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Abstract 8 

We introduce two new channeling indicators Dic and Dcc based on the Lagrangian distribution 9 

of flow rates. On the basis of the participation ratio, these indicators characterize the extremes 10 

of both the flow-tube width distribution and the flow rate variation along flow lines. The 11 

participation ratio is an indicator biased toward the larger values of a distribution and is equal 12 

to the normalized ratio of the square of the first-order moment to the second-order moment. 13 

Compared with other existing indicators, they advantageously provide additional information 14 

on the flow channel geometry, are consistently applicable to both porous and fractured media, 15 

and are generally less variable for media generated using the same parameters than other 16 

indicators. Based on their computation for a broad range of porous and fracture permeability 17 

fields, we show that they consistently characterize two different geometric properties of 18 

channels. Dic gives a characteristic scale of low-flow zones in porous media and a 19 

characteristic distance between effectively flowing structures in fractured cases. Dcc gives a 20 

characteristic scale of the extension of high-flow zones in porous media and a characteristic 21 

channel length in fractured media. Dic is mostly determined by channel density and 22 

permeability variability. Dcc is, however, more affected by the nature of the correlation 23 



 

  

structure like the presence of permeability channels or fractures in porous media and the 24 

length distribution in fracture networks.  25 

Keywords: flow channels; heterogeneous media; connectivity; fracture network; channeling 26 

indicators 27 
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1. Introduction 29 

Spatial heterogeneity in hydraulic conductivity affects fluid flow and solute transport in 30 

complex natural media like fractured media [38], alluvial systems [11] and strongly 31 

heterogeneous porous media [28] and has been a subject of research for decades ([8] and 32 

references therein). It is a function of contrasts between high permeability and low 33 

permeability values. As flow tends to avoid low-k zones for high-k zones, heterogeneity 34 

induces the development of preferential flow paths [20,23] also called "paths of least 35 

resistance" [39], along which flow is focused. Their effects on upscaled/effective hydrologic 36 

properties have been observed in laboratory and numerical studies. Fogg [10] performed a 37 

numerical study on the hydraulic conductivity distribution in the Wilcox aquifer and suggests 38 

that flow is mainly controlled by the continuity and connectivity of sand deposits rather than 39 

by local hydraulic conductivity values. Hanor [16] drew similar conclusions for the 40 

Livingston site. Silliman [34] illustrated the formation of preferential flow paths with 41 

laboratory experiments. [22,30] showed how the estimate of aquifer properties, like the 42 

effective permeability of a system, should take channeling into account. Ronayne et al. [31] 43 

used statistical channeling properties to estimate aquifer parameters in a system affected by 44 

channeling. Similarly, Kerrou et al. [19] showed that not accounting explicitly for channeling 45 

in a sequential self-calibration approach resulted in flow underestimation and strong 46 

deviations in capture zone estimates. Trinchero et al. [37] showed that for moderate 47 

heterogeneities, both the connectivity of high-k values and apparent porosity are key in 48 

predicting transport times efficiently. Although channeling is important for flow and transport 49 

properties, its quantification remains a matter of debate. Two types of indicators have been 50 

proposed: indicators derived from the comparison of upscaled hydraulic properties with their 51 

small-scale counterparts, and statistical indicators calculated from the permeability and flow 52 



 

  

fields. The first category of estimators is based on hydraulic properties that are sensitive to 53 

channeling. The simplest estimator is the effective permeability, Keff, known to be sensitive to 54 

flow organization [14]. In 2D multi-log-Gaussian isotropic weakly-correlated fields, the 55 

equivalent permeability is equal to the geometric mean Keff=Kg [27]. If the connectivity of the 56 

higher-K zones is greater than that of the lower-K zones, Keff is larger than Kg [32] within the 57 

limit that ���� ≤ �� (where Ka is the arithmetic mean) [40]. The type of average measured by 58 

the power averaging exponent CF1 [9,18] has thus been considered as a measure of 59 

channeling [20]:  60 

��� ∶ �
�� = 
1� � ���������� �
����

 (1) 

CF1 varies between -1 and 1 for the harmonic and arithmetic means, respectively, and is equal 61 

to zero for the geometric mean corresponding to isotropic weakly-correlated multi-Gaussian 62 

fields. As transport is also strongly affected by channeling, breakthrough curve properties 63 

have been proposed as estimators of the channeling degree [41]. Knudby and Carrera [20] 64 

used the ratio CT1 of the average arrival time �� to the time at which 5% of the solute have 65 

broken through the domain boundary t5: 66 

��� = �� ��� . �2� 
When preferential flow paths exist, t5 becomes much smaller than ��, CT1 increases and the 67 

field should be considered as increasingly connected. The apparent hydraulic diffusivity has 68 

been proposed as an intermediary characteristics between flow and transport connectivities 69 

[21]. Park et al. [29] suggested that the normalized travel time and distance be used to 70 

investigate preferential flow. 71 



 

  

The second category of estimators uses statistical characteristics of the permeability field or of 72 

the flow field. N-point spatial connectivity statistics are dedicated to the measurement of 73 

connectivity and were applied to permeability fields to estimate the presence of high-k 74 

connected patterns [17,24]. Western et al. [42] used a directional multi-point geostatistical 75 

indicator and showed that it could capture the difference between random and channeled 76 

fields with similar k-distributions, unlike non-directional indicators. Frippiat et al. [13] 77 

suggested that the presence of preferential flow paths or flow barriers could be identified 78 

using head and flow variances, since head variance is negatively correlated to connectivity 79 

while flow variance is positively correlated to the effective permeability increase. Bruderer-80 

Weng et al. [3] used the multifractal spectrum of the flow field to quantify channeling in 81 

heterogeneous pipe networks. The distribution of flow has also been used for quantifying 82 

channeling in fractured networks [6].  83 

The multiplicity of the proposed indicators shows that channeling cannot be restricted to a 84 

single simple characteristic. The concept of channeling also strongly depends on the 85 

application targeted. The relevant use of channeling indicators probably differ between flow 86 

and transport applications [33]. In this study, we focused first on the geometrical 87 

characterization of channels, i.e. on the channels themselves rather than on their consequences 88 

in terms of flow or transport. In this respect, the first category of indicators based on 89 

equivalent medium properties are limited by the fact that they measure the consequences of 90 

channeling rather than channeling itself. The limitation of the indicators based on 91 

permeability statistics arises from the measurement of a single cause of channeling cause (the 92 

connectivity of high-K zones) where channeling is also induced by the variability of 93 

permeability [26]. The advantage of those indicators based on the statistical properties of the 94 

flow field is the measurement of channeling itself. As opposed to the multifractal dimensions 95 

and the variance of head or flow, we look for indicators based on the geometrical properties of 96 



 

  

the channels that additionally identify channeling consistently in both porous and fractured 97 

media. 98 

Even though channeling occurs under many different circumstances, it has two recurrent 99 

characteristics. First, flow is localized within a few structures. Second, channeling locally 100 

maintains high flow rates over long distances. On the basis of these two characteristics, we 101 

aimed at defining quantitative channeling indicators that met the three following constraints. 102 

First, they must be globally consistent with the visually intuitive classification of channeling. 103 

Second, they must provide a quantification of channeling. Third, they must be applicable 104 

simultaneously to porous and fractured media. 105 

We define two new indicators in section 2. We compute their value for the broad range of 106 

synthetic fields introduced in section 3. In section 4, we analyze first their consistency with 107 

the expected ranking of channeling and then their dependency on the permeability correlation 108 

structures. Finally, we compare them to other existing indicators in section 5.   109 

2. Flow-based indicators  110 

A channeled medium is defined as a medium where flow is localized within a few structures 111 

and where preferential flow locally maintains high flow rates over long distances. To this end, 112 

we defined two channeling indicators, one quantifying the localization of flow within the 113 

system and the other quantifying the continuity of flow paths. Since the proposed indicators 114 

were not straightforward, we introduce them using preliminary attempts based on simpler 115 

quantities. The objective was to show the relevance of the more complex indicators finally 116 

adopted. The first indicator should characterize the relative volume occupied by the high-flow 117 

zones. The simplest indicator could be the relative volume occupied by flows larger than a 118 

given threshold value. Although simple, this indicator depends on the arbitrary choice of the 119 

threshold value. Rather than a deterministic indicator, we looked for a statistical characteristic 120 



 

  

biased toward the higher values of the flow distribution. Since the moments of the flow 121 

distribution Mk(Φ) are increasingly sensitive to the highest values with increasing orders k, 122 

the idea was to compare moments of increasing orders like in the participation ratio S2 [5,35] 123 

equal to : 124 

S2(Φ) = M1(Φ)2/(M0(Φ)⋅M2(Φ)) (3) 

where Φ stands for the spatial distribution of flow rates. For Φ discretized on a domain of n 125 

cells of volumes Vi, Mk(Φ) writes:  126 

"#�$� = % &'# × �'
)

'*�
 (4) 

where ϕ i is the mean value of Φ over the grid cell i. Table 1 shows S2 values for usual 127 

distributions. When the distribution variability vanishes, S2 tends to 1. By contrast, S2 128 

systematically decreases with higher variability whatever the distribution type. For the 129 

lognormal distribution, S2 is solely function of the lognormal variance. 130 

Whereas S2(Φ) gives indications about the surface occupied by the largest flow rates, it does 131 

not account for the distribution of this surface within the domain. Consequently, we did not 132 

use S2(Φ) but S2(Wn), where Wn is the distribution of flow-tube widths carrying all the same 133 

fraction 1/n of the total flow. Since S2(Wn) is biased toward the larger Wn values , it 134 

characterizes the extension of the low-flow zones and hence the distance between main flow 135 

channels. We defined and computed Wn in the specific context of permeameter-like boundary 136 

conditions defined for a square domain by fixed heads on two opposite sides and no flow on 137 

the other sides. The definition of Wn may also be adapted for different boundary conditions. In 138 

convergent flow conditions, Wn would be defined by the distance between flow lines 139 

normalized by the distance to the well. With permeameter-like boundary conditions, we first 140 



 

  

determined n equivalent flow tubes defined as the tubes carrying all the same fraction 1/n of 141 

the total flow (Figure 1, middle column). Then, we computed the participation ratio S2(Wn) on 142 

the flow-tube width distribution.  143 

We introduce the meaning of S2(Wn) with the case of p regularly spaced flow tubes of width 144 

L/p, where L is the system size, and n-p flow tubes of negligible width within the channels. 145 

The distribution of flow-tube widths is thus a binary distribution of values L/p with a 146 

probability p/n, and 0 with a probability (1-p/n). From Table 1, it leads to S2(Wn)=p/n. In this 147 

case, S2(Wn) is directly proportional to the number of channels p. When the number of 148 

channels p is equal to n, S2(Wn) reaches a value of 1, like in homogeneous flow fields. In fact, 149 

for a homogeneous case, all flow tubes have the same width and S2(Wn)=1. Using this same 150 

example, we derived the characteristic distance between channels Dic from S2(Wn). Since the 151 

distance between two channels is equal to Dic=L/p and S2(Wn)=p/n, then:  152 

+,-. = 1/ ∙ 12�34� (5) 

Dic ranges from L/n in homogeneous fields to L in a unique channel conveying all the flow, 153 

for which S2(Wn)=1/n. L/n can be a priori interpreted as a channel resolution. The selection of 154 

an appropriate value for n will be investigated at the beginning of section 4. Dic is a 155 

characteristic distance between channels. However, it does not  provide any information on 156 

the channel persistence throughout the system. For example, in Figure 1 the field at the top 157 

and the field in the middle have two different flow fields with about the same Dic/L ratio equal 158 

to 0.09, but high flow rates are visually maintained over a longer distance in the middle field 159 

than in the top field.  160 

We looked for a second indicator designed to differentiate these two fields by characterizing 161 

the distance over which flow rates are continuously high. We first tried the Lagrangian 162 



 

  

correlation length of flow rates. It was however not consistent with our intuition of channel 163 

persistency. For example, the correlation length of the rearranged field in Figure 1 (middle) is 164 

smaller than the correlation length of the non-rearranged field (Figure 1, top). The correlation 165 

length is not only sensitive to the large flow rates but also to all other values. It thus fails to 166 

characterize high-flow zone connectivity. Like for the previous indicator, computing the 167 

Lagrangian correlation length from the sole velocities larger than a given threshold faces the 168 

same problem of the arbitrary choice of the threshold. Moreover, the channels may display 169 

some discontinuities that hinder the relevance of a threshold (Figure 1, right bottom). We 170 

found that characterizing flow channel discontinuities is easier than flow channel persistence 171 

since discontinuities are more localized. Large values of the spatial derivatives of flow rates 172 

are more localized at the entrance and exit of channels than in the remaining of the field. On 173 

the contrary, the variations of flow rates are smaller and distributed evenly in non-channeled 174 

media. To characterize the distribution of the flow transitions taken as the Lagrangian 175 

derivatives of flow rates Φ ', we used again the participation ratio S2 on Φ ' (right column in 176 

Figure 1). Numerically, S2(Φ ') was calculated according to (3) from the moments of the 177 

distribution of Φ ' discretized along the flow lines: 178 

"5�� ′� = % %�7,8 9�&,8
�7,8

9
5:

,*�

;

8*�
 (6) 

with j the flow line index, p the number of flow lines, 7,8 the ith position along the flow line j, 179 

m the number of positions along the flow line, �&,8 and ∆si
j the flow rate variation and 180 

distance between two consecutive points. Flow lines were computed by using a particle-181 

tracking algorithm. We chose p equal to 104 and m so that ∆si
j was of the order of the grid cell 182 

size after ensuring that larger p and m values did not modify the results. S2(Φ ') defines a 183 

characteristic distance leff over which flow rates are actually variable divided by the average 184 



 

  

flow line length (L') [35]. By contrast, a characteristic scale Dcc over which flow rates are only 185 

slowly varying is function of L'-leff: 186 

Dcc/L'=(L'-leff)/L'= (1-S2(Φ ')) (7) 

Dcc will be taken as a characteristic channel length. In media with discontinuous flow paths, 187 

Φ ' has a narrow and spatially uniform distribution, leading to S2(Φ ')=1 and Dcc/L' = 0. In 188 

highly-channeled media, the distribution Φ ' contains values close to zero except at the 189 

channel extremities, leading to small S2(Φ ') values and Dcc/L' close to 1. For example, the 190 

Dcc/L' value for the middle field in Figure 1 is equal to 0.72. It is larger than the value of 0.43 191 

for the field at the top of Figure 1 following the intuition that persistence is larger in the 192 

middle field.  193 

Dic/L and Dcc/L' are statistically-derived indicators designed to characterize flow localization 194 

and flow continuity. They are dimensionless quantities ranging between 0 and 1 that can be 195 

used to compare channeling in different systems. In section 3, we define a broad range of 196 

synthetic porous fields and fracture networks in which Dic and Dcc will be computed in section 197 

4. 198 

3. Tested media and computational methods 199 

Indicators Dic and Dcc will be compared in the different synthetic fields displaying various 200 

connectivity degrees presented in this section.  201 

3.1. Field generation and flow computational method 202 

Simulations were performed in four steps, consisting in the generation of the tested fields, 203 

simulation of flow, derivation of the flow lines and computation of the different indicators. 204 

The generation of the multi-Gaussian porous fields was performed via a Fourier transform 205 

[15] using the software FFTW [7,12]. Some fields are then rearranged according to the 206 



 

  

rearrangement methods described in [43] and [20] if required. In order to avoid side effects, 207 

particularly with large correlation lengths, all fields were generated within a 1280x1280 grid 208 

of which the central part (128x128) was kept for the analysis, so L=128 was the characteristic 209 

system size. The original field was taken with a log-k mean equal to zero, a variance (σy
2) 210 

equal to 1 and 3 and a correlation length (λ) equal to 8 and 64. Fracture networks were 211 

generated within a system size equal to 10∗lmin, where lmin is the size of the smallest fracture. 212 

In porous media, the flow equation was discretized on the structure of the medium according 213 

to a finite volume framework with harmonic inter-cell permeabilities [25]. As previously 214 

mentioned, permeameter-like boundary conditions were imposed on the sides of the domain, 215 

i.e. fixed heads on two opposite borders and no flow on the others. The discretized flow 216 

equations ended up to a linear system A.x=b solved by the multifrontal method implemented 217 

in the software UMFPACK [4]. Flow lines were constructed using a particle-tracking 218 

algorithm. Particles were injected through a vertical segment positioned in a central part at a 219 

distance of one correlation length from the inlet and proportionally to flow in order to avoid 220 

boundary effects [1,36]. Indicators were computed from 500 Monte-Carlo realizations for 221 

each tested case. 222 

3.2. Description of the test cases  223 

We used a broad range of 2D synthetic porous and fractured media characterized by the 224 

histogram of their permeability distribution and their connectivity structures. The synthetic 225 

porous media have all a lognormal permeability distribution of variance σy
2, where y stands 226 

for log(k) and k is the permeability, but differ by their correlation structure (see Figure 2). For 227 

the same correlation length λ, we used six correlation patterns. The tested structures are 228 

identified by P as in porous and one or two other letters specifying the correlation pattern. The 229 

first two fields have Gaussian and exponential correlation structures (PG and PE in Figure 2). 230 



 

  

The two next ones result from the rearrangement methods by Zinn and Harvey [43], yielding 231 

fields of highly-connected high or low permeabilities (PC+ and PC- on Figure 2). The two last 232 

ones are Gaussian-correlated fields to which are added highly permeable fracture-like 233 

structures oriented parallel to the average head gradient and spanning either half of the system 234 

(PF on Figure 2) or the whole system (PF2 on Figure 2) [20]. These rearrangement methods 235 

provide different flow distributions (Figure 3). The C+ method increases the mean flow rate 236 

compared to the Gaussian correlated field, while the F method adds a second peak of larger 237 

flow rates to the histogram. Note, however, that the rearrangement methods do not modify the 238 

permeability histogram. 239 

Flow channeling was also observed in fractured media because of both the fractures and the 240 

network-scale heterogeneities [38]. In this paper, we concentrated on the network-scale 241 

complexity stemming at first from the power-law fracture length distribution: 242 

n(l)~l
-a (8) 

 where a is a characteristic exponent between 1.5 and 4 [2]. We chose five types of fracture 243 

networks differing by their fracture length and transmissivity distributions and by their 244 

density. They are identified by the letter F followed by three additional letters. The first one, 245 

FTL0, corresponds to fracture networks at percolation threshold (structures just connected) 246 

with a power-law length distribution yielding to large fractures corresponding to a equal to 247 

2.0 (Figure 4). The four other networks show a smaller probability of occurrence of large 248 

fractures (a=3.5) and are respectively at threshold (FTS0, Figure 4) and dense with a density 249 

three times as large as that of threshold. The dense fracture networks differ by their fracture 250 

transmissivity distributions of lognormal standard deviation σy equal to 0 in FDS0, 1 in FDS1 251 

and 2 in FDS2. Flow fields displayed in Figure 4 (second column) show different flow 252 

structures from highly-channeled (FTL0, FTS0 and FDS2) to well-distributed (FDS0).  253 



 

  

4. Results 254 

After a visual inspection of the different test cases (Figure 2 and Figure 4), we ranked them by 255 

their apparent channeling degree (Table 2). The order was derived separately in the porous 256 

and fracture cases according to the flow-tube widths and regularity. In porous media, this 257 

order is consistent with CF1 values (Table 3). All results discussed in the following paragraph 258 

are given in Table 3. 259 

4.1. Relation between Dic and the number of considered flow tubes  260 

The interchannel distance Dic (5) depends on the proportion of flow used to define a channel. 261 

If n is the number of flow tubes, each flow tube carries 1/n part of the total flow. Figure 5 262 

displays the relation between Dic and 1/n. When 1/n tends to 1, Dic tends to L, meaning that no 263 

channel contains all the flow by itself. For the smallest values of 1/n, the fracture cases reach 264 

a plateau characteristic of the smallest distance between flowing fractures. 1/n can be 265 

interpreted as characteristic of the smallest flow channel that can be identified. In Figure 5, we 266 

chose a value of n=20, for which all test cases have a characteristic interchannel distance 267 

larger than the interfracture distance. The value of Dic remains dependant of n but the relative 268 

order for the different test cases remains the same whenever n≤20. We will thus compare Dic 269 

values between test cases rather than their absolute values in single test cases. The chosen 270 

value of n is the flow-tube resolution. If Dic<L/n, the medium will be considered as 271 

homogeneous in the sense that inter-channel distances are smaller than L/n. The value of n 272 

should be increased for distinguishing closer channels.  273 

4.2. Channeling characteristics Dic and Dcc 274 

Figure 6a and Figure 6b display the two new indicators Dic/L and Dcc/L' in highly- 275 

heterogeneous porous cases (σy
2=3) and fracture cases. PG and PE configurations have very 276 

close values of Dic and Dcc despite the visual ranking, meaning that the short-range 277 



 

  

correlations do not affect the channeling degree. Figure 6c and Figure 6d display the two 278 

other indicators CF1 and CT1. CT1 performs poorly while CF1 captures the channeling 279 

increase of porous configurations (PC+, PF and PF2). However, CF1 can be used in porous 280 

cases but is not available in fractured media. Moreover, CT1 is not discriminating in porous 281 

cases and does not account for the apparent ranking of channeling in the fracture test cases. 282 

Dic/L and Dcc/L' are thus more adapted to characterize channeling consistently in porous and 283 

fractured cases.  284 

The characteristic interchannel distance Dic/L consistently increases with more visual 285 

channeling. This increase is much smaller in the porous cases than in the fracture cases. Dcc/L' 286 

also increases in porous media and has significantly larger values in all channeled fracture and 287 

porous fracture cases (FDS1, FDS2, FTL0, PF and PF2). In fact, in fractured media, flow is 288 

focused within the fractures and the variations of flow rates are more restricted than in porous 289 

media. Dcc/L' reaches values close to one equivalent to little variation of flow rates within 290 

flow lines in FTL0, FDS2, PF and PF2. The comparison of the variations in Dic/L and Dcc/L' 291 

shows that in the porous cases, Dcc/L' increases over a range twice as large as that of Dic/L 292 

from PC- to PC+. In the fracture case, however, Dic/L is more consistent with the visual 293 

ranking of channeling than Dcc/L'. These results indicate that a flow organization indicator 294 

(Dcc) better characterizes porous flow channeling while a flow localization indicator (Dic) 295 

better characterizes fracture flow channeling.  296 

The variability of Dic/L is much larger in fractured media than in porous media (Error bars in 297 

Figure 6a), which means that Dic does not vary much in porous configurations where channels 298 

are distributed over the field. However, Dic is highly variable in fracture configurations where 299 

channels can be either very clustered or spread.  300 



 

  

The absence of systematic correlation between Dic/L and Dcc/L' shown in Figure 7 confirms 301 

that Dic/L and Dcc/L' characterize two different channeling properties. Figure 7 also shows that 302 

Dic/L and Dcc/L' consistently characterize channeling in respectively the fracture and the 303 

porous cases. First, the visually ranked non-channeled fracture case FDS0 is in fact close to a 304 

highly-correlated porous case (PC+, σy=3, λ=8). Second, the porous fracture cases PF and 305 

PF2 located at the top left corner of Figure 7 have larger Dcc/L' values than the porous cases 306 

and smaller Dcc/L' values than the fracture channeled cases. 307 

Based on Figure 7, we distinguish three types of flow structures. First, weakly-channeled flow 308 

structures are characteristic of Multi-Gaussian fields (PG, PE and PC-) and lead to small Dic/L  309 

and Dcc/L' values. Second, the mildly-channeled flow structures were obtained for high-k 310 

connected patterns (PC+, PF and PF2 with σy
2=1) and have small Dic/L values and large 311 

Dcc/L' values. Third, the highly-channeled media have large Dic/L and Dcc/L' values, like FTL0 312 

or PF2 with σy
2=3. The latter case corresponds to extreme channeling for which flow is both 313 

highly localized and highly continuous in a very small number of channels.  314 

4.3. Relation between channeling characteristics and k-field parameters 315 

In this section, we look for a finer understanding of indicators Dic/L and Dcc/L’ by analyzing 316 

their dependence on the structures of the porous (Figure 8-9) and fractured test cases (Figure 317 

10-12). We then comment on the variation trends and amplitudes. Dic/L systematically 318 

increases with more heterogeneity. In fact, Dic/L increases with σ2 in porous media (Figure 8) 319 

and with σy
2 in fracture networks (Figure 12). Larger σ2 values imply that flows focus in 320 

sparser transmissivity zones. Dic/L also systematically decreases in denser fracture networks, 321 

i.e. when increasing the number of connected parallel fracture paths (Figure 11). Increasing 322 

the probability of occurrence of long fractures with smaller a values yields similar causes and 323 

effects (Figure 10). Similarly, increasing the correlation length λ in porous media from small 324 



 

  

to median values induces more channeling. The sole non-obvious Dic/L variation is its 325 

decrease from intermediary to large correlation lengths, approximately from λ~L/8 to λ=L/2 326 

(Figure 9). This may be due to two reasons. First, the standard deviation of Dic/L steeply 327 

increases with λ to the point where its variations become smaller than its variability. Second, 328 

when the large correlation length λ is comparable to the system size L, for example for λ=L/2, 329 

the system becomes more homogeneous and channels are more regularly distributed, 330 

explaining the smaller value of Dic/L. Apart from these side effects, Dic/L is first determined 331 

by the density of potential channels given by the correlation length in porous media and by 332 

fracture density and length distributions. Among the potential channels, only those made up of 333 

the higher permeabilities lead to effective channels. This is confirmed by the variation ranges 334 

of Dic/L presented in Table 4. The largest variation ranges are due to the fracture density first 335 

and to the difference of Dic/L values between porous and fracture cases (Figure 6). They cover 336 

at least two thirds of the full variation of Dic/L. The variation ranges according to σy
2 are 337 

smaller but not negligible and account on average for less than half of the full variation range 338 

of porous and fracture cases.  339 

Dcc/L’ is less variable than Dic/L. It varies significantly only in PF as a function of σ2 (Figure 340 

8), in FDS as a function of σy
2 (Figure 12), in PG as a function of λ (Figure 9) and in FD0 as a 341 

function of a (Figure 10). We argue in the following that the sole genuine variation is the last 342 

one. The two first variations are due to the transition from porous to fractured cases. Beyond 343 

the transition (σy
2>1), Dcc/L’ is almost constant. In porous-fracture fields, small σ2 values 344 

correspond to almost pure porous cases without fractures whereas high σ2 values lead to 345 

fracture-like cases. In dense fracture networks with σy
2=0, the fracture network looks like a 346 

porous medium. Increasing σy
2 triggers channeling while keeping Dcc/L’ almost constant. 347 

Dcc/L’ decreases with the correlation length. This counter-intuitive result is only apparent and 348 



 

  

mostly due to the simultaneous variations of L and λ in our simulation settings. In fact, we 349 

have found that Dcc/L’ depends more on L/λ than on λ. The range of variations of Dcc/L’ is 350 

reduced from 0.25 to 0.09 when decreasing the range of variations of L/λ from 64 to 8. 351 

Disregarding these dummy variations, the sole genuine variation that is not a transition is the 352 

increase in Dcc/L’ with smaller a values for dense networks (FD0). What fundamentally 353 

changes in the latter case is the nature of the correlations. Dcc/L’ seems to be more affected by 354 

the nature of the correlation than by the variability of permeability. Aside from the large 355 

variation ranges due to a transition from porous-like to fracture-like media marked in grey in 356 

Table 4, it is the sole case where the variation range of Dcc/L’ is significant. More precisely, it 357 

is of the order of three quarters of the full range of variations in all fracture networks, where 358 

all other cases are restricted to one quarter. The channel continuity measured by Dcc/L’ is thus 359 

much more influenced by the nature of the correlation structure than by the other parameters 360 

including the permeability variability, the fracture density and the correlation length. Dcc/L’ 361 

can be considered as an indicator of the nature of correlation. Finally, the absence of 362 

correlation between variability and Dcc/L' expresses that there is a fundamental limit in 363 

channeling related to the local permeability structure rather than to the permeability 364 

variability. 365 

5. Discussion 366 

As concluded in the previous section, the Dcc/L' ratio depends much more on the nature of the 367 

correlation than on the other parameters. The continuity of channels is at first a function of the 368 

occurrence of underlying-connected permeability structures. Dic/L is more intuitively a 369 

function of the density of paths and of the selection of the highest permeability paths.  370 

Although Dic/L and Dcc/L’ have been defined as statistical characteristics, they are still rough 371 

estimates of the geometrical characteristics of the fields as shown in Figure 2. We recall that 372 



 

  

Dic has been computed with a separation of flow tubes into 20 parts and thus measures 373 

statistical properties of structures carrying at least 1/20 of the total flow. Dic is only slightly 374 

variable for porous media and gives a characteristic scale of the low-flow zones (blue 375 

patches). In simple multiGaussian cases (PG), Dic is close to the correlation length of the 376 

velocity field. Dic is much more variable in the fracture networks where it is not too far from 377 

the distance between effectively flowing structures. On the other hand, Dcc is more variable in 378 

the porous media than in the fracture networks. In the porous media, it gives a characteristic 379 

scale of the extension of the high-flow zones (red flow tubes in Figure 2) and in fractured 380 

media, it gives a characteristic length of flow channels.  381 

As displayed in Figure 7, Dcc/L' and Dic/L are not strongly correlated. Their dependences on 382 

the different model parameters (Figure 8 to Figure 12) explain the lack of strong correlation. 383 

Consequently, Dic and Dcc actually do measure two different channeling characteristics that 384 

are only weakly interdependent. In other words, they complementarily characterize 385 

channeling.  386 

 387 

Figure 13 displays the relation between the new indicators Dic/L and Dcc/L’ and the existing 388 

indicators CF1 and CT1 [20]. CT1 does not systematically identify the sparse fracture cases 389 

(FTS0 and FTL0). Furthermore, CT1 values within a single case are highly variable in 390 

channeled media (Figure 14). CT1 is thus not a good channeling indicator. The correlation of 391 

CF1 with Dcc/L' is apparently better than with Dic/L. Dcc/L' < 0.5 corresponds to weakly 392 

negative CF1 values, indicating flow fields slightly more influenced by low-permeability 393 

zones. Dcc/L' > 0.5 corresponds to positive CF1 values indicating flow fields more influenced 394 

by the high- permeability zones making up the channels. The advantage of Dcc/L’ over CF1 is 395 

that the correlation structures are better distinguished. For example, PC+ and PF have very 396 



 

  

close CF1 values (Figure 6) but differ by their Dcc/L’ values. This difference stems from the 397 

more contrasted channels in the PF configuration relative to the PC+ configuration, despite 398 

the similar channeling intensity. However, it must be noted that CF1 better distinguish PF 399 

from PF2 than Dic/L and Dcc/L. The second advantage of Dcc/L’ over CF1 is that it provides 400 

information on the flow structure in both porous and fracture cases  401 

Dic/L and Dcc/L’ could also be readily computed in anisotropic and 3D fields. We expect both 402 

anisotropy and 3D to increase Dcc/L’ without significantly modifying Dic/L. Dic/L will remain 403 

linked to the volume of the low-flow zones, the characteristic size of which will not be 404 

strongly modified. However, we expect anisotropy to increase Dcc/L’ just by the effect of the 405 

higher velocity correlations in the flow direction. 3D could also potentially provide longer and 406 

more tortuous channels around the low-flow zones, and hence increase Dcc/L’. 407 

The derivation of Dic/L and Dcc/L’ in natural cases is more difficult because of the lack of data 408 

that would lead to their direct estimate. They could however be inferred from the geometrical 409 

and hydraulic characteristics of the permeability field either with the results of this study or 410 

with closer simulations. It would be interesting, in field cases, to condition the estimation of 411 

these indexes on permeability and flow values and thus to lower the non-negligible variability 412 

displayed in Figure 14.  413 

6. Summary and Conclusion 414 

Channeling has been observed both in field and in synthetic contexts. However, its 415 

characterization has been essentially qualitative. We introduce two statistical indicators based 416 

on the distribution of flow rates and compute them on a wide variety of porous and fracture 417 

permeability fields. The tested fields range, in porous media, from multi-Gaussian fields with 418 

classical correlation laws (Gaussian and exponential) to permeability fields rearranged to 419 

enhance channeling using the method by Zinn and Harvey and to permeability fields 420 



 

  

rearranged to mimic the presence of fractures within the field. The tested fractured media 421 

cover a broad range of fracture lengths, densities and transmissivity distributions.  422 

The first indicator, Dic, is related to the characteristic interchannel distance. It is based on the 423 

participation ratio S2 applied to the distribution of flow-tube widths. Although statistically 424 

derived, this ratio can be interpreted as a characteristic scale of the low-flow zones 425 

perpendicular to the flow. It is moreover highly sensitive to the variability of the permeability, 426 

as well as to the permeability correlation pattern. The second indicator, Dcc, is related to a 427 

characteristic extension of channels. It is too computed with the participation ratio S2 applied 428 

to the Lagrangian derivative distribution of flow rates. It is highly sensitive to the nature of 429 

the permeability correlation structure, which is also an important channeling cause. Both 430 

indicators consistently characterize flow channeling in porous and fractured media, with Dic 431 

being more sensitive in fractured media and Dcc in porous media. As they are weakly 432 

correlated, they measure different channeling characteristics that are weakly dependent and 433 

are complementary to characterize channeling in porous and in fractured media. As a result, 434 

they are complementary to identify and quantify channeling in various media, from non-435 

channeled fields like multi-Gaussian permeability fields with common correlation laws to 436 

highly-channeled media like porous-fractured fields with a large variability and fracture 437 

network with large fractures and broadly distributed transmissivity values. We will use the 438 

proposed indicators in further studies to distinguish weakly-, mildly- and highly-channeled 439 

media in order to choose the most relevant modeling framework and identification strategies.  440 
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 572 

Figure 3: Probability density function of the logarithm of flow rates in the classical multi-573 

Gaussian fields with a Gaussian correlation (PG) and in the fields with the two rearrangement 574 

methods PC+ and PF. The C+ rearrangement method globally shifts the flow rate distribution 575 

to higher flow values while the F rearrangement introduces a second peak of higher flow 576 

values. 577 

578 
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 585 

Figure 5: Dic/L versus 1/n in various porous and fractured test cases. The vertical black line 586 

represents the values used in the current study. Dic/L=1/n is the lower limit representing a 587 

homogeneous field while Dic/L=1 is the upper limit representing a field with all flows 588 

concentrated in a unique channel. 589 

590 
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 591 

a) b) 

c) d) 

 

Figure 6: Values of (a) Dic/L, (b) Dcc/L', (c) CF1 and (d) CT1. For the different test cases 592 

ranked by their increasing intuitive rating of channeling (Table 2), Error bars are the standard 593 

deviations of the underlying distributions. Parameters of porous cases are σy
2=3 and λ=8. The 594 

vertical double bar separates porous and fracture test cases.  595 

596 
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Figure 7: Dic/L versus Dcc/L' i598 
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 604 

Figure 8: Variation of Dcc/L' versus Dic/L in porous test cases PG and PF for varying 605 

permeability standard deviations σy. σy  values are given next to the corresponding symbols. 606 

When σ 
y tends to zero, Dic tends to 1/n and Dcc tends to zero as the permeability values tend 607 

to be homogeneous. 608 

609 
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610 

Figure 9: Variation of Dcc/L611 

permeability correlation length612 

613 

L' versus Dic/L in porous test cases PG an

gths λ. λ values are given next to the correspon
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 614 

Figure 10:  Dcc/L' versus Dic/L in fractured test cases with varying power-law length 615 

exponents a. Values of a are given next to the corresponding symbols.  616 

617 
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 618 

Figure 11: Dcc/L' versus Dic/L in fractured test cases with varying fracture densities d. Values 619 

of d are given next to the corresponding symbols. Density is measured as the percentage of 620 

fractures above percolation threshold. It is 0 at percolation threshold and 100 in networks 621 

having twice as much fractures as in networks at percolation threshold.  622 

623 
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 624 

Figure 12: Dcc/L' versus Dic/L in fractured test cases with varying variances of the 625 

transmissivity distribution σY
2. Values of σ Y

2 are given next to the corresponding symbols. 626 

627 



 

39/45   

 628 

Figure 13: Channeling characteristics (Dic/L and Dcc/L') versus indicators CF1 and CT1 629 

defined in [20]. Note that Dic is available only in porous cases.  630 

631 
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 632 

 

Figure 14: Dic/L and Dcc/L' versus CF1 and CT1. This figure shows the variability of the 633 

indicators by depicting the 500 values for PG, PC+ and PF2 (σy
2=3, λ=8) and, if available, 634 

FDS0 and FDS2. Small points stand for the 500 results and large points for the associated 635 

mean. Error bars stand for the standard deviation. Dic and Dcc are generally less variable in the 636 

same configurations than CF1, and particularly than CT1. 637 

638 
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 639 

Distribution type Parameters S2 
Gaussian mean � and variance σG S2=(1+(σG/�)2)-1 
Log-normal log-normal variance σLN

2 S2=exp(-σLN
2) 

Binary distribution v1 with a probability p and  
0 with a probability 1-p 

S2=p 

Table 1: Participation ratio S2 for classical distributions. 640 

641 
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 642 

Field Type Properties Short 
name 

Porous  Rearranged with the C- method, σy
2=1 or 3, λ=L/16 or L/2 PC- 

Porous Gaussian correlation, σ y
 2=1 or 3, λ=L/16 or L/2 PG 

Porous Exponential correlation, σ y
 2=1 or 3, λ=L/16 or L/2 PE 

Porous Rearranged with the C+ method, σ y
 2=1 or 3, λ=L/16 or L/2 PC+ 

Porous Rearranged with the F method, σ y
 2=1 or 3, λ=L/16 or L/2 PF 

Porous Rearranged with the F2 method, σ y
 2=1 or 3, λ=L/16 or L/2 PF2 

Fractured Dense (d=3pc), dominated by short fractures (a=3.5), uniform 
fracture transmissivity (σy

2=0) 
FDS0 

Fractured Dense (d=3pc), dominated by short fractures (a=3.5), distributed 
fracture transmissivity (σy

 2
logT =1) 

FDS1 

Fractured Dense (d=3pc), dominated by short fractures (a=3.5), distributed 
fracture transmissivity (σy

 2
logT =2) 

FDS2 

Fractured Sparse (d=pc), dominated by short fractures (a=3.5), constant 
fracture transmissivity (σy

 2
logT =0) 

FTS0 

Fractured Sparse (d=pc), dominated by long fractures (a=2.0), constant 
fracture transmissivity (σy

 2
logT =0) 

FTL0 

Table 2: Porous and fractured test cases ranked visually by increasing order of channeling. 643 
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CASE σy
2 λ Dic/L σ² (Dic/L) Dcc/L' σ² (Dcc/L') CF1 σ² (CF1) CT1 σ² (CT1) 

PC- 

 

1 8 0.063 0.0040 0.4 0.0820 -0.20 0.17 1.4 0.22 

3 0.073 0.011 0.38 0.066 -0.21 0.19 1.6 0.38 

1 64 0.061 0.0080 0.40 0.18 -0.10 0.50 1.4 0.35 

3 0.070 0.022 0.44 0.20 -0.10 0.51 1.4 0.34 

PG 1 8 0.065 0.0027 0.41 0.032 -0.0042 0.076 1.6 0.25 

3 0.092 0.0082 0.44 0.037 0.0014 0.071 2.3 0.64 

1 64 0.064 0.014 0.29 0.088 -0.00023 0.43 1.3 0.28 

3 0.096 0.049 0.31 0.13 0.020 0.41 1.6 0.55 

PE 

 

1 8 0.063 0.0031 0.40 0.016 -0.035 0.075 1.5 0.25 

3 0.088 0.010 0.45 0.022 -0.026 0.073 2.2 0.60 

1 64 0.062 0.0087 0.37 0.030 -0.015 0.27 1.4 0.26 

3 0.089 0.032 0.39 0.065 0.00018 0.26 1.7 0.55 

PC+ 

 

1 8 0.071 0.0064 0.64 0.066 0.17 0.15 1.7 0.42 

3 0.094 0.020 0.60 0.075 0.23 0.16 2.1 0.67 

1 64 0.064 0.016 0.57 0.21 0.039 0.53 1.5 0.50 

3 0.077 0.035 0.51 0.22 0.065 0.53 1.7 0.73 

PF 

 

1 8 0.066 0.0030 0.74 0.082 0.23 0.12 1.9 0.54 

3 0.10 0.011 0.86 0.067 0.29 0.09 3.4 1.8 

1 64 0.057 0.0053 0.70 0.12 0.31 0.31 1.4 0.25 

3 0.071 0.017 0.70 0.15 0.31 0.31 1.8 0.68 

PF2 

 

1 8 0.067 0.0037 0.78 0.076 0.42 0.12 3.5 2.4 

3 0.12 0.0030 0.92 0.052 0.64 0.078 15 9.6 

1 64 0.056 0.060 0.71 0.11 0.33 0.32 1.5 0.55 

3 0.069 0.1861 0.72 0.14 0.35 0.33 2.6 2.6 

FDS0 N/A 0.11 0.10 0.59 0.036 N/A 1.7 0.30 

FDS1 0.24 0.15 0.86 0.050 7.2 8.4 

FDS2 0.29 0.14 0.91 0.048 26 26 

FTS0 0.64 0.18 0.65 0.089 2.2 5.3 

FTL0 0.82 0.21 0.90 0.045 1.2 6.9 
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Table 3: Mean and variance on 500 realizations for the different indicators and test cases. N/A stands for indicators that cannot be computed in 644 

the corresponding cases. 645 
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 646 

 Porous Cases Fractured Cases 

Dic/L Dcc/L' Dic/L Dcc/L' 
Full range of variation 0.12 0.66 0.73 0.40 

σy
2 0.08 (PG) 0.1 (PG) 0.42 (a=3.5) 0.31 (a=3.5) 

0.10 (PF) 0.55 (PF) 0.24 (a=2.0) 0.07 (a=2.0) 

λ 0.06 (PG) 0.09 (PG)   
0.04 (PF) 0.14 (PF)   

a   0.35 (σy
2=0) 0.30  (σy

2=0) 
  0.22 (σy

2=3) 0.05 (σy
2=3) 

d   0.55 (a=3.5) 0.1 (a=3.5) 
  0.55 (a=2.0) 0.12 (a=2.0) 

Table 4: Variation range (maximal minus minimal values) of Dic/L and Dcc/L’ according to 647 

porous and fracture parameters. High values in grey are due to transitions from porous-like to 648 

fracture-like structures rather than to variations with σy
2. 649 


