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Abstract. Under certain hydrological conditions it is possi-
ble for spring flow in karst systems to be reversed. When this
occurs, the resulting invasion by surface water, i.e. the back-
flooding, represents a serious threat to groundwater quality
because the surface water could well be contaminated. Here
we examine the possible impact of future climate change on
the occurrences of backflooding in a specific karst system,
having first established the occurrence of such events in the
selected study area over the past 40 years. It would appear
that backflooding has been more frequent since the 1980s,
and that it is apparently linked to river flow variability on
the pluri-annual scale. The avenue that we adopt here for
studying recent and future variations of these events is based
on a downscaling algorithm relating large-scale atmospheric
circulation to local precipitation spatial patterns. The large-
scale atmospheric circulation is viewed as a set of quasi-
stationary and recurrent states, called weather types, and its
variability as the transition between them. Based on a set
of climate model projections, simulated changes in weather-
type occurrence for the end of the century suggests that back-
flooding events can be expected to decrease in 2075–2099. If
such is the case, then the potential risk for groundwater qual-
ity in the area will be greatly reduced compared to the current
situation. Finally, our results also show the potential interest
of the weather-type based downscaling approach for examin-
ing the impact of climate change on hydrological systems.

Correspondence to:E. Joigneaux
(emmajoigneaux@gmail.com)

1 Introduction

Studying the impact of global climate change on water re-
sources requires a combination of climate-scenario and hy-
drological models (Bóe et al., 2009a). Water resources at the
regional scale rely on particular hydrogeological contexts on
which the impacts of climate change may differ extensively
depending on the predominance of surface- over groundwa-
ter flows (van Roosmalen et al., 2007). With certain geo-
morphological settings, such as karst systems, even small
changes in climatic conditions have to be studied in detail
because of specific geologic hazards such as groundwater-
quality vulnerability (Bonacci et al., 2006).

Climate projections based on coupled general circulation
models (CGCMs) suggest a general increase in precipitation
over the northern areas of Western Europe for the end of the
century along with a decrease over the Mediterranean area
(Christensen et al., 2007). With Europe’s median latitudes
marking a transition situation in terms of precipitation for
most of the year, predicting the evolution of the hydrological
cycle under anthropogenic forcing is beset by uncertainties
(Boé et al., 2009b). Given the scale mismatch between cur-
rent CGCMs and hydrological model requirements, regional
downscaling of global models is necessary to study the main
parameter changes of the regional hydrological cycle, partic-
ularly as regards precipitation (Habets et al., 2005; Fowler
et al., 2007; Bóe and Terray, 2008; Boé et al., 2009a; Tis-
seuil et al. 2010). The downscaling results for France fore-
cast a decrease in summer precipitation and river discharge
throughout the country at around 2050, along with an in-
crease in winter precipitation and river discharge for south-
eastern France; the winter results are still very uncertain for
the rest of the country (Bóe et al., 2009a; Quintana Seguı́ et
al., 2010).
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Alluvial and karst hydrogeological systems are particu-
larly affected by small changes in the hydrological com-
ponents. Stream backflooding and the subsequent appear-
ance of swallow holes can occur because of relative changes
between surface and underground drainage, which are con-
trolled by both local precipitation and spring discharge
(Albéric, 2004). Consequently this type of system is sen-
sitive to small climate variations, even at mid-latitudes.

The purpose of the present study is to assess the impact
of climate variation on local hydrological cycle components
by focusing on (i) an analysis of backflooding occurrences
in a small catchment within the Val d’Orléans (France) over
the last 40 years in order to determine how they are related
to the meteorological conditions, and (ii) the prediction of
backflooding frequency in the future. To study the effect of
climate change on the catchment’s highly variable hydrologi-
cal system, we applied a statistical downscaling methodology
based on the weather-type (WT) approach describing atmo-
spheric forcing at the regional scale (Boé et al., 2006; Bóe
and Terray, 2008; Pagé et al., 2010). After briefly describing
the study area in the Val d’Orléans, the data used for calcu-
lating past backflooding events and the methodology of the
WT approach, we discuss the links between the occurrence
of particular WTs and the onset of backflooding. Finally,
based on different WT frequency projections, we look at fu-
ture changes that could affect the hydrological components
in the Val d’Orĺeans.

2 The study area

The study area is in the Val d’Orléans, in the Centre Re-
gion of France. It is a fluvial-karst system developed in the
Loire floodplain and comprising three main components that
are highly interactive: the groundwater in the upper part of
the Beauce Limestone (Aquitanian), the Loire River and the
small local rivers.

In the east of the Val d’Orléans, the Beauce Limestone is
separated from the Quaternary alluvium by an impermeable
sandy-clayey formation that disappears westward (Fig. 1)
to bring the limestone and alluvium into contact. This en-
ables exchanges between surface water and aquifer ground-
water, and explains how the Val d’Orléans karst system is
supplied mainly through leakages from the Loire (Lepiller,
2006; Joodi et al., 2010).

The Loire catchment upstream of the studied hydrological
system is estimated at 36 900 km2, with its main source being
about 400 km from the Val d’Orléans. The Loire’s hydrolog-
ical and chemical characteristics thus differ from those of the
local Val d’Orléans rivers. Tracer studies (both artificial and
natural) have shown that the Loire river waters infiltrate the
aquifer mainly at Jargeau and reach a number of temporary
springs within a few days (3 to 4 days for the closest; Fig. 1)
(Albéric and Lepiller, 1998; Lepiller, 2006). Most of these
springs are located in the Loiret river which has an average

flow rate of almost 1 m3 s−1 and whose source is the Bouil-
lon Spring; the Loiret’s actual flow rate depends mainly on
the Loire river flow. Note that the two main springs of the
Loiret river, the Bouillon and Ab̂ıme springs, can behave as
sinks under specific hydrological and meteorological condi-
tions. This occurs when the Loire is at a low level and when
heavy local rainfall occurs in the Dhuy watershed (216 km2),
this river being an affluent of the Loiret river (confluence
1 km downstream of the Bouillon spring); the surface waters
of the Dhuy river backflow along the Loiret river and dis-
appear into the Ab̂ıme and Bouillon resurgences which then
act as sinkholes. Monitoring the backflooding in the Bouil-
lon and Ab̂ıme springs over the 1997–2001 period (Albéric,
2004) showed that these events last from several hours to
a maximum of several days. Intrusion of the Dhuy’s tur-
bid waters into the springs outlet is a disturbing factor for
the drinking-water catchworks located near the Bouillon and
Abı̂me springs. This occasional infiltration of surface water
into the aquifer changes the physical-chemical and biologi-
cal features of the groundwater and raises the fear that the
drinking-water wells located a few hundred metres from the
Loiret springs could become contaminated.

3 Data and methodology

3.1 Meteorological and hydrological data for the
1966–2009 period

Backflooding events were principally monitored and studied
from 1997 to 2001, which is taken as a backflooding ref-
erence period since, although monitoring is still active to-
day, only a small number of events have been recorded since
2002. This time period is not, however, long enough for a
proper study of the impact of climate change on the study
area, and so a reconstruction of potential past backflooding
events is required.

The data necessary for reconstructing past backflood-
ing events and studying the precipitation trend in the Val
d’Orléans are the daily river flows of the Loire at Orléans
and of the Dhuy, which are available in the Hydro database
(http://www.hydro.eaufrance.fr/). The daily flow data for the
Loire at Orĺeans are complete and go back to the 1960s. The
Dhuy flow data, however, are incomplete with gaps from Oc-
tober 1971 to May 1974 and from January 1977 to the end
of December 1978; these gaps can be filled with Gardenia
(Thiéry, 2003), a lumped hydrological catchment model that
enables one to calculate river discharges from watershed me-
teorological data. The most common application of the Gar-
denia model is for extending hydrometric data in time. Hav-
ing calibrated the model on a short sequence (a few years)
of river flows or levels, along with concomitant rainfall data,
one uses a longer rainfall series for the model to generate a
corresponding series of river flows or levels. The required
data for the model are continuous daily precipitation data
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Fig. 1. Geological and hydrological setting of the study area (modified from Albéric, 2004). The Loire river, passing through the Val
d’Orléans, loses water into sinkholes at Jargeau; the infiltrated surface water reaches several karst springs in the Loiret river. The Bouillon
and Ab̂ıme springs are the major ones feeding the Loiret river. These resurgences can become sinkholes if the Dhuy river flows back into
the Loiret river at the confluence, whereupon the infiltration of Dhuy waters into the aquifer can threaten the drinking water wells near the
springs.

for the studied catchment, potential evapotranspiration (PET)
data averaged over a period of ten days and available outlet
discharge data. The precipitation and PET data are held by
the Mét́eo France Climate library (http://climatheque.meteo.
fr/okapi/accueil/okapiWebClim/index.jsp).

3.2 Consideration of climate change

The trend in the number of backflooding events that will oc-
cur in the coming decades is a major question. The answer is
closely related to the future regional precipitation trends.

Projections based on global climate models predict an av-
erage annual decrease in the Loire discharge for the end of
the 21st Century: the river flow will fall by 15 % in winter
and spring, and by possibly as much as 35 % in summer and
autumn (Bóe et al., 2009a). On the other hand, the occur-
rence of low flow rates will double in 30 or 40 years. Such

a trend is likely to increase the risk of backflooding in the
Loiret springs. But future backflooding will also depend on
the evolution of the Dhuy river flow which has never been
modelled in terms of a climate change scenario.

Precipitation in Europe depends mainly on the large-scale
atmospheric circulation patterns over the North Atlantic and
Europe (Vautard, 1990). The daily circulation patterns can
be attributed to a given state among a reduced set (typically
4 or 5) of quasi-stationary and recurrent states in order to
define different weather regimes. A climate regime is thus
defined by its centroid and the probability distribution func-
tion of the days around it. The regime that affects mainly the
North Atlantic–Europe zone is the North Atlantic Oscilla-
tion (NAO) which represents the pressure difference between
the Azores High and the Icelandic Low (Hurrell, 1995, Cas-
sou, 2004). The NAO is divided into two phases: NAO+
also known as the Zonal Regime, and NAO-, also known as
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the Greenland High. The 1950s and 1960s saw a predomi-
nance of the NAO- phase, and the 1990s and 2000s have been
marked by an intensification of the NAO+ phase (Cassou et
al., 2004).

Shorthouse and Arnell (1997) have shown a close relation-
ship between Europe’s river flows and the NAO phases: their
results reveal that during the winters with a frequent positive
phase, the river flows are above average in the north of Eu-
rope (especially in the Nordic region), and below average in
the south of Western Europe. Bouwer et al. (2006), however,
showed that although the river flows in the north and south
of Europe can be closely correlated with the NAO, this cor-
relation does not really hold for the Loire flow because of its
geographic position.

Weather regimes, however, represent a very large-scale ap-
proach, both spatially and temporally, in terms of our study
area where the periods of backflooding are but local events
lasting from a few hours to a few days. One possible answer
to this problem is to consider a statistical downscaling tech-
nique based on a weather-type (WT) approach (Boé et al.,
2006; Paǵe et al., 2010). It is a method that has already been
used for regionalising France’s climate, and notably for eval-
uating the effect of climate change on the water resources
required for different land utilisation systems (Brisson and
Levrault, 2010). The WT are calculated according to the dif-
ferent pressure and precipitation anomalies that affect France
over a year. Of the 38 WT identified for France (Pagé et al.,
2010), 9 make up the December-January-February sequence
(DJF0 to DJF8), 10 the March-April-May sequence (MAM0
to MAM9), 10 the June-July-August sequence (JJA0 to JJA9)
and 9 the September-October-November sequence (SON0 to
SON8). The method enables each day of the year to be as-
signed a weather type, thus making it possible to build up a
daily weather database extending from 1950 to 2007.

4 Results and discussion

4.1 Backflooding events during the 1997–2001
observation period

Relating the backflooding events recorded from 1997 to 2001
to the daily Loire and Dhuy river flows (Figs. 2, 3a, b), we
found that the demarcation between the Bouillon Spring’s
inflow (or loss) functioning and its outflow (or emergence)
functioning is close to that established by Albéric (2004)
based on river height. This demarcation is shown in Fig. 2
and corresponds to the following equation:

QDhuy= 0.1+e0.0164QLoire−3.1 (1)

whereQDhuy andQLoire are respectively the Dhuy river flow
and the Loire river flow at Orléans. A backflooding event
lasting several days is represented by several points. A back-
flow index (I ) was then established from Eq. (1):

I = QDhuy−e0.0164QLoire−3.1
−0.1 (2)

Fig. 2. Average daily Dhuy river flow versus the Loire river flow at
Orléans between 1 June 1997 and 31 December 2001, with an in-
dication of the outflow (triangles) and inflow (squares) functioning
of the karstic Bouillon Spring. Note: only Loire river flows below
850 m3 s−1 are shown.

Thus backflooding occurs whenI > 0. From 1997 to 2001,
18 backflooding events were observed and for each one the
recorded Loire and Dhuy river flows were such thatI > 0
(Fig. 3c).

4.2 Reconstruction of river flow records for the
1966–2009 period

The Dhuy flow time series from 1971 to 1974 and from 1977
to 1978 were completed using the Gardenia model (Thiéry,
2003) into which precipitation, PET and available Dhuy river
flow data were entered. The model simulated the Dhuy flow
using a hydrological system made up of three consecutive
reservoirs: (i) a shallow reservoir corresponding to the up-
permost few centimetres of the soil and recharged by pre-
cipitation, (ii) an intermediate reservoir corresponding to the
unsaturated zone and recharged by surplus supply to the shal-
low reservoir – this reservoir is drained either by percolation
into another reservoir and/or rapid surface seepage and runoff
– and (iii) a deep reservoir recharged from the intermediate
reservoir and drained by percolation or slow surface seep-
age and runoff. The two hydrological parameters controlling
these reservoirs are WRC (i.e. Water Retention Capacity of
the shallow reservoir) and RUNPER (i.e. the water level in
the intermediate reservoir when rapid RUNoff and PERcola-
tion are in equilibrium).

Several simulations were tested using different WRC and
RUNPER values. However, it was found that with high
WRC and RUNPER values (i.e.>300 mm for WRC and
>25 mm for RUNPER) the simulated high Dhuy river flows
were greatly underestimated, resulting in less frequent back-
flooding events. Conversely, with low values (<100 mm for
WRC and<10 mm for RUNPER) the simulated high Dhuy
river flows were greatly overestimated, resulting in too many
backflooding events. The best values retained for this study
were 205 mm for WRC and 15 mm for RUNPER, giving a
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Fig. 3. Observed backflooding events and calculated backflow in-
dices for 1997 to 2001. From the top down: Loire river flow(a),
Dhuy river flow(b), backflow index calculated with the actual Dhuy
river flows and the backflooding observations (grey circles)(c),
backflow index calculated with the Gardenia-calculated Dhuy river
flows and the backflooding observations (grey circles)(d).

simulation that provided an average amount of backflooding
events without any priority to very high or very low flows.

The best simulations carried out for the entire 1966–2009
period gave a correlation coefficient of 0.884 and a mean
quadratic deviation of 0.59 m3 s−1 between the simulated and
actual flows for the periods of known Dhuy river flow. We
also calculated the Nash-Sutcliffe Efficiency (NSE) for a bet-
ter idea of the simulation performance. This gave about 0.78
for the overall period because the model trends to underes-
timate high flows (>1 m3 s−1) and slightly overestimate low
flows (<0.5 m3 s−1). Nevertheless, it was more important to
have a good overall simulation for the present study than to
prioritize either high flow peaks or low flow periods.

The backflow indices calculated from the simulated river
flows, like those calculated from the actual river flows, are in
agreement with the observations made in the field during the
1997–2001 reference period (Fig. 3c, d). It was noted, how-
ever, that the duration of the different backflooding events
deduced from the simulated river flows are much longer than
those deduced from the actual river flows during the low wa-
ter periods of 2000 and 2001. This difference is explained
by the positive bias (possibly due to evapotranspiration) be-
tween the simulated and actual flows of<0.5 m3 s−1 at the
low water period shown by all the simulated records; the re-
sult is an overestimation of the simulated flows compared to
the actual flows. The simulated river flows being higher than
the actual ones during the June to September period means
that the simulated backflooding events are longer.

4.3 Simulation of the backflooding events for the
1966–2009 period

One hundred and twenty three backflooding events
(i.e.I > 0) were calculated for the 1966 to 2009 period using
the actual Dhuy and Loire river flows. With the Gardenia-
simulated Dhuy river flows for the same period, 73 % (or
90) of the backflooding events satisfied the conditionI > 0.
Of the 33 non-simulated backflooding events, 18 lasted for
less than a day: these very short events are difficult for
Gardenia to distinguish because the model has a tendency
to clip the high river flows. It is thus possible that some
of the non-simulated backflooding events, which doubtless
existed given the actual Dhuy and Loire river flows, were
not correctly simulated because of their brevity. If one
then takes into consideration the slightly negative (I ) values
(I = −0.3−0), one now finds that Gardenia in fact simulated
93 % of the backflooding events calculated from the mea-
sured river flows. The underestimation (due to the choice
of the values of WRC and RUNPER) of the Dhuy river
flows greater than 1 m3 s−1 would also explain why all the
observed backflooding events were not recognised from the
Gardenia-simulated river flows.

Figure 4 shows the backflooding occurrences calculated
from the measured river flows (1966–2009) completed by
simulated river flows for the period between 1971 and 1979.

www.hydrol-earth-syst-sci.net/15/2459/2011/ Hydrol. Earth Syst. Sci., 15, 2459–2470, 2011
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Fig. 4. Backflooding events between 1966 and 2009.

A total of 126 backflooding events was calculated with two
particularly favourable periods for their occurrence being
identified: one between 1981 and 1989, and the other be-
tween 1997 and 2003. Before the 1980s, there would have
been a few fairly localised backflooding occurrences. It is
interesting to note that the period of high backflooding fre-
quency occurs when the Dhuy river flow is high on the pluri-
annual scale (not shown). This clearly indicates that although
the appearance of backflooding is, on the daily scale, linked
to the local river flows, its frequency is associated with the
rainfall sequences of the order of several years.

4.4 Relationship between backflooding events
and weather types (WT)

4.4.1 Weather types and Dhuy flow

The daily record of weather types and the daily Dhuy river
flows were combined for the 1966–2007 period (Fig. 5) and
several methods were tested to evaluate the best relation-
ship between the daily WT and the presence of backflood-
ing events. In one of these methods, each daily WT was re-
lated to a weighted moving average of the Dhuy flow over
the three days following the appearance of the WT – this was
motivated by the fact that heavy rainfall related to a specific
WT will influence the Dhuy flow for up to three days follow-
ing the event. Nevertheless, when the daily WT was related
to the average Dhuy flow merely over one day following the
event, we recorded similar results as for the average Dhuy
flow over the three day period following the event. Conse-
quently, we calculated the variability of the Dhuy river flow
using the ratio (RWT) of the average Dhuy flow at day +1
for each WT at day 0 over the average Dhuy flow for each
season; this is given by the relationship (Fig. 5):

RWT =

∑
WT

QDhuy/nWT∑
season

QDhuy/nseason
(3)

with nWT the number of days that the WT appeared between
1966 and 2007 andnseasonthe total number of days in the
considered season between 1966 and 2007.

Fig. 5. Variability of the Dhuy river flow represented by theRWT
ratio for each weather type compared to the average seasonal flow.
Note:RWT = 1 corresponds to the average seasonal Dhuy river flow
for the considered season.

The WT are differentiated by a precise trend in the Dhuy
river flow compared to its seasonal average. The value of the
ratio (1 being the seasonal average of the river flow) enables
one to distinguish the WTs associated with the Dhuy high
river flows (RWT > 1) and those associated with the Dhuy
low river flows (RWT < 1) (Fig. 5).

The impact of each WT can be also given by the variability
of its precipitation in relation to the average seasonal precip-
itation (Table 1). Most WTs can be termed as “wet” if they
give rise to more precipitation than the seasonal average, or
“dry” if they give rise to less precipitation. These data are
consistent with the results shown in Fig. 5.

4.4.2 Weather types and backflooding events

We studied the occurrences of backflooding in relation to
the WT, and noted that they are potentially higher with sud-
den increases in the Dhuy river flow compared to the Loire
river flow. The combined trends of the Loire and Dhuy river
flows, the precipitation in the study area, the backflooding
occurrences and the WTs were analysed in detail for the pe-
riod between 1966 and 2007. Two examples taken from the
backflooding observation period (1997–2001) illustrate these
trends: one during a low-water period when the level of the
Loire was stable (Fig. 6a) and one during a winter period
when the level of the Loire was fluctuating (Fig. 6b). Fig-
ure 6a shows the link between the appearance of backflood-
ing events, local precipitation and the trend of the Dhuy and
Loire river flows from June to August 2000. Certain WTs
during this low flow period of the Loire gave rise to high pre-
cipitation in the study area and thus increased the Dhuy river
flow. Backflooding was possible because the Loire river flow
varied between 80 and 155 m3 s−1. The succession of WTs
JJA8, JJA7 and JJA5 during the summer of 2000 was at the
origin of these backflooding events: it is the sum of the rainy
days that gives rise to backflooding. This combination of
WTs was responsible for seven summer backflooding events
during the observation period. During the winter period
(Fig. 6b), the succession of several days associated with a
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Table 1. Precipitation variability of each WT according to the seasonal precipitation rates.

“Dry” WTs Variability “Wet” WTs Variability Other WTs Variability
of precipitation of precipitation o f precipitation

DJF0 −62 % DJF2 39 % DJF8 8 %
DJF1 −89 % DJF3 177 % DJF5 9 %
DJF4 −32 % DJF6 104 % JJA2 8 %
DJF7 −54 % MAM1 55 % JJA4 1 %
MAM0 −60 % MAM3 41 % JJA6 8 %
MAM2 −11 % MAM5 32 % SON0 −5 %
MAM4 −91 % MAM6 100 %
MAM7 −17 % MAM8 120 %
MAM9 −54 % JJA5 189 %
JJA0 −40 % JJA7 183 %
JJA1 −80 % JJA8 190 %
JJA3 −66 % SON1 41 %
JJA9 −63 % SON3 144 %
SON2 −45 % SON4 65 %
SON6 −50 % SON5 22 %
SON7 −85 % SON8 154 %

Fig. 6. Precipitations, Loire river flow, Dhuy river flow, backflooding observations and associated WT during a period of Loire stability
(a) and a period of Loire high river flow(b).

www.hydrol-earth-syst-sci.net/15/2459/2011/ Hydrol. Earth Syst. Sci., 15, 2459–2470, 2011
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Fig. 7. Ability of the WTs to trigger backflooding, calculated over
two periods: 1997–2001 and 1966–2007.

same WT, i.e. DJF3, triggered backflooding due to increased
precipitation over the Loiret; this WT was responsible for
two of the three December backflooding events that occurred
between 1997 and 2001. DJF3 also reappeared several times
during this winter period but without triggering any back-
flooding because the Loire river flow gradually increased
making any backflooding impossible; above 350 m3 s−1 the
Loire river flow is too high to enable backflooding. Other
WTs brought high precipitation during the considered win-
ter period (Fig. 6b); for example, DJF8 was twice associated
in this example with a high precipitation level, but did not
trigger any backflooding. Nevertheless, when one compares
the average Dhuy river flow under DJF8 with the seasonal
average (i.e. theRWT ratio; Fig. 5) one notes that DJF8 tends
for a lower river flow than the seasonal average. Thus even
though DJF8, when averaged over 40 years, is representative
of a low Dhuy river flow compared to the seasonal average,
it can nevertheless, on any particular day, contribute to an
abrupt rise in the river level.

Studying the complete 1966–2007 sequence allowed us to
determine for each WT a number of days of appearance that
could lead to backflooding. However, they are values that
need to be weighted in relation to the seasonal occurrence of
each WT. The result of the weighting is the aptitude of a WT
to cause backflooding, which is defined as follows:

AptWT =
mWT

pWT (4)

wheremWT is the number of days that the WT triggers a
backflooding andpWT the occurrence of the WT in the sea-
son during the considered period. Only days when the Loire
river flow was<350 m3 s−1 were used for this calculation
for the simple reason that backflooding events cannot occur
when the Loire flow is>350 m3 s−1. Figure 7 shows the ap-
titude of the WTs to generate backflooding over two periods:
1966–2007 (overall period) and 1997–2001 (period of back-
flooding observation). One obtains basically the same re-
sults for the two periods: it is the same WTs that have a high
ability to trigger backflooding. Termed backflow-triggering

Fig. 8. Comparison of WT occurrences for the periods with (1997–
2001) and without (1989–1993) backflooding.

WTs, the distribution of WTs capable of triggering back-
flooding is as follows: three winter WTs (DJF3, DJF5 and
DJF6), one spring WT (MAM6), three summer WTs (JJA5,
JJA7, JJA8) and four autumn WTs (SON0, SON3, SON4 and
SON8).

The 1997–2001 observation period was a time of many
backflooding events compared to the preceding and fol-
lowing periods. In order to confirm the preceding result
(Fig. 7) and better understand the backflooding phenomenon
on a multi-annual scale, we compared the occurrences of
backflow-triggering WTs and non-triggering WTs over the
observation period with those over the 1989–1993 period
with no backflooding events (Fig. 8). Seven triggering WTs
(MAM6, DJF5, DJF6, JJA7, JJA8, SON3, and SON8) ap-
peared more frequently over the four years of the obser-
vation period than during the 1989–1993 period, whereas
the non-triggering WTs (i.e. those give rise to low Dhuy
river flows, such as DJF1, MAM0, MAM2, MAM4, MAM7,
SON7 and JJA1) appeared more frequently during the 1989–
1993 period with no backflooding; here the higher frequency
of non-triggering WTs would in part explain the low level
of the Dhuy during this period. This comparison between
the periods with backflooding and no backflooding allowed
us to confirm the major role played by certain WTs, i.e. the
backflow-triggering and non-triggering WTs.

All the triggering WTs defined above are well related to a
RWT > 1, i.e. to Dhuy flows higher than the seasonal average
(Fig. 5). However, only 11 of the 17 “wet” WTs (Fig. 5) are
considered to be backflow-triggering WTs because a major
role is also played by the hydrological regime of the Loire
river.

4.4.3 Weather types and Loire flow

Linking the Dhuy river flows to daily weather types is easy
because the Dhuy is a local river in a small catchment and
reacts instantaneously to precipitation. This is not the case
for the Loire river for the scale is not the same; the catchment
dimensions make it very difficult to link the Loire river flow
to specific weather type occurrences. The Loire river takes
several days, even weeks, to integrate the impact of a weather
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Fig. 9. Relationship between monthly Loire river flows and the occurrence of WTs with the PCA method.

type, and so the river flow reflects the sequence of several
weather types over a certain period. Accordingly, we tried
linking monthly Loire river flows to the occurrences of WTs
using a Principal Component Analysis (PCA) and correlation
matrix for each season. The results show that only a few
WTs have an impact on the monthly Loire river flow, and
that this impact is very slight compared to the WT impacts
on the Dhuy river flow; thus DJF2, DJF3, DJF6, MAM3,
MAM6 and SON3 are linked to monthly high Loire flow,
and DJF0, DJF1, MAM0, MAM4 and SON 2 are linked to
monthly low Loire flow (Fig. 9). Then again, among these
WTs, only DJF3, MAM6 and SON3 can be considered as
triggering WTs and only DJF1, MAM0 and MAM4 as non-
triggering WTs. These results clearly show that linking the
Loire river flow with WTs is difficult to achieve.

4.5 Projected trend in occurrences of backflooding as a
function of WTs

Simulations of the WT frequency trend were carried out
for several downscaled global climate scenarios (Pagé et al.,
2008). The results of five of the downscaled simulations were
used in this study. The data enabled us to evaluate the trend in
backflooding occurrences which we have already discussed
as a function of weather type.

4.5.1 ARPEGE simulation

The ARPEGE simulation originates from the CNRM (French
National Centre for Meteorological Research) and is cur-
rently used for climate impact studies (e.g. Boé et al., 2006,
2009a; Bóe and Terray, 2008; Quintana Seguı́ et al., 2010;
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Fig. 10.Evolution of the seasonal occurrence of non-triggering and
triggering-WTs under the ARPEGE scenario.

Fig. 11. Total annual occurrence (%) of backflow non-triggering
WTs (a) and triggering WTs(b) between the Present and the Near
and Distant futures according to the four simulations.

Planton et al., 2008). Three time periods were studied
for predicting the WT trends: 1961–2000 (Present), 2046–
2065 (Near future) and 2081–2100 (Distant future). Fig-
ure 10 shows the seasonal occurrence of triggering and
non-triggering WTs for the three time periods described
above. According to this scenario, the frequency of six non-

triggering WTs will increase in the Near future, that of one
will remain constant and that of only one will decrease; for
the triggering WTs. The frequency of ten will decrease and
that of only one will increase. These results change when
considering the Distant future in relation to the Present – the
frequency of eight triggering WTs will decrease, that of two
will stay constant and that of only one will increase. Conse-
quently, the occurrence of backflow events in the Near future
and Distant future will, according to this climate scenario,
tend to decrease in frequency.

4.5.2 Other simulations

Although the ARPEGE climate scenario provides satisfac-
tory results, the use of other climate simulations is needed to
illustrate the variability and uncertainties of different models
on the same study area. The four simulations used in this sec-
tion are GISS-AOM, GISS-ER, MIROC3.2-MEDRES and
MIUB-ECHO-G, all of which are part of IPCC’s SRES A1B
scenario (Randall et al., 2007). These simulations were se-
lected because each is representative of a specific future cli-
matic state: MIROC 3.2 MEDRES represents a future cli-
mate that is much warmer and wetter than at present. GISS
ER is again a feature of a warmer and wetter future climate,
whereas GISS AOM represents a warmer and drier future cli-
mate, and MIUB ECHO G a much warmer and drier future
climate.

The eleven backflow triggering WTs and the eight non-
triggering WTs were considered as two distinct groups for
the Present/Near future/Distant future comparisons – their
total annual occurrences are shown in Fig. 11. All four
simulations indicated that the non-triggering WTs will in-
crease in frequency in the Near and Distant future (Fig. 11a)
and two simulations (GISS-ER, MIROC3.2-MEDRES) also
indicated a frequency increase for the backflow-triggering
WTs. Conversely, the two other simulations (GISS-AOM
and MIUB-ECHO-G) showed a decreasing frequency for
backflow-triggering WTs in the future (Fig. 11b).

There is thus a well-marked trend for the non-triggering
WTs towards an increase in both the Near and Distant future,
and this with each simulation. For the backflow-triggering
WTs, however, the GISS-AOM and MIUB-ECHO-G sim-
ulations predict a decrease in their frequency, whereas the
GISS-ER and MIROC3.2-MEDRES simulations tend to in-
dicate an increase. The different results obtained from these
models reflect each model’s characteristics; i.e. horizontal
resolution, number of vertical levels, physical parameterisa-
tion, numerical methods, intrinsic internal climate variabil-
ity, etc. (Randall et al., 2007). The GISS-ER and MIROC
3.2 MEDRES simulations, which both indicate a wetter cli-
mate for the future, show the same predicted evolution (in-
creased frequency of backflow-triggering WTs) whereas the
GISS-AOM and MIUB-ECHO-G simulations, which indi-
cate a drier climate for the future, show a decrease in fre-
quency of backflow-triggering WTs. Thus the GISS-ER and
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MIROC3.2-MEDRES models agree about a lessening of the
backflooding risk (increase of non-triggering WTs and de-
crease of backflow-triggering WTs) like ARPEGE and the
other two models tend to indicate an increase of the back-
flooding risk (increase in both the non-triggering and the
backflow-triggering WTs, and thus fewer intermediate WTs
to compensate the increase).

If one considers that backflooding represents an extreme
event in the Val d’Orĺeans (sudden increase in precipitation),
other more specialised studies on the future frequency of ex-
treme events help us complete the results obtained using the
WT method. The models agree in predicting an increase in
the number of days of drought in summer and of intense pre-
cipitation in winter (D́eqúe, 2007; Moisselin and Dubuisson,
2006). Planton et al. (2008) also explain that the change in
the occurrence of weather regimes in the future will favour
intense precipitation events in excess of 10 mm in winter, es-
pecially in the northern half of France. But the models do not
succeed in evaluating the trend of very intense precipitations
in the southeast of France (including the Cevennes episodes
that partly feed the Loire) because they are not capable of
reproducing small-scale events in the current climate condi-
tions. The ARPEGE and LMDZ models used for the IM-
FREX project (Projet GICC-IMFREX, 2005) simulated the
trend of the number of days with more than 10 mm precipita-
tion in France for 2070–2099. For the Val d’Orléans, the two
models predict a decrease in the number of days in summer
and a slight increase (for LMDZ) in winter. In autumn and
spring, the number of days of intense precipitation will not
change for the study area. In predicting that the number of
days of intense rain will decrease in summer, these simula-
tions indicate a lower risk of backflooding.

5 Conclusions

It has been shown that karst systems can be very sensitive to
climate change. The switch from an outflow (or emergence)
function to an inflow (or loss) function can lead to a poten-
tial quality degradation of the groundwater resource. The
occurrences of this occasional event were reconstructed for
the last 40 years based on river flow data. Periods of sev-
eral years with a large number of backflooding events and
periods with almost no backflooding events succeeded one
another and appear to be directly related to the multi-annual
variations of the river flow.

For the present study a correlation was made between lo-
cal precipitation variations and the large-scale atmospheric
circulations that affect Europe. Statistical downscaling of
the weather regimes has made it possible to determine the
weather types that condition the onset of backflooding; it
would appear that certain weather types control the fre-
quency of backflooding events over time. The method of
linking WT and backflooding has enabled us, based on an
ARPEGE climate projection, to propose trend scenarios for

the occurrence of backflooding and to project a decrease
of the backflow-triggering WT and an increase of the non-
triggering WT; the overall result is a potential decrease of
backflow events in the future. However, one must consider
the various uncertainties that can affect this method; i.e. un-
certainties linked to future emission scenarios of greenhouse
gases, to the different simulations used, to knowledge of the
physical processes, to the downscaling and to the differences
between downscaling methods, and above all to the intrinsic
atmospheric variability of weather types. As long as it is pos-
sible to correctly assess the impact of each WT on a specific
hydrological site, the deployed method could be applied to
other climate change impact studies.
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Boé, J., Terray L., Martin E., and Habets, F.: Projected changes
in components of the hydrological cycle in French river basins
during the 21st century, Water Resour. Res., 45, W08426,
doi:10.1029/2008WR007437, 2009a.
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