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[1] Modeling density‐driven flow in porous media may require very long computational
time due to the nonlinear coupling between flow and transport equations. Time stepping
schemes are often used to adapt the time step size in order to reduce the computational
cost of the simulation. In this work, the empirical time stepping scheme which adapts the
time step size according to the performance of the iterative nonlinear solver is compared
to an adaptive time stepping scheme where the time step length is controlled by the
temporal truncation error. Results of the simulations of the Elder problem show that (1) the
empirical time stepping scheme can lead to inaccurate results even with a small
convergence criterion, (2) accurate results are obtained when the time step size selection is
based on the truncation error control, (3) a non iterative scheme with proper time step
management can be faster and leads to more accurate solution than the standard iterative
procedure with the empirical time stepping and (4) the temporal truncation error can have a
significant effect on the results and can be considered as one of the reasons for the
differences observed in the Elder numerical results.

Citation: Younes, A., and P. Ackerer (2010), Empirical versus time stepping with embedded error control for density‐driven
flow in porous media, Water Resour. Res., 46, W08523, doi:10.1029/2009WR008229.

1. Introduction

[2] Modeling density‐driven flow problems requires a
coupled flow‐transport numerical model where the equation
of fluid conservation, Darcy’s law and the advection‐
dispersion mass (or heat) transport equations are coupled by
state equations linking density and viscosity to mass fraction
(or temperature). Due to these nonlinearities, the simulations
can require an excessive computational time and/or heavy
equipments.
[3] The linearization of the coupled problem can be

performed with Picard [Molson and Frind, 1994; Kolditz et
al., 1998; Ackerer et al., 1999, 2004; Ackerer and Younes,
2008; Oltean and Buès, 2001; Mazzia and Putti, 2002,
2005; Woods and Carey, 2007] or Newton [Oldenburg and
Pruess, 1995; Frolkovic and De Schepper, 2000; Johannsen
et al., 2002] methods at each time step. In practice, the Picard
scheme where flow and transport equations are solved
sequentially is prevalent due to its simplicity. The Picard
linearization allows the use of numerical methods and/or
temporal discretizations that are specifically suited for
achieving high accuracy for each kind of equations. In this
work, the implicit time discretization is used for the flow
equation whereas the explicit time discretization is preferred
for the advective part of the transport equation. Indeed, high
order explicit methods allow obtaining accurate and mono-
tone solution with a minimum amount of numerical diffusion
even in the presence of sharp fronts [Ackerer et al., 1999;

Ackerer and Younes, 2008; Mazzia and Putti, 2002, 2005].
Due to the stability constraint of the explicit scheme, dif-
ferent time step sizes can be used for flow and transport
temporal discretizations.
[4] Adaptive time stepping is often used to reduce the

computational cost of the simulation. Time stepping schemes
with embedded error control were developed in many non-
linear problems like density‐driven flow [Diersch, 1988;
Diersch and Kolditz, 1998], incompressible Navier‐Stokes
problems [Turek, 1996], unsaturated flow [Tocci et al., 1997;
Williams and Miller, 1999; Kavetski et al., 2001, 2002],
elastoplastic consolidation in geomechanics [Sloan and
Abbo, 1999], and reactive transport problems [Saaltink
et al., 2004]. In this paper, different time stepping schemes
are used to study the effect of temporal truncation errors for
density‐dependent flow problems.
[5] The Elder problem [Elder, 1966, Voss and Souza,

1987] is one of the most popular test used to benchmark
density‐driven codes and is chosen here to illustrate the
effects of the temporal discretization. A review of prior work
shows that there is a wide variation in published results.
Various previous studies have shown the significant influ-
ence of the spatial discretization on the behavior of the
solution [Oldenburg and Pruess, 1995; Boufadel et al., 1999;
Oltean and Buès, 2001; Frolkovic and De Schepper, 2000].
Generally, the time discretization is based on (1) a constant
time step [Frolkovic and De Schepper, 2000; Woods and
Carey, 2007] which can lead to prohibitive CPU time,
(2) an empirical time stepping which adapts the time step
size according to the number of iterations required to
achieve convergence [Mazzia and Putti, 2002; Oldenburg
and Pruess, 1995; Putti and Paniconi, 1995], and (3) a time
stepping based on local truncation error control [Diersch,
1988; Diersch and Kolditz, 1998].
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[6] In this work, the Elder test problem is used to study
the effect of time stepping for density‐driven flow problems.
To this aim, we compare the performance of (1) the standard
iterative scheme with the empirical time stepping, (2) the
iterative scheme using time stepping with embedded error
control and (3) a non iterative scheme with time stepping
based on truncation error control.

2. Mathematical Models

[7] The most common mathematical models of coupled
fluid flow and mass (or heat) transport in porous media are
based on the work of Bear [1972]. The proposed models
have been widely discussed by Hassanizadeh and Leijnse
[1988] and Diersch and Kolditz [1998, 2002] among others.
[8] The mass conservation of the fluid (water and dis-

solved salt) can be written in terms of equivalent fresh water
head [Huyakorn et al., 1987],
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with r the fluid density [ML−3], Ss the specific mass stor-
ativity related to head changes [L−1], h the equivalent
freshwater head [L], t the time [T], " the porosity [−], C the
solute mass fraction [M. salt/M. fluid], q the Darcy’s
velocity [LT−1], r0 the density of the displaced fluid [ML−3],
g the gravity acceleration [LT−2], m the fluid dynamic vis-
cosity [ML−1T−1], k the permeability tensor [L2] and z the
depth [L].
[9] The mass transport of the dissolved salt in saturated

porous media is described by the following convection‐
dispersion equation:

"
@C

@t
þr: qCð Þ ¼ r: D:rCð Þ ð3Þ

where C is the dimensionless mass fraction and the disper-
sion tensor D is given by

D ¼ "DmI þ �L � �Tð Þqiqj= qj j þ �T qj jI ð4Þ
with aL and aT the longitudinal and transverse dispersivities
[L], Dm the pore water diffusion coefficient [L2T−1], " the
porosity and I the unit tensor. The associated boundary con-
ditions of the flow‐transport system (1)–(3) are of Dirichlet,
Neuman or mixed type.
[10] Flow and transport equations are coupled by state

equations linking density and viscosity to mass fraction like
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with r1 and m1, respectively, density and viscosity of the
injected fluid and m0 the viscosity of the displaced fluid.
Different state equations may be used for density or vis-
cosity [Diersch and Kolditz, 1998].

3. Time Stepping

[11] The effect of time stepping for density‐driven flow
problems is studied using a code based on numerical methods

that are specifically suited to achieve high accuracy for each
kind of equation. As in [Ackerer and Younes, 2008], the
Mixed Finite Element (MFE) method is used for the flow
equation since it is locally conservative and produces
accurate and consistent velocity field. The combination of
the MFE method for flow and dispersion with high resolu-
tion methods for advection has been shown to be an effective
tool for solving density dependent flow problems [Mazzia
et al., 2001; Mazzia and Putti, 2002].
[12] For the transport equation, the explicit Discontinuous

Galerkin (DG) method is used to discretize advection and
combined (without time splitting procedure) with the Multi-
point Flux Approximation (MPFA) method for the dis-
cretization of the dispersion equation [Younes and Ackerer,
2008]. The explicit DG method leads to a robust and
accurate numerical scheme without suffering from numeri-
cal oscillations and with a minimum amount of numerical
diffusion. The MPFA method is locally conservative and
handles general irregular grids and heterogeneous domains
[Aavatsmark, 2002].

3.1. Scheme 1: The Iterative Scheme With Empirical
Time Stepping

[13] With this scheme, we iterate between flow and
transport equations to progress from t n to t n + 1 as in the
following steps [Ackerer et al., 2004].
[14] Step 1: The transport equation is solved first for

Cnþ1
kþ1 , using qnþ1

k the velocity at the time step (n + 1) and the
previous iteration k:

"
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Note that advection is solved explicitly with the DG method
to reduce numerical diffusion.
[15] Step 2: The fluid properties (density rk+1

n+1 and viscosity
mk+1
n+1) are updated.
[16] Step 3: The flow equation is solved for hk+1

n+1 using the
recently obtained mass fractions Ck+1

n+1:
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[17] Step 4: The velocity qk+1
n+1 is then calculated using

hk+1
n+1 and Ck+1

n+1:
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This four‐step sequence is repeated until convergence. For
all performed test runs, the convergence behavior is dic-
tated by the concentration errors. The relative maximum
norm is used to constrain the largest absolute error on
mass fractions across the entire domain:

max Cnþ1
kþ1 � Cnþ1

k

�� ��
max Cnþ1

kþ1

� � � �C ð9Þ

Different values for the tolerance tC are used in the lit-
erature, for example, tC = 10−2 [Putti and Paniconi,
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1995], tC = 10−4 [Woods and Carey, 2007] and tC =
10−6 [Mazzia and Putti, 2002].
[18] The time step control is of empirical type [see, e.g.,

Oldenburg and Pruess, 1995; Mazzia and Putti, 2002]. The
time step size is adaptively adjusted according to the con-
vergence behavior of the linearization scheme. At the end of
each time step, the size of the following time step is
increased by a factor r1 > 1.0 if convergence was achieved
in fewer than ninf iterations, and is decreased by a factor
r2 < 1.0 if convergence required more than nsup iterations. If
convergence is not reached within a maximum number of
iterations nitermax, the current time step is repeated using a
halved time step size. The values of ninf , nsup , r1, r2 and
nitermax are chosen empirically and are fixed for the entire
simulation. To avoid abrupt and dramatic changes in the
time step size, the values ninf = 4, nsup = 8, r1 = 1.10, r2 =
0.80 and nitermax = 20 used by D’Haese et al. [2007] were
found appropriate for all simulations performed in this work.

3.2. Scheme 2: The Iterative Scheme With Time
Stepping Based on Local Error Control

[19] In this scheme, iterations between the transport and
the flow equations are performed until the convergence of
the nonlinear solver (i.e., criterion (9) is met). Then, the
temporal truncation error is calculated to control the fol-
lowing time step size.
[20] Diersch [1988] and Diersch and Kolditz [1998]

developed an adaptive predictor‐corrector one‐step New-
ton scheme where the size of the time step is automatically
varied according to the local time truncation error. Sloan and
Abbo [1999] and Kavetski et al. [2001, 2002] evaluated the
local time truncation error by comparing two approximations
of adjacent order of accuracy. The first‐order Taylor series
expansion gives

Cnþ1
��
ð1Þ � Cn þDtnþ1 _Cn ð10Þ

where _Cn indicates time derivatives. The second‐order
approximation can be obtained by

Cnþ1
��
ð2Þ � Cn þDtnþ1 _Cnþ Dtnþ1ð Þ2

2
€Cn

� Cn þ 1

2
Dtnþ1 _Cn þ _Cnþ1

� � ð11Þ

where €Cn, the second order time derivatives is obtained by
taking the derivative of equation (10). The difference between
the previous approximations gives an estimation of the
truncation error [Sloan and Abbo, 1999, Kavetski et al.,
2002]:
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where _Cn+1 and _Cn are evaluated using the concentrations at
previous times, yielding

enþ1 � 1

2
Cnþ1 � Cn þDtnþ1

Dtn
Cn � Cn�1
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Note that the same truncation error can be obtained from the
predictor‐corrector scheme of Diersch [1988] and Diersch
and Kolditz [1998] if we consider that the predicted con-

centrations are Cn + Dtnþ1

Dtn (C
n − Cn−1) and the corrected con-

centrations are the calculated concentrations Cn+1.
[21] During the simulation the time step is accepted if the

absolute error criterion is verified:

enþ1
�� �� < � ð14Þ

If this criterion is met, the next time step is calculated as in
the work by Kavetski et al. [2001]:

Dtnþ1 ¼ Dtn �min s
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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where the time step size is directly controlled by the tem-
poral truncation error tolerance g. If the error criterion is not
satisfied, the current time step is repeated using the latest
error estimate

Dtnþ1
jþ1 ¼ Dtnþ1

j �max s
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�

max enþ1j j
r
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where j indexes the recursive step size reduction, rmax and
rmin are used to limit multiplication and reduction factors
and often set equal to 2.0 and 0.1 respectively and s = 0.9 a
safety factor [Sloan and Abbo, 1999].

3.3. Scheme 3: The Non Iterative Scheme With Time
Stepping Based on Local Error Control

[22] In this scheme, iterations between flow and transport
equations are avoided by using the velocity at the old time
level qn in the transport equation (6). As previously, the time
step size is adaptively adjusted according to the local time
truncation error.

4. Numerical Experiments

[23] To compare efficiency and accuracy of the three
schemes, we simulate the Elder problem on a PC with an
Intel 2.6 GHz processor. It is a free convection problem
where flow is driven purely by fluid density differences in a
2D domain of 600m × 150m. The problem involves total
density variations of 20% which makes it a strongly coupled
flow case. The viscosity is assumed to be constant. The
problem being symmetrical at x = 300 m, only one half of
the domain is simulated. The parameters, initial and
boundary conditions for the problem are given in Table 1.
The usual boundary conditions are used to compare our
results with previous works, although the flow boundary
conditions are not consistent with the transport boundary
conditions [Hidalgo et al., 2009].
[24] The Elder test is simulated with the three described

time stepping schemes to study the effect of temporal
truncation errors on the numerical results. A triangular mesh
of 16384 triangles (128 × 64 × 2) is used for the simulation
of the half domain. The orientation of the diagonals is
optimized to avoid a non symmetric mesh and possible
effects on the numerical results [Boufadel et al., 1999]. The
discussion of the results is based not only on the mass
fraction distribution, but also on the time step length, the
total number of iterations, and the CPU time which are
summarized in Table 2. The discussion of the existence of
central upwelling or downwelling flow is still open for the
Elder problem [Woods and Carey, 2007]. However, most of
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the published results show an central upwelling flow for this
level of mesh refinement [Ackerer et al., 1999; Ackerer and
Younes, 2008; Boufadel et al., 1999; Oltean and Buès, 2001;
Kolditz et al., 1998; Oldenburg and Pruess, 1995] although
central downwelling flow has been obtained for similar or
even finer meshes [Diersch and Kolditz, 2002; Frolkovic
and de Schepper, 2000].
[25] A reference simulation was run with the iterative

scheme and a constant time stepDt = 0.1 day. This time step
is very small compared to simulations performed with con-
stant time steps in the literature (Dt = 1 /40 year [Frolkovic
and De Schepper, 2000; Woods and Carey, 2007] and Dt =
1/12 year [Voss and Souza, 1987; Boufadel et al., 1999;
Prasad and Simmons, 2005]). The stopping criterion is set to
tC = 10−3. Results at 20 years simulation time are plotted in
Figure 1 and show a central upwelling. During the simulation,
convergence is often reached within one iteration per time
step. The whole simulation requires more than 73000 flow‐
transport solutions and spends more than 50000s of CPU time
(Table 2). For the used spatial discretization, this solution is
considered as the reference.
[26] A first set of simulations was run with the iterative

scheme and empirical time stepping (scheme 1) using an
initial time step of 0.1 day and the heuristic rules defined
previously. Additional simulations were run with different
values of the parameters involved in the heuristic rules
without significant differences in the results. For example,
the simulation with r1 = 1.30 instead of 1.10 gives the same
results and the total CPU time is varied by less than 5%.
[27] Three simulations were performed with the following

stopping criteria tC = 10−3, tC = 10−5 and tC = 10−7 and the
corresponding results are given in Figure 2 and Table 2. A
central downwelling flow is found with both stopping cri-

teria tC = 10−3 and tC = 10−5. Small differences can be
observed between the contour plots (see contour 0.2 in
Figure 2). The time step size increases from the initial value
0.1 day to reach 261 days and 53 days respectively at the
end of the simulation. During the period between 500 days
and 1500 days of simulation time, the time step length is
about 20 days for tC = 10−3 and 7 days for tC = 10−5. The
whole simulation with tC = 10−5 requires 2.5 times more
CPU time than with tC = 10−3 (Table 2). Figure 2 shows
that the truncation error defined by equation (13) can be
quite high (maximum value around 0.05) for tC = 10−3. This
truncation error remains important (maximum value around
0.005) with the small convergence criterion tC = 10−5.
[28] Contrarily to the previous simulations, the results

with the smallest stopping criterion tC = 10−7 show a central
upwelling flow at 20 years simulation time (Figure 2) which
is consistent with the reference solution. The time step size
is around 1.8 days for the period 500–1500 days, it reaches a
maximum value of 15 days at the end of the simulation. In
this case, the convergence criterion is very small, thus small
time steps are required and therefore the temporal truncation
error remains below 10−3 (Figure 2). The total CPU time for
the simulation is more than 6 times more important than
with tC = 10−3 (Table 2).
[29] The second set of simulations is performed with

scheme 2. The convergence criterion is set to tC = 10−3 and
the time step size selection is based on the temporal trun-
cation error which was fixed to g = 10−3 [Diersch and
Kolditz, 1998] and g = 10−4. The results show a central
upwelling at 20 years simulation time (Figure 3) and no
significant differences can be observed between the two
mass fraction distributions. The time step size increases to
reach a maximum value of 171 days for g = 10−3 and 51
days for g = 10−4. The whole simulation with g = 10−4

requires the double of the CPU time used with g = 10−3

(Table 2).
[30] Recall that the results of scheme 1 with both con-

vergence criteria tC = 10−3 and tC = 10−5 show a central
downwelling flow. Figure 3 shows that when the temporal
truncation error is fixed to g = 10−3 in addition to the
convergence criterion of tC = 10−3, the solution shows a
central upwelling, consistent with the reference solution.
Moreover, the total CPU time as well as the maximum time
step length with scheme 1 and tC = 10−5 are very close the
values obtained with scheme 2 using tC = 10−3 and g = 10−4

Table 1. Parameters and Boundary Conditions for the Elder
Problem

Parameter or Condition Value

Permeability kx = kz = 4.845 10−13 m2

Porosity " = 0.1
Dispersivity aL = aT = 0 m
Molecular diffusion coefficient Dm = 3.565 10−6 m2/s
Dynamic viscosity m = 10−3kg/m/s
State equation r = r0 + 200 C kg/m3

Initial conditions h(x,z) = 0 m, (x,z) 2[0,300 m] × [0,150 m]
C(x,z) = 0, (x,z) 2 [0,300 m] × [0,150 m]

Boundary conditions h(x,z) = 0 m, x 2 [0,1 m], z = 150 m
rh = 0, elsewhere

C(x,z) = 1, x 2 [150 m, 300 m], z = 150 m
C(x,z) = 0, x 2 [0,300 m], z = 0 m

zero concentration gradient elsewhere

Table 2. Summary of Numerical Indicators for the Simulations

tC (−) g (−)
Dtmax

(d)
Number of
Iterations

CPU Time
(s)

Constant Dt 10−3 ‐ 0.1 73352 52000
Scheme 1 10−3 ‐ 261 800 1680

10−5 ‐ 53 4000 3942
10−7 ‐ 15 13700 10901

Scheme 2 10−3 10−3 171 1709 1966
10−3 10−4 51 4792 3882

Scheme 3 ‐ 10−3 160 694 778

Figure 1. Concentration contours (at t = 20 years) with
the iterative scheme and a constant time step of 0.1 day
(tC = 10−3).
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(Table 2) but the results are completely different. Therefore,
the results for these simulations are more sensitive to trun-
cation errors than to convergence errors.
[31] Finally, the simulation is performed with scheme 3,

i.e., without any control on the convergence error. In this
case, the velocity at the old time level is used for the
transport equation. Therefore, iterations between the flow
and the transport equations are not necessary. The time step
size selection is based on the temporal truncation error with
a tolerance g = 10−3. As before, the results show a central
upwelling at 20 years simulation time and the time step size
increases to reach a maximum value of 160 days (Figure 4).
[32] This scheme is the most efficient (Table 2) and the

results are consistent with the reference solution. The number

of flow‐transport solutions is reduced because iterations are
avoided and the time step is automatically varied according to
the local time truncation error.

5. Conclusion

[33] Modeling flow and mass (or heat) transport in porous
media may require a lot of CPU time due to the strongly
coupled partial differential equations. Time stepping schemes
are used to optimize the time step size and therefore, to
reduce the computational cost. The empirical procedure
based on the number of iterations required to achieve con-
vergence is generally used. This procedure was compared to
a procedure where the time step size selection is based on
the temporal truncation error control.

Figure 3. (top) Contour plots and evolution of the time step length and the numerical errors for scheme
2 for (middle) gC = 10−3 and (bottom)gC = 10−4.
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[34] Numerical experiments show the following.
[35] 1. With the empirical scheme, the temporal truncation

error may remain important which can lead to inaccurate
results.
[36] 2. A non iterative scheme with proper time man-

agement can be faster and can lead to more accurate solution
than the standard iterative procedure with the empirical time
stepping.
[37] 3. The Elder test case is very sensitive. Time step

discretization and management can have a significant effect
on the results. The temporal truncation error can be con-
sidered as one of the reasons for the differences observed in
Elder numerical results.
[38] The provided simulations show that error‐controlled

time stepping strategies are useful and should be considered
as a leading option for solving density‐driven flow problems.
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