modelling that basement-involved thickening and shortening of the Arabian crust is required 

to support the growth of topography in the ZFTB. As the induced crustal thickening beneath 

the ZFTB is smaller than a few km, their model is compatible with our observations.  

There is no clear evidence for the existence of a major thrust fault cross-cutting the whole 

crust in the Zagros01 receiver function depth section. But the station coverage in the SSZ was 

weaker and the seismic records of lesser quality than in the Zagros03 transect. The model of 

crustal-scale overthrusting of the Iranian margin on the Arabian margin along the MZRF was 
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proposed by Paul et al. (2006) to reconcile the Moho depth profile with Bouguer anomaly 

data. But the better-quality data of the denser Northern Zagros experiment clearly display an 

intra-crustal interface with negative polarity (velocity decreasing with increasing depth), 

followed closely by an interface of positive polarity. The negative-polarity signal crosses the 

entire crust from the surface exposure of the MZRF to Moho depth beneath the southern rim 

of the CD. These evidences for a low-velocity layer confirms that the MZRF is a major 

crustal-scale thrust, at the suture between the Arabian platform and the micro-blocks of 

Central Iran. This interpretation also relies on geological arguments. Firstly, there are strong 

evidences that the SSZ overlaps the highly deformed rocks of the so-called Crush zone of the 

MZRF region (e.g. Stöcklin 1968; Ricou et al. 1977). Secondly, Agard et al. (2005) rely on 

the amount of shortening, the deformation style and the lack of high-pressure metamorphism 

along the former oceanic suture in the Crush zone to suggest that the MZRF is a major 

structure of crustal scale, possibly rooted to Moho depth. 

 As documented by Figure 4c, crustal thickening involves the SSZ in Central Zagros, and the 

SSZ, the UDMA and part of the CD in Northern Zagros. The RF migrated section of 

Zagros03 shows that the MZRF interpreted as a crustal-scale thrust roots at Moho depth (43 

km) 270 km to the northeast of its surface exposure, with an average dip of 9º (Fig. 3). If the 

geometry proposed for Central Zagros by Paul et al. (2006) is correct, the MZRF roots at 

Moho depth only 170 km northeast of its surface trace, with a stronger average dip of 14º. 

On the basis of tectono-sedimentary evidences, basin analysis, crustal wedge modelling  and 

seismotectonic observations, Mouthereau et al. (2007) propose a new crustal-scale balanced 

cross-section of Central Zagros where a large part of the shortening is accommodated by 

underplating of Arabian crustal duplexes beneath the MZRF (Figure 7b). Their model implies 

that crustal thickening beneath the SSZ is related to the inversion of the Arabian margin after 

the onset of plate coupling along the former subduction zone (Fig. 7a). This hypothesis 

qualitatively agrees with our crustal depth profiles as we show that crustal thickening is 

located right under the trace of the MRZF cross-cutting the whole crust. For a more 

quantitative testing, we computed the surfaces of the crustal roots of Central and Northern 

Zagros (depth ≥ 42km; grey-filled area in Figure 7b) from the two Moho depth profiles of 

Figures 2 and 3, and we converted these surfaces to crustal shortening estimates assuming in-

plane deformation. We find a finite shortening of 59 km (23%) for Central Zagros, and 49 km 

(13%) for Northern Zagros. These numbers agree with the model proposed by Mouthereau et 

al. (2007) where 75% of the total shortening, that is 49-58 km, is taken up by underplating of 

the Arabian basement beneath the SSZ.  

 - 12 - 



As explained in the introduction, we installed two seismic profiles because we expected that 

the difference in the active deformation process between Northern and Central Zagros would 

have an expression, or an origin, in the lithospheric structure. We do find that the crustal root 

has different widths and amplitudes, in relation with the lateral change of the MZRF dip. The 

surface of the crustal root is 20% larger in Central Zagros than in Northern Zagros, leading to 

the observed 10% difference in the shortening ratios. We find a stronger shortening in Central 

Zagros, as expected from its farther location to the Euler rotation pole between Arabia and 

Central Iran (Vernant et al., 2004). However, since error bars on our Moho depth estimates 

are large (±5 km) due to poor constraints on the Vp and Vp/Vs crustal models, this positive 

correlation cannot be taken as granted. Teleseismic traveltime tomography also documents 

along-range variations of crustal P-wave velocity anomalies. A significant part of the short-

wavelength lateral variations of relative residuals measured along Zagros03 transect can be 

explained by thickness variations of a crust with limited lateral velocity changes. This is not 

the case in Zagros01 transect where a low average crustal velocity beneath the MZRF and a 

high average crustal velocity beneath the SSZ are required to explain the traveltime 

observations. Kaviani et al. (2007) proposed to explain the low-velocity anomaly of the 

MZRF region by crustal thickening combined with thickening of the sedimentary wedge in 

front of the thrust, and the high-velocity of the SSZ by superposition of the two lower crusts 

by the crustal-scale thrust, combined with upper mantle high velocities. The smaller lateral 

velocity changes in the crust of Northern Zagros suggest that crustal structure changes more 

smoothly, which is coherent with the larger width of the region affected by crustal-scale 

thrusting in relation to the smaller dip of the MZRF. 

 

Lateral velocity contrast in the upper mantle 
The traveltime study, combined for Zagros01 with surface-wave dispersion analysis, confirms 

that seismic velocities in the shallow mantle (50-200 km) are faster in the margin of Arabian 

platform than in the Iranian micro-blocks. This contrast has already been documented at the 

regional scale of the Turkish-Iranian plateau from less well-resolved tomographies, and both 

for P- and S-wave velocities (Maggi and Priestley, 2005; Alinaghi et al., 2007). Our study 

provides more precise indications on the location of the suture between the two upper mantle 

lids, and on the velocity contrast. Considering that the laterally heterogeneous upper mantle 

layer is 150-km thick, as documented by the Rayleigh-wave dispersion inversion (Fig. 5d), a 

lateral Vp contrast of 5 to 7 per cent is required to explain the 0.9 to 1.2 s difference observed 
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in the traveltime curves of the 2 transects. Kaviani et al. (2007) used independent arguments 

from P-wave tomography and surface-wave analysis to propose that the high-velocity upper 

mantle of Arabia extends toward the northeast beneath the SSZ in Central Zagros. However, 

strong crustal velocity anomalies in the MZRF and SSZ areas leak to mantle depth and hide 

the exact location and shape of the suture in the Zagros01 profile (Fig. 5c). In the Zagros03 

profile, the location of the suture between high and low velocities in the 50-100 km layer is 

blurred by the low-velocity anomaly associated with crustal thickening. At larger depth, 

Figure 6c documents a smooth transition located beneath the Central Domain (CD) at abscissa 

~250 km, that is close to the abscissa where the crustal-scale thrust imaged by receiver 

functions reaches the Moho. Thus, our data show that the fast-velocity lithospheric mantle of 

Arabia extends to ~140 km northeast of the surface exposure of the MZRF in Central Zagros 

and ~250 km in Northern Zagros, in agreement with the proposed model of crustal-scale 

underthrusting of the crust of Arabia by the crust of Central Iran. 

Kaviani et al. (2007) discussed the inferences on the geodynamics that can be made from the 

tomographic images of the Zagros01 transect. The shear-wave absolute velocity depth models 

estimated from Rayleigh wave dispersion analysis (Fig. 5d) can be interpreted in terms of 

compositional and thermal constraints, which is not the case for the relative P-wave velocity 

tomograms. The high S-wave velocities measured in the upper mantle of the Zagros are 

comparable to those of a shield. The difference (0.5 km.s-1) between the two Vs models 

measured in the Zagros and in the MZRF-SSZ-UDMA region (Fig. 5d) in the shallow mantle 

is likely due to a compositional change (hydrated minerals for example) related to higher 

temperatures beneath the MZRF-SSZ-UDMA. However, Kaviani et al. (2007) believe that the 

Vs constrast is too weak to support the hypothesis of lithospheric mantle delamination 

proposed by Maggi and Priestley (2005).  

Kaviani et al. (2007) explain that the Vp tomogram of Figure 5c gives no definite answer on 

the question of oceanic slab breakoff. The image of the Neotethyan lithosphere still attached 

to the Arabian margin would be impossible to separate from the effect of crustal and upper 

mantle heterogeneity in the suture region. The Vp tomogram of Zagros03 (Fig. 6c) is less 

blurred by crustal structures in the upper mantle northeast of the suture. In the upper 2 layers 

(0-100 km), there is no high velocity anomaly like the one observed beneath the SSZ in the 

Zagros01 profile. And the upper mantle high-velocity anomaly that would be associated with 

the oceanic lithosphere attached to the Arabian margin does not appear more at larger depths 

in Figure 6c. That is why we believe that the slab could be detached from the Zagros margin. 

Kaviani et al. (2007) give additional elements favouring this hypothesis including the lack of 

 - 14 - 



Ps conversion in the receiver function sections under the Moho beneath the UDMA and CD. 

Hafkenscheid et al. (2006) also concluded on the occurrence of slab detachment beneath the 

Zagros suture zone from a comparison of tectonic reconstructions and the mantle tomography 

of Bijwaard et al. (1998). The recent discovery in the Central part of the UDMA of adakitic 

magmas representing potential markers of the melting at depth of oceanic crust suggests slab 

break-off or slab tear propagation from Eastern Anatolia to Central Iran in the last c. 10-5 Ma 

(Omrani et al., in press). 

Our model of the structure of the Zagros lithosphere at the onset of continental collision and 

at present time is schematized in Figure 7. The crust of the Iranian microcontinent overthrusts 

the crust and mantle of the Arabian margin until the 2 plates are strongly coupled. The 

ongoing convergence induces crustal thickening beneath the SSZ by underplating of Arabian 

crustal duplexes and folding and thrusting in the ZFTB. At mantle depth, the Neotethyan slab 

detaches from the Arabian margin; a new Moho is created (by thermal relaxation and 

eclogitization) beneath the MZRF crustal-scale thrust; the mantle of the Iranian lithosphere is 

heated by upwelling induced by slab breakoff; its shallow part (50-150 km) keeps higher 

temperature and lower seismic velocities than the neighbouring fast-velocity mantle of the 

Arabian platform. 
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Figure and table captions 
Figure 1. Location map of the seismic experiments. Temporary seismic stations are shown as 

black-filled circles. The dash-and-dot black lines are the average profiles used to compute 

the depth cross-sections of Figures 2 to 6. Geological map modified from the structural 

map of NGDIR (National Geoscience Database of Iran, http://www.ngdir.ir). MZRF: 

Main Zagros Reverse Fault; KF: Kazerun Fault; ZFTB: Zagros fold-and-thrust belt; SSZ: 

Sanandaj-Sirjan Zone; UDMA: Urumieh-Dokhtar Magmatic Assemblage; CD: Central 

Domain; AL: Alborz 

 

Figure 2. Depth-sections of radial receiver function records of the Central Zagros profile 

(Zagros01) plotted along the average profile shown in Fig. 1. Distance is measured with 

respect to the intersection of the profile with the surface exposure of the MZRF. a) 

Topography profile and locations of seismic stations (black triangles). b) Common-

conversion point depth migrated cross-section (from Paul et al. 2006). c) Radial receiver 

function records stacked for a common location of the piercing point of the ray at the 

Moho. Time-to-depth conversion uses the velocity models of Table 1. The solid black line 

is the Moho depth profile picked from Fig. 2b. The dashed line is the crustal-scale thrust 

hypothesized by Paul et al. (2006) to fit RF and gravity data. Same abbreviations as in Fig. 

1.  

 

Figure 3. Same as Figure 2 for the Northern Zagros profile (Zagros03). The dashed line 

underlines the crustal interface with negative velocity contrast (velocity decreasing with 

increasing depth) interpreted as the trace of the MZRF. 

 

Figure 4. Comparison of (a) the topography profiles, (b) the Bouguer anomaly data, and (c) 

the Moho depth profiles picked from receiver functions for the Central Zagros (blue) and 

Northern Zagros (red) experiments. The distance scale of the Northern Zagros profile was 

multiplied by 0.94 to correct for the slightly wider SSZ along this transect. The dotted line 

shows the location of the MZRF. 

 

Figure 5. P-wave tomography and local S-wave velocity models for the Central Zagros profile 

(Zagros01). (a) Topography profile and locations of seismic stations. The three vertical 

lines show the boundaries of the main morphotectonic units. (b) P-traveltime relative 
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residuals plotted for each station at the abscissa of the projection of the station onto the 

average profile. (c) Depth cross-section along the average profile in the 3-D model of P-

wave velocity perturbations resulting from the inversion of residuals. The black solid line 

is the Moho depth profile picked from the receiver function data. The vertical dotted lines 

bound the areas covered by surface wave dispersion measurements in sub-arrays AB 

(ZFTB) and BCD (MZRF-SSZ-UDMA region). (d) Mantle S-wave velocity depth models 

resulting from the inversion of surface wave dispersion curves measured in sub-arrays AB 

(left panel) and BCD (right panel). 

 

Figure 6. P-wave traveltime residuals (b) and depth profile of lateral P-wave velocity 

variations (c) for the Northern Zagros profile (Zagros03). 

 

Figure 7. Schematic model proposed for the evolution of the lithospheric structure of the 

Zagros from the onset of continental collision (a) to present time (b). The present-day 

structural model is based on the Moho depth profile and the trace of the MZRF picked 

from the receiver function migrated depth section of the Northern Zagros transect (Fig. 

3).The surface of the crustal root filled in grey is used to estimate shortening. The mantle 

structure is interpreted from the P-wave tomography of Fig. 6c. No vertical exaggeration. 
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ZFTB (x ≤ 0 km) SSZ-UDMA-CD-Alborz (x > 0 km) 
Zagros01 Zagros03-Alborz03 Zagros01 Zagros03-Alborz03 

H 
(km) 

Vp 
(km/s) Vp/Vs

H 
(km) 

Vp 
(km/s) Vp/Vs

H 
(km) 

Vp 
(km/s) Vp/Vs

H 
(km) 

Vp 
(km/s) Vp/Vs

11 4.7 1.77 11 4.7 1.8 20 5.8 1.73 20 5.8 1.8 
9 5.8 1.73 9 5.8 1.8 25 6.5 1.73 25 6.5 1.8 
25 6.5 1.73 25 6.5 1.8       

 

Table 1. Crustal velocity models used in the depth migration of the receiver functions. H is 

the layer thickness. 
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