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[1] Mixed finite elements are a numerical method becom-
ing more and more popular in geosciences. This method is
well suited for solving elliptic and parabolic partial differential
equations, which are the mathematical representation of
many problems, for instance, flow in porous media, diffusion/
dispersion of solutes, and heat transfer, among others.
Mixed finite elements combine the advantages of finite ele-
ments by handling complex geometry domains with unstruc-
tured meshes and full tensor coefficients and advantages of
finite volumes by ensuring mass conservation at the element

level. In this work, a physically based presentation of mixed
finite elements is given, and the main approximations or re-
formulations made to improve the efficiency of the method
are detailed. These approximations or reformulations exhibit
links with other numerical methods (nonconforming finite
elements, finite differences, finite volumes, and multipoint
flux methods). Some improvements of the mixed finite ele-
ment method are suggested, especially to avoid oscillations
for transient simulations and distorted quadrangular grids.

Citation: Younes, A., P. Ackerer, and F. Delay (2010), Mixed finite elements for solving 2‐D diffusion‐type equations,
Rev. Geophys., 48, RG1004, doi:10.1029/2008RG000277.

1. INTRODUCTION

[2] We consider the numerical solution of the following
2‐D diffusion‐type partial differential equations (PDEs):

c
@h

@t
þr � q ¼ f in �; ð1Þ

q ¼ �Krh; ð2Þ

h ¼ hD on @�D;

K
@h

@n
¼ g on @�N ;

where W is a bounded polygonal open set of R2, ∂WD and
∂WN are partitions of the boundary ∂W of W corresponding to
Dirichlet and Neumann conditions, and n is the unit outward
vector normal to the boundary ∂W.
[3] The system of PDEs (1) and (2) and its associated

boundary conditions are a very common mathematical
model in geosciences. Equation (1) states the conservation
principle, and (2) is a constitutive law like Fourier’s law,

Fick’s law, Ohm’s law, or Darcy’s law. In the context of
flow in porous media considered in this paper, the state
variable h corresponds to the pressure head (L), K is the
symmetric positive definite conductivity tensor (L T −1), c is
the storage coefficient (L−1), and f is the sink/source term
(T −1). The components ofK are assumed to be bounded, but
K may be highly anisotropic and/or discontinuous. Indeed,
full parameter tensors often appear for flow in natural
porous media when the orientation of the calculation grid
does not match up eventual anisotropic features of the
geological settings.
[4] A standard way to solve the system (1) and (2) is to

substitute Darcy’s equation (2) in the mass conservation
equation (1) and then solve the resulting form with the
standard finite element method. However, this approach
yields fluid fluxes with discontinuous normal components
across interfaces between adjacent elements. In the presence
of a heterogeneous permeability field, these discrepancies
result in inaccurate fluid velocities [Durlofsky, 1994],
which, in turn, lead to inaccurate characterization of the fate
of chemical species [Dawson, 1999]. Note, however, that
postprocessing techniques can be employed to enhance the
velocity field approximation [Cordes and Kinzelbach, 1992;
Loula et al., 1995; Hughes et al., 2000; Correa and Loula,
2007].
[5] The system (1) and (2) can also be solved with stan-

dard finite volume methods. However, standard finite
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volumes can generate significant errors when applied to
unstructured grids and/or in the presence of full‐tensor
coefficients [Chen et al., 2008;Wu and Parashkevov, 2005].
[6] The mixed finite element (MFE) method [Raviart and

Thomas, 1977; Brezzi et al., 1985; Chavent and Jaffré,
1986; Brezzi and Fortin, 1991] is an alternative method
which combines the advantages of finite volumes and finite
elements: (1) The method is locally conservative at the
element level: the sum of the fluxes over all edges of each
cell discretizing the domain equals the accumulation term
plus any sources or sinks in the cell. (2) The fluxes are
continuous between adjacent cells. (3) Unstructured grids
can be handled. (4) Anisotropic discontinuous conductivity
tensors are treated in a consistent way, like with finite ele-
ments. Note that recently, other conservative numerical
methods for flow in porous media have been developed
[Edwards, 2002], such as the control volume mixed finite
element method [Cai et al., 1997; Klausen and Russell,
2005], the support operator method [Hyman et al., 1997;
Berndt et al., 2001], the multipoint flux approximation
method [Aavatsmark et al., 1994; Edwards and Rogers,
1994, 1998; Aavatsmark, 2002], and the mimetic finite
difference method [Kuznetsov et al., 2004; Brezzi et al.,
2005a, 2005b; Lipnikov et al., 2006].
[7] The original idea for MFEs emanated from structural

mechanics [Herrman, 1967]. Since then, it has been devel-
oped for a wide variety of fields including Stokes’s problems
[Girault and Raviart, 1986], flow in porous media [Chavent
and Jaffré, 1986], and electromagnetism [Nédélec, 1980;
Bossavit, 1988]. The method has been extensively employed
during the last 20 years [e.g., Darlow et al., 1984; Brezzi
and Fortin, 1991; Bergamaschi et al., 1994; Mosé et al.,
1994; Ackerer et al., 1999; Younes et al., 1999a; Chavent
et al., 2003; Arbogast and Boyd, 2006].
[8] In the field of water resources, applicability and worth

of MFEs were shown for a wide range of problems,
including steady state [Arbogast et al., 1997; Chavent and
Roberts, 1991; Durlofsky, 1994; James and Graham,
1999] and transient [Chavent and Roberts, 1991; Ackerer
et al., 1999; Younes et al., 1999a] single‐phase flow, flow
in unsaturated media [Farthing et al., 2003], multiphase
flow [Chen and Ewing, 1997; Dawson et al., 1998;
Bergamaschi and Putti, 1999; Huber and Helmig, 1999;
Nayagum et al., 2004; Hoteit and Firoozabadi, 2008], flow
with heat transfer [Chounet et al., 1999; Holstad, 2001],
multiphase flow in fractured media [Hoteit and Firoozabadi,
2005, 2008], and numerical upscaling [Durlofsky, 1998; Ma
et al., 2006]. The MFE method was also successfully used
to obtain a locally mass conservative multiscale approach.
The developments are deeply documented by, e.g., Arbogast
[2000, 2002, 2004], Arbogast and Boyd [2006], Chen and
Hou [2002], Aarnes [2004], Aarnes et al. [2005], Kippe et
al. [2008], and Juanes and Dub [2008].
[9] Basically, MFEs simultaneously solve both pressure

head and velocity fields by representing each unknown with
its own space of basis functions. Therefore, the velocity
field is directly approximated by the basis functions of finite
elements, which can be much more accurate than solving for

the heads first and then getting velocity by local numerical
evaluations of K · rh [Ewing and Heinemann, 1983].
[10] From a mathematical standpoint, the MFE method is

reputed to be superconvergent for both velocity and pressure
head when smooth permeability fields and smooth grids are
used [Wang and Mathew, 1994; Ewing et al., 1999]. In
heterogeneous media, the MFE velocities are substantially
more accurate than those obtained with standard methods
[Chavent et al., 1984; Durlofsky, 1994; Mosé et al., 1994;
Ackerer et al., 1996]. The merits of MFEs were proved by
comparisons with conforming finite element [Mosé et al.,
1994; Huber and Helmig, 1999] and control volume finite
element discretizations [Durlofsky, 1994]. Specifically,
Durlofsky [1994] showed the accuracy of fluid velocities
and related quantities (stream function and flux) from MFEs
compared with control volume finite element methods. He
showed that MFEs provided more accurate solutions for
total flux and stream function, for the same amount of
computational effort, than the control volume finite element
method. Matringe et al. [2006] also pointed out reliability
and worth of MFEs for streamline tracing as the conse-
quence of the rigorous approximation of the velocity field.
[11] The MFE method requires more unknowns than

standard finite elements or finite volumes. As reported in the
ongoing literature, many authors have tried to reduce the
number of unknowns of MFEs to decrease computation
times. These manipulations revealed links and similarities
between MFE and finite volume methods [e.g., Russell and
Wheeler, 1983; Baranger et al., 1994; Arbogast et al., 1997;
Younes et al., 1999b; Cai et al., 2003].
[12] In this work, we focus on 2‐D problems with

unstructured triangular and quadrangular grids. In section 2,
we give a physically based presentation of the MFE method
and its hybridization. Developments are provided for lowest‐
order mixed methods of Raviart and Thomas [1977]
(Raviart‐Thomas elements of zero order (RT0)) and Brezzi
et al. [1985] (Brezzi‐Douglas‐Marini elements of first
order (BDM1)) since these methods are frequently used for
practical applications. Alternative formulations developed to
reduce the number of unknowns are described in section 3,
and relationships with other methods like finite volumes or
multipoint flux approximations are shown in section 4.
Section 5 discusses the behavior of MFE solutions for
steady state problems with heterogeneous and anisotropic
diffusion tensors. Some improvements for transient simu-
lations and for distorted quadrangular grids are also pro-
posed to improve stability of the MFE method. Finally,
streamline tracing with both RT0 and BDM1 is discussed in
section 6.

2. GENERAL FORMULATION OF THE MIXED AND
MIXED HYBRID FINITE ELEMENT METHOD

[13] MFEs and the hybridized form (mixed hybrid finite
element (MHFE) methods) are presented separately. This
deliberate choice is made for the sole purpose of clearly
describing two main ways of writing the discrete equations
of the same problem. Though these writings have some
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incidence on numerical resolutions, from a formal stand-
point MFEs and MHFEs are equivalent.

2.1. Standard Mixed Finite Element Method
[14] In this section, formalisms for both RT0 and BDM1

are developed over unstructured 2‐D triangular and qua-
drangular meshes. The standard formulations of RT0 and
BDM1 lead to poorly conditioned symmetric indefinite
linear systems, particularly for steady state conditions
[Golub and Van Loan, 1989; Brezzi and Fortin, 1991]. This
prevents the use of efficient iterative solvers based on
conjugate gradient methods. To make this point clear and
also to illustrate how the standard MFE method works, the
developments in sections 2.1.1–2.1.3 are limited to the
standard RT0 formulation for the elliptic case (c = 0 in (1))
over a rectangular meshing. Note, however, that the method
can also be applied to the transient case (c ≠ 0 in (1)) and
over elements of various shapes. With regard to its phi-
losophy, the presentation of the MFE method detailed in
sections 2.1.1–2.1.3 is similar to the physically based
developments proposed by Chavent and Roberts [1991].
2.1.1. Approximation Spaces
[15] With MFEs, mass conservation (1) and Darcy’s law

(2) are approximated individually. With RT0, the pressure
head is considered to be piecewise constant over each ele-
ment. The velocity components are attached to the edges of
the elements and are considered to be piecewise linear:

h ¼
XNe
E¼1

hE�E ; ð3Þ

q ¼
XNed
i¼1

Qiwi x; yð Þ; ð4Þ

where Ne is the total number of elements, Ned is the total
number of element edges, and GE = 1 over element E and 0
elsewhere. Qi are the degrees of freedom of the velocity,
which correspond to the fluxes across the edges (the zero‐
order moment of the normal flux). Because the degrees of
freedom are shared between two adjacent elements, they
must be defined with the same orientation. It is therefore

convenient to orientate nj, the vector normal to the edge j,
along x positive for vertical edges and along y positive for
horizontal edges (Figure 1).
[16] The velocity in (4) is approximated by using vector

basis functions wi (x, y), i.e., vectors of the RT0 space
[Raviart and Thomas, 1977; Thomas, 1977] which verify on
the edge j: Z

j

wi � nj ¼ �ij j ¼ 1; . . . ;Ned; ð5Þ

where dij is the Kronecker symbol (dij = 1 for j = i and dij = 0
otherwise). Equation (5) implies that the basis function wi

has a continuous normal component at the edge i and is
nonzero only over the two elements E and E′ sharing i.
[17] For example, a vertical edge i shared by two elements

E and E′ has its corresponding vector basis function wi given
by (see Figure 2)

wi ¼

wE;i ¼ 1

Ej j
x� xi�1

0

0@ 1A on E

wE 0 ;i ¼ 1

E 0j j
xiþ1 � x

0

0@ 1A onE 0

0 elsewhere;

8>>>>>>>>><>>>>>>>>>:
ð6Þ

where jEj and jE′j are the areas of elements E and E′,
respectively.
2.1.2. Discretization of Darcy’s Law and the Mass
Balance Equation
[18] Darcy’s law (2) can be rewritten in the form K−1q +

rh = 0 and expressed in a variational form like with finite
elements. This leads toZ

�

K�1qwi þ
Z
�

rhwi ¼ 0: ð7Þ

Integrating by parts the second term of (7) and using (3) and
(4) gives

XNed
j¼1

Qj

Z
�

K�1 wj

� �
wi �

XNe
E¼1

hE

Z
�

rwi GE þ hD

Z
@�D

wi n@�D ¼ 0:

ð8Þ

Figure 1. Flux orientations and edge numbering for a rect-
angular element.

Figure 2. The vector basis function wi for a vertical edge
separating two adjacent elements E and E′.
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[19] This equation is written for all the edges inside the
domain (thus separating adjacent elements) and for bound-
ary edges with a prescribed Dirichlet condition (where the
head is fixed to hD). For an interior edge, wi is nonzero only
over E and E′, and equation (8) becomes

X4
j¼1

BE;ij Q@E;j þ
X4
j¼1

B@E 0;ij; Q@E 0;j ¼ hE � hE 0 ; ð9Þ

where Q∂E,j (j = 1…4) are local fluxes at the edges of the
element E. Links between local and global numbering are
based on the convention of Figure 1. For example, in the
case depicted by Figure 2, the flux Qi of the global num-
bering represents local fluxes Q∂E,1 and Q∂E′,2. A local
matrix BE = [BE,ij] of dimension 4 × 4 is introduced in (9)
and defined by

BE;ij ¼
Z
E

K�1
E wj

� �
w�; ð10Þ

where KE is the tensor of hydraulic conductivity in E.
[20] By using local coordinates x2 [0,Dx] and y2 [0,Dy],

the four local vector basis functions in the case of a rect-
angular element E can be written as

wE;1 ¼ 1

�x�y

x

0

0@ 1A;

wE;2 ¼ 1

�x�y

�x� x

0

0@ 1A;

wE;3 ¼ 1

�x�y

0

y

0@ 1A;

wE;4 ¼ 1

�x�y

0

�y� y

0@ 1A:

ð11Þ

Considering here for the sake of simplicity that KE =
KE;x 0

0 KE;y

24 35, the local matrix BE can be evaluated exactly:

BE ¼ 1

6

2&E; x &E; x 0 0

&E; x 2&E; x 0 0

0 0 2&E; y &E; y

0 0 &E; y 2&E; y

0BBBBBBBB@

1CCCCCCCCA
; ð12Þ

where &E,x = (1/KE,x)(Dx/Dy) and &E,y = (1/KE,y)(Dy/Dx).
For the elliptic case (c =0), and by using GE as test functions,
the variational formulation of the mass conservation
equation (1) gives (remember that GE = 1 over E and 0
elsewhere)Z
�

rq�E ¼
XNed
i¼1

Qi

Z
�

rwið Þ�E ¼
X4
j¼1

Q@E; j

Z
E

rwE; j

¼
Z
�

f �E ¼ QE;S ; ð13Þ

where QE,S is the sink/source term over the element E.
According to (11), equation (13) yields

Q@E;1 � Q@E;2 þ Q@E;3 � Q@E;4 ¼ QE;S : ð14Þ

Neumann boundary conditions are added at this level; if a
prescribed flux is assigned to the edge i of E, the cor-
responding flux Q∂E,i is replaced by the prescribed value.
2.1.3. Final System
[21] The final system with the standard MFE is given by

writing equation (9) for all interior and Dirichlet edges and
equation (14) for all elements. With fluxes across edges and
pressure head at elements as unknowns, the system has the
following form:

MB �MT
A

MA 0

0@ 1A Q

h

0@ 1A ¼
Rh

RQ

0@ 1A; ð15Þ

where Q and h are vectors of flux and head unknowns,
respectively. Rh (enclosing Dirichlet boundary conditions)
and RQ (enclosing sink‐source terms and Neumann
boundary conditions) are the so‐called residual vectors of
Darcy’s and mass balance equations.
[22] The linear system (15) involves a large number of

unknowns (Ne + Ned). In addition, for steady state condi-
tions, the system (15) is symmetric but not positive definite,
which makes it difficult to handle with powerful iterative
solvers based on conjugate gradients [Golub and Van Loan,
1989; Brezzi and Fortin, 1991; Bergamaschi and Putti,
1999].
[23] An improvement can be made provided that MB is

easily inverted. In this case, Q can be eliminated from (15),
and a positive definite system, also called the Schur com-
plement form, is written as

MAM
�1
B MT

Ah ¼ RQ �MAM
�1
B Rh: ð16Þ

[24] This equation is advantageous in that it both reduces
the number of calculated unknowns and turns the indefinite
system (15) into a symmetric and positive definite system
(16). The main difficulty is that in general, MB

−1 is not
computable (from a practical point of view) in an explicit
way [Brezzi et al., 2004]. Several techniques have been
proposed in the literature to overcome this problem of
poorly conditioned systems resulting from MFEs. Among
theses approaches, the hybrid [Roberts and Thomas, 1989],
the Uzawa [Quarteroni and Valli, 1994; Bergamaschi et al.,
1994], and the augmented Lagrangian [Glowinski and Le
Tallec, 1989] techniques can be pointed out. The Uzawa
method can be hampered by the large memory requirements
of the algebraic solver, and the convergence properties of
the augmented Lagrangian method strongly depend on a
penalization parameter, whose optimal value may be diffi-
cult to evaluate [Bergamaschi et al., 1994]. Note that Aarnes
et al. [2005] obtained a system similar to (15) with the
mixed multiscale finite element method that they solve via a
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reduction to three symmetric and positive definite systems.
Powell [2005] solved the indefinite system (15) by using the
Krylov subspace minimal residual (MINRES) method
[Paige and Saunders, 1975] with a suitable block‐diagonal
preconditioner and multigrid techniques [Arnold et al.,
1997]. Finally, the so‐called hybrid technique remains the
most widely used approach. It allows us to seek the solution
of a symmetric positive definite system with a smaller
number of unknowns than the original system (15).

2.2. Mixed Hybrid Finite Element Method for General
Grids
[25] The idea of hybridization was raised and first used by

Fraeijs de Veubeke and Hugge [1972] in order to simplify
the linear system (15) resulting from the conventional
MFEs. A first request for hybridization is to make the vector
basis functions of the velocity interpolation nonnull only
inside a single element E. The fluxes are counted positive
outward. For example, the RT0 vectors of rectangles given
in expression (6) become

wi ¼
wi ¼ 1

Ej j
x� xi�1

0

0@ 1A on E

0 elsewhere:

8>><>>: ð17Þ

Therefore, all integrals reduce from the whole domain W to
the element level E since both velocity and pressure head are
approximated with basis functions that are nonzero inside
the element E only.
[26] Then, new variables corresponding to the pressure

head at the edges of an element are defined, and the fluxes
are indirectly coupled by an explicit extra set of constraints
(continuity of fluxes and heads along interfaces between
elements). The hybrid formulation leads to a symmetric
positive definite system with a smaller number of unknowns
than the original problem. The principal stages of hybridization
for both RT0 and BDM1 are detailed in sections 2.2.1–2.2.3
for general triangular and quadrangular shaped meshes.
2.2.1. Approximation Spaces
[27] For general triangular and quadrangular grids, vector

basis functions are defined over a reference element Ê which
can be transformed and exported toward the physical space
(and real grid) by mapping. The mapping F = FE : Ê → E is
linear for any triangular element E but nonlinear for any
quadrangular element E. The mapping is detailed in
Appendix A for both cases. Note that vectors are trans-
formed from the reference space to the physical one via the
Piola transform [Brezzi and Fortin, 1991]; namely, the
vector basis function in the physical space wE,i

RT0 is related to
the vector basis function ŵi

RT0 in the reference space by

wRT0
E;i ¼ 1

det Jð Þ JbwRT0
E;i ; ð18Þ

where J is the Jacobian matrix (with components ∂xi/∂x̂j)
and det(J) is its determinant. This transformation preserves

normal components, i.e., fluxes (see Brezzi and Fortin [1991]
for details):

Q@E;i ¼
Z
@Ei

qnEi
¼
Z
b@Ei

bqbn@Ei ; ð19Þ

where n∂Ei
is the unit outward normal vector, which implies

that Q∂E,i is positive for outflow.
2.2.1.1. Lowest‐Order Raviart‐Thomas Space
[28] With RT0, pressure heads and fluxes are constant

along the edge of an element. The velocity q over E is
approximated by

qE ¼
XNedE
i¼1

Q@E;iwRT0
E;i ; ð20Þ

where wE,i
RT0 is the RT0 basis function, Q∂E,i is the flux

through the edge i assumed to be constant along the edge,
and NedE is the number of edges of E. The vector basis
functions are defined in the reference element and have
the following general form (see Figure 3 for the local
numbering):

bwRT0
E;i ¼

aRT0i þ bRT0i x̂

cRT0i þ dRT0i ŷ

0@ 1A for i ¼ 1; . . . ;NedE; ð21Þ

where bx and by are the coordinates on the reference ele-
ment and NedE is the number of edges. For a triangular
element, we also have di

RT0 = bi
RT0.

[29] The constants ai
RT0, bi

RT0, ci
RT0, and di

RT0 in (21) are
obtained by using a property of the vector basis functions
stating that for each edge k of E with a unit outward normal
vector n∂Ek

, we haveZ
@Ek

bwRT0
E;i � n@Ek ¼ �ik for k ¼ 1; . . . ;NedE: ð22Þ

The analytical expressions of these functions and Figure B1,
which sketches their value within the element E, are pro-
vided in Appendix B.
2.2.1.2. Brezzi‐Douglas‐Marini Space of First Order
[30] With BDM1, it is postulated that the normal velocity

may vary linearly along each edge. Therefore, the velocity
inside the element is approximated by

qE ¼
XNedE
i¼1

X2
j¼1

Q@E;i;jw BDM1
E;i;j ; ð23Þ

where edges are indexed by i and the additional index j ( j =
1, 2) denotes the two degrees of freedom Q∂E,i,j per edge
needed to describe the linear variation of the flux along the
edge. Generally, these degrees of freedom are the zero
and the first moments of the normal velocity along each
edge i of E. They are defined by (1/j∂Eij)

R
@Ei

qE · n∂Ei
dℓ

and (1/∣∂Ei∣)
R
@Ei

qE · n∂Ei
ℓdℓ, where j∂Eij represents the

length of the edge ∂Ei [Beckie et al., 1993; Bergamaschi
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et al., 1994]. These degrees of freedom can also be the
values of qE · n∂Ei

at two different points located anywhere
on the edge. In this work, as in the works by Wheeler and
Yotov [2006a] or Brezzi et al. [2004], the locations of
these two points are chosen at the end points of the edge (see
Figure 3).
[31] For a triangular element, the vector basis functions in

the reference element have the following form:

bwBDM1
E;i;j ¼

aBDM1
i;j þ bBDM1

i;j x̂þ cBDM1
i;j ŷ

dBDM1
i;j þ eBDM1

i;j x̂þ f BDM1
i;j ŷ

0B@
1CA

for i ¼ 1; . . . ; 3 and j ¼ 1; . . . ; 2; ð24Þ

whereas these basis functions in a quadrangular element are
written as

bwBDM1
E;i;j ¼

aBDM1
i;j þ bBDM1

i;j x̂þ cBDM1
i;j ŷþ dBDM1

i;j x̂2 þ 2eBDM1
i;j x̂ŷ

f BDM1
i;j þ gBDM1

i;j x̂þ hBDM1
i;j ŷ� 2dBDM1

i;j x̂ŷ� eBDM1
i;j ŷ2

0@ 1A
for i ¼ 1; . . . ; 4 and j ¼ 1; . . . ; 2: ð25Þ

The scalar coefficients in (24) and (25) are obtained by
writing

bwBDM1
E;i;j rlkð Þn@El ¼

2

@Elj j �il�jk for l ¼ 1; . . . ;NedE and k ¼ 1; 2:

ð26Þ

The meaning of (26) is that for a given bwE,i,j
BDM1, for all edges

l of E formed by the two end points rlk (k = 1, 2), and for a

normal vector n∂El
, the value of bwE,i,j

BDM1 nEl
at the point rlk is

nonnull only if l = i and k = j. The analytical expressions of
these functions and Figure B1, which sketches their value
within the element E, are reported in Appendix B.
2.2.2. Discretization With the MHFE Formulation
[32] For RT0, the head is assumed constant along the

edge, denoted Th∂E,i, and corresponds to the average head
value on the edge i of E. For BDM1, the head is linear along
the edge, with two degrees of freedom, Th∂E,i,1 and Th∂E,i,2,
corresponding to head values at two points of the edge i
(these points are not necessarily the same as that for fluxes
across the edge). Since the mathematical developments are
quite similar for both basis functions RT0 and BDM1 (wE,i

RT0

is replaced by wE,i,j
BDM1), the hybridization is only detailed

below for RT0 functions.
[33] The variational formulation of Darcy’s law (K−1q =

−rh) is written by using the vector basis functions wE,i
RT0 as

test functions:Z
E

K�1qEw
RT0
E;i ¼ �

Z
E

rhwRT0
E;i

¼
Z
E

hrwRT0
E;i �

XNedE
k¼1

Z
@Ek

hwRT0
E;i n@Ek : ð27Þ

Using property (22) of the basis functions allows us to
rewrite (27) as Z

E

K�1qEw
RT0
E;i ¼ hE � Th@E;i; ð28Þ

Figure 3. Definition of the unknowns and indexes of edges, vertices, and basis functions. For RT0 basis
functions, flux and head values are averaged over the edge. For BDM1 functions, flux and head values
correspond to local point values.
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where hE is the average head in the element and Th∂E,i is
the average head on edge ∂Ei. Using the approximation (20)
for the velocity over the element E leads to

XNedE
k¼1

BE;i;kQ@E;k ¼ hE � Th@E;i; ð29Þ

where the elemental matrix BE = [BE,i,k] of dimension
NedE × NedE is defined by

BE;i;k ¼
Z
E

wRT0;T
E;i K�1wRT0

E;k : ð30Þ

This matrix BE is symmetric and positive definite.
Equation (29) can be rewritten to express each flux
through edge ∂Ei as

Q@E;i ¼
XNedE
k¼1

B�1
E;i;k hE � Th@E;k
� �

: ð31Þ

[34] The mass balance equation (1) is discretized by using
a finite volume formulation in space and a first‐order finite
difference in time:

cE Ej j h
nþ1
E � hnE
�t

þ
XNedE
i¼1

Q@E;i ¼ Ej j fE ¼ QE;s; ð32Þ

where cE and fE are the mean values over the element E of the
storage coefficient c and the sink/source term f, respectively.
Combining (31) and (32) yields

hnþ1
E ¼

XNedE
i¼1

�E; i

�E
Thnþ1

@E;i þ
�E

�E
hnE þ QE;s

�E
; ð33Þ

where lE = cE Ej j
�t ; aE,i =

PNedE
j¼1

BE,ij
−1 , aE =

PNedE
i¼1

aE,i, and bE =
(lE + aE).
[35] Finally, the expression of fluxes through the edges of

the element E is obtained by substituting (33) in (31),
yielding

Qnþ1
@E;i ¼

XNedE
j¼1

NE;ijTh
nþ1
@E;j þ Fn

E;i; ð34Þ

where

NE;ij ¼ �E;i�E;j

�E
� B�1

E;ij; ð35Þ

Fn
E;i ¼ �E

�E;i

�E
hnE þ �E;i

�E
QE;s: ð36Þ

Equation (34) is used to form the final system of equations
handling the mean pressure head on edges as scalar
unknowns (Th∂E,i, i = 1, …, Nf, where Nf is the total number
of edges in the meshing of the domain minus the number of
edges assigned to Dirichlet boundary conditions). This final
system is built by using continuity properties for all interior
edges. The continuity of both the head and the normal

component of velocity at the edge between two adjacent
elements E and E′ is written as

Th@E;i ¼ Th@E 0;j;

Q@E;i þ Q@E 0;j ¼ 0;
ð37Þ

where i and j are the local numbering of the same edge. The
fluxes in equation (37) are replaced by their expression in
(34), which leads to an equation with Th∂E,i as unknowns.
Boundary conditions are handled as follows. For an edge
with a Dirichlet condition, i.e., an edge ∂Ei with a prescribed
head Thi

D,

Th@E;i ¼ ThDi : ð38Þ

For an edge ∂Ei with a Neumann boundary condition, it is
stated that

Q@E;i ¼ QN
i ; ð39Þ

where Qi
N is counted positive for outflow.

[36] In the case of BDM1 approximation, the local head
and flux along each edge evolve linearly. If the two degrees
of freedom for head, Th∂E,i,1 and Th∂E,i,2, are chosen at
points located at one third and two thirds of the edge length,
the variational formulation of Darcy’s law is written asZ
E

K�1qEw
BDM1
E;i;j ¼ �

Z
E

rhwBDM1
E;i;j

¼
Z
E

hrwBDM1
E;i;j �

XNedE
k¼1

Z
@Ek

hwBDM1
E;i;j n@Ek

¼ hE � Th@E;i;j: ð40Þ

[37] The further developments are similar to those of RT0
functions with a velocity qE interpolated by using values
Q∂E,i,1 and Q∂E,i,2 as seeds located at end points of each edge
∂Ei (see Figure 3). The elemental matrix BE = [BE,i,j,k,l] is of
dimension (2NedE × 2NedE) with components in the form

BE; i;j;k;l ¼
Z
E

wBDM1;T
E; i;j K�1wBDM1

E; k;l : ð41Þ

2.2.3. Some General Remarks
[38] 1. In the previous developments, the sole requested

local calculation is that of integrals enclosed in the local
matrix BE (30) or (41). Most often, these integrals cannot be
evaluated in the real element, which forces us to resort to the
reference element by using the following transform:

BE; i;k ¼
Z
Ê

bwRT0;T
i

bK�1bwRT0
k ; ð42Þ

where bK−1 = JTK−1J/jJj corresponds to the analog
tensor in the reference element [Marsden and Hughes,
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1983]. The same transformation also applies to the BDM1
formulation (41).
[39] 2. The matrix BE (30) and therefore the matrix NE

(35) cannot be evaluated analytically for general quad-
rangles and requires numerical integration. The matrix
components are evaluated on a square‐shaped reference
element by means of quadrature formulas. However, this
procedure may affect the quality of the results, especially for
distorted meshes and highly anisotropic domains [Younes
and Fontaine, 2008a]. On the other hand, for parallelo-
grams and triangular elements, the Piola transform (18) is
affine, and the determinant of the Jacobian matrix is con-
stant (it does not depend on the coordinates of the refer-
ence space), allowing the matrix NE to be evaluated
analytically.
[40] 3. The size of the system for the RT0 hybrid for-

mulation is equal to the total number of edges excluding
Dirichlet boundaries. The stiffness matrix is symmetric,
positive definite, with a structure of (2 NedE − 1)‐point
stencil. The BDM1 hybrid formulation leads to a system of
size twice the total number of edges inside the domain plus
twice the number of edges with Neumann conditions. The
matrix is also symmetric, positive definite, but with a stencil
of 2(2 NedE − 1).

3. REDUCING THE NUMBER OF UNKNOWNS
BY ALTERNATIVE FORMULATIONS AND
APPROXIMATIONS

3.1. Diagonal Tensor Coefficient
[41] As shown in section 2, the standard RT0 MFE

method requires a lot of unknowns, i.e., the number of edges
(for fluxes) plus the number of elements (for the pressure
head). The hybridization technique reduces the size of the
problem down to, roughly, the number of edges. Many
authors tried to improve this reduction and, in this process,
to find formal links between MFE or MHFE and finite
volume methods [e.g., Russell and Wheeler, 1983; Baranger
et al., 1994; Arbogast et al., 1997; Younes et al., 1999b; Cai
et al., 2003].
[42] The first attempts were all based on quadrature

formula to make the elemental matrix BE diagonal in order
to obtain a final system with the cell pressure heads as
unknowns. For rectangular meshes and a diagonal tensor K,
the RT0 MFE can be reduced to standard cell‐centered finite
differences [Russell and Wheeler, 1983;Weiser andWheeler,
1988;Chavent and Roberts, 1991]. The basic idea is to handle
the integrals by using the following quadrature expression
for any function ’ (x, y) over an element E:

Z
E

’ x; yð Þ ¼ Ej j
4

X4
i¼1

’ xi; yið Þ; ð43Þ

where (xi, yi) are the coordinates of the vertices and jEj is the
area of the element E.

[43] By using (43) to evaluate BE,ij =
R
E
(KE

−1 wj)wi with

KE =
KE;x 0
0 KE;y

� �
and the vector basis functions given in

(11), the matrix BE defined by (10) becomes

BE ¼ 1

2

&E; x 0 0 0

0 &E; x 0 0

0 0 &E; y 0

0 0 0 &E; y

0BBBBBBBB@

1CCCCCCCCA
; ð44Þ

where &E,x = (1/KE,x)(Dx/Dy) and &E,y = (1/KE,y)(Dy/Dx).
For instance, the expression (9) for a vertical edge such as
that in Figure 2 is rewritten as

Q@E;i ¼ 2
hE � hE 0

&E; x þ &E 0; x
; ð45Þ

yielding in the case of uniform discretization over the
whole domain (at steps Dx and Dy)

Q@E;i ¼ �y
2

1

KE; x
þ 1

KE 0; x

hE � hE 0

�x
: ð46Þ

This equation shows that the mixed approach reduces to the
standard finite difference method with the so‐called inter-
block hydraulic conductivity corresponding to the harmonic
mean between values of two adjacent elements E and E′.
[44] Then, equation (46) can be substituted in the discrete

mass balance equation (32) to obtain the final system where
unknowns are now the cell pressure heads. The stencil of the
matrix is five in two dimensions, and the same technique
applied to 3‐D problems would yield a seven‐point stencil
[Russell and Wheeler, 1983]. This procedure was extended
to triangular meshes by Baranger et al. [1994] and Arbogast
and Kennan [1984], but the numerical diagonalization of the
elemental matrix BE seems accurate enough only for trian-
gles with three sharp angles (all angles <p/2).

3.2. Full Tensor Coefficient
[45] A similar approach with a full tensor of hydraulic

conductivity was formulated, analyzed, and tested by
Arbogast et al. [1997]. Consider the elliptic form of the
problem (c = 0 in equation (1)) over a rectangular meshing

with a full tensor of conductivity K =
KE;x KE;xy

KE;xy KE;y

24 35. A
new variable ve = −rh is introduced and considered in RT0.
Its variational form using wi as test functions givesZ

�

vewi þ
Z
�

rhwi ¼ 0: ð47Þ

In the case of an edge i inside the domain and shared by
the adjacent elements E and E′, this form leads to (see
equation (9) for comparison purposes)X4

j¼1

BE;i;j V
e
@E;j þ

X4
j¼1

BE 0;i;j V
e
@E 0 ;j ¼ hE � hE 0 : ð48Þ

Younes et al.: REVIEW OF MIXED FINITE ELEMENTS RG1004RG1004

8 of 26



[46] Using the trapezoidal rule (43) for the integration (as
done previously in (45)) gives for a vertical edge

Ve
@E;i ¼ 2�y

hE � hE 0

�xjE þ�xjE 0
: ð49Þ

The variational formulation of the velocity q = Kve is also
used: Z

�

qwi ¼
Z
�

Kvewi; ð50Þ

which can be rewritten as

X4
j¼1

BE;ij Q@E;j þ
X4
j¼1

BE 0;ij Q@E 0 ;j ¼
X4
j¼1

Be
E;ij V

e
@E;j þ

X4
j¼1

Be
E 0;ij V

e
@E 0;j:

ð51Þ

[47] Again, the trapezoidal rule is applied to calculate
the terms of the local matrix BE. For the vertical edge ∂Ei

between the elements E and E′, the left‐hand side of (51)
becomes

X4
j¼1

BE;ij Q@E;j þ
X4
j¼1

BE 0;ij Q@E 0 ;j ¼ 1

2�y
�xjE þ�xjE 0
� �

Q@E;i:

ð52Þ
All calculations done, the first term in the right‐hand side of
(51) gives

X4
j¼1

Be
E;ij V

e
@E;j ¼

�xjE
4�y

KE;x

��
�x;0

þ KE;x

��
�x;�y

h i
Ve
@E;1

þ 1

4
KE;x

����
�x;�y

" #
Ve
@E;3 þ

1

4
KE;x

����
�x;0

" #
Ve
@E;4; ð53Þ

and similarly, the second term in the right‐hand side of (51)
is written as

X4
j¼1

Be
E 0;ij V

e
@E 0;j ¼

�xjE 0

4�y
KE 0;x

��
0;0
þKE 0;x

��
0;�y

h i
Ve
@E 0;2

þ 1

4
KE 0;x

����
0;�y

" #
Ve
@E 0;3 þ

1

4
KE 0;x

����
0;0

" #
Ve
@E 0;4;

ð54Þ

with S∣a,b denoting the value taken by S at the point of local
coordinates (a, b). Substituting (52), (53), and (54) in (51)
and using the indexation reported in Figure 4 allows us to
write

Qi ¼ �y=2

�xjE þ�xjE 0

�xjE
�y

Kxji; 1 þ Kxji;2
� �

Ve
@E;1 þ Kxji; 2Ve

@E;3

	
þ Kxji;1Ve

@E;4 þ
�xjE 0

�y
Kxji;1 þ Kxji;2
� �

Ve
@E 0 ;2 þ Kxji;2Ve

@E 0;3

þ Kxji;1Ve
@E 0;4



:

ð55Þ

[48] Given the expressions of the head gradients V∂E,i
e in

(49) and by substituting (55) in mass balance equation (14),
a symmetric nine‐point scheme is obtained. This scheme is
quite similar to the standard finite difference method for
diffusion problems with a full tensor coefficient [e.g., Zheng
and Bennett, 1995]. Note, however, that in general, the
standard finite difference scheme does not yield a symmetric
system matrix contrary to the present one [Cirpka et al.,
1999]. In essence, scheme (55) is also suited for cases in
which the conductivity may locally tend to zero (contrary to
the standard MFE approach, equation (55) does not contain
the inverse of the conductivity tensor).
[49] The method was tentatively extended to more general

quadrangular meshes by Arbogast et al. [1998]. Note that at
nonsmooth grid interfaces, or at interfaces with discontinu-
ity of conductivities, it is impossible to obtain continuous
normal components for both q and ve. In this case, the
method can suffer from severe loss of accuracy [Klausen
and Russell, 2005]. To overcome this problem, the meth-
od has to introduce Lagrange multipliers at nonsmooth grid
interfaces or at interfaces with a discontinuity of conduc-
tivities. This partial hybridization is named the enhanced
cell centered finite difference method [Arbogast et al., 1998;
Wheeler et al., 2002].

3.3. Reformulation by Using a New Variable on
Triangles
[50] Almost 10 years ago, another approach to the MHFEs

was developed for both the elliptic case [Younes et al.,
1999b] and the parabolic case [Younes et al., 1999c] on
triangles. The main idea motivating this approach was to
reduce the number of unknowns from pressure head on
edges to a single unknown per element. This unknown is not
an average value like that of the standard finite volume
approximation, and it can be located somewhere, inside or
outside the element, according to the shape of the element
and the type of manipulated PDE (parabolic or elliptic). This
single‐unknown scheme was also analyzed by Chavent et al.

Figure 4. Indexation for the extended approach.
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[2003] with special care to singular elements and singular
edges.
[51] In sections 3.3.1 and 3.3.2, the method is briefly

described, and the equivalence between this RT0 approach
with a single unknown per element and the MHFE method
is shown. For the sake of simplicity, the developments are
limited to steady state flow with a full tensor coefficient and
sink/source terms.
3.3.1. RT0 MHFE Method for Elliptic Problems on
Triangles
[52] In the case of a triangular element E, the vector basis

functions RT0 wE,i of MHFE can be obtained in the physical
space by using (18), which gives [Kaasschieter and Huijben,
1992]

wE;i ¼ 1

2 Ej j
x� xi

y� yi

0@ 1A; ð56Þ

where (xi, yi) are the coordinates of the vertex opposite to the
edge i. Let xij denote the edge vector from node i toward
node j and lij be the scalar measure defined by

lij ¼ xTij KEð Þ�1xij; ð57Þ

where KE is the full tensor of conductivity.
The local matrix BE defined by equation (30) can be eval-
uated analytically, leading to

BE ¼ 1

48 Ej j

�

3l12 þ 3l13 � l23 �3l12 þ l13 þ l23 l12 � 3l13 þ l23

�3l12 þ l13 þ l23 3l12 � l13 þ 3l23 l12 þ l13 � 3l23

l12 � 3l13 þ l23 l12 þ l13 � 3l23 �l12 þ 3l13 þ 3l23

0BBBBBB@

1CCCCCCA:

ð58Þ

The following property can be noted:

X3
j¼1

BE;ij ¼ 1

48 Ej j l12 þ l13 þ l23ð Þ ¼ LE ð59Þ

for all i, where LE is viewed as the inverse of the con-
ductivity tensor scaled by the shape of the element. By
using (59), the fluxes in (34) for the steady state case
become

Q@E;1

Q@E;2

Q@E;3

266664
377775 ¼ 1

3
B�1
E

�2 1 1

1 �2 1

1 1 �2

266664
377775

Th@E;1

Th@E;2

Th@E;3

266664
377775þ LEQE;s

1

1

1

266664
377775

0BBBB@
1CCCCA:

ð60Þ

The inverse of the matrix BE is obtained algebraically
[Younes et al., 2004]:

BE½ ��1¼ det KEð Þ
Ej j

x23K�1
E x23 x23K�1

E x31 x23K�1
E x12

x23K�1
E x31 x31K�1

E x31 x12K�1
E x31

x23K�1
E x12 x12K�1

E x31 x12K�1
E x12

266664
377775

þ 1

3LE

1 1 1

1 1 1

1 1 1

266664
377775; ð61Þ

where det() is the determinant of the matrix. Substituting
(61) in (60) gives the expressions of the fluxes through the
edges as

Q@E;i ¼ � det KEð Þ
Ej j

� xTjk K
�1
E xjk

� �
Th@E;i þ xTjk K

�1
E xki

� �
Th@E;j þ xTjkK

�1
E xij

� �
Th@E;k

h i
þ QE;s

3
; ð62Þ

where i, j, and k are all different.
3.3.2. Reformulation by Using a New Variable
[53] The purpose is to reduce the size of this system by

defining a new variable HE associated with the element E by
the following expression:

HE ¼
X3
i¼1

�E;iTh@E;i: ð63Þ

In addition, HE is such that the flux leaving E through the
edge ∂Ei obeys the expression

Q@E;i ¼ �E;i HE � Th@E;i
� �þ 	E;i; ð64Þ

where pE,i, xE,i, and gE,i are suited coefficients. Note that HE

is generally different from the mean pressure head hE in the
element given by (33). The coefficients pE,i, xE,i, and gE,i are
defined by substituting (63) into (64), and then the resulting
expression is compared with the equation (62). Identifica-
tion between both forms allows us to write

�E;i ¼ det KEð Þ
4 Ej j2 xTjk K

�1
E xjk

h i
xTijK

�1
E xkj

h i
; ð65Þ

where i, j, and k are all different;

�E;i ¼
4 Ej j

xTijK
�1
E xik

h i ; ð66Þ

where i, j, and k are all different; and

	E;1 ¼ 	E;2 ¼ 	E;3 ¼ QE;s

3
: ð67Þ
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Substituting these relations in equation (63) leads to

HE ¼ det KEð Þ
4 Ej j2 xTikK

�1
E xjk

� �
xTijK

�1
E xkj

� �
Th@E;i

h
þ xTijK

�1
E xik

� �
xTikK

�1
E xjk

� �
Th@E;j

þ xTijK
�1
E xik

� �
xTijK

�1
E xkj

� �
Th@E;k

i
: ð68Þ

[54] For the isotropic case (KE,x = KE,y = KE and KE,xy = 0),
HE in (68) reduces to the simple linear interpolate of the
three edge values Th∂E,j, j = 1, 2, and 3, at the circumcenter
of the element E [Cordes and Kinzelbach, 1996; Younes et
al., 1999a]. As for classical MHFEs, the continuity of the
pressure head and fluxes between two adjacent elements E
and E′ is obtained by substituting (64) in (37):

Q@E;i ¼ �Q@E 0;i ¼ �E;i�E 0;i

�E;i þ �E 0;i
HE � HE 0½ �

� �E;i
�E;i þ �E 0 ;i

	E;i þ 	E 0;i
� �þ 	E;i: ð69Þ

[55] Introducing (69) in the steady state mass balance

equation for the element E, i.e.,
P3
i¼1

Q∂E,i = QE,s, surrounded

by three elements E1, E2, and E3 (Figure 5) allows us to
draw the following expression:

�E;i�E1;i
�E;i þ �E1;i

HE � HE1ð Þ þ �E;j�E2;j
�E;j þ �E2;j

HE � HE2ð Þ

þ �E;k�E3;k
�E;k þ �E3;k

HE � HE3ð Þ ¼ �E;i
�E;i þ �E1;i

	E;i þ 	E1;i
� �

þ �E;j
�E;j þ �E2;j

	E;j þ 	E2;j
� �þ �E;k

�E;k þ �E3;k
	E;k þ 	E3;k
� �

:

ð70Þ

Basically, the system in (70) is positive definite provided
that [Chavent et al., 2003]

�E;i�E1;i
�E;i þ �E1;i

þ �E;j�E2;j
�E;j þ �E2;j

þ �E;k�E3;k
�E;k þ �E3;k

 �
> 0: ð71Þ

[56] For the isotropic case, i.e., KE,x = KE,y = KE and
KE,xy = 0, for all elements E, the above condition becomes
(see Figure 5 for notations)

cot ’E1;i

KE1
þ cot ’E;i

KE

 ��1

þ cot ’E2;j

KE2
þ cot ’E;j

KE

 ��1

þ cot ’E3;k

KE3
þ cot ’E;k

KE

 ��1

> 0: ð72Þ

For homogeneous domains, expression (72) can be simpli-
fied by removing K, and the condition becomes equivalent
to the Delaunay criterion [Chavent et al., 2003].
[57] To sum up, the formulation of the MHFE method

with a single unknown per triangular element is relevant in
two dimensions for a general tensor coefficient K. It allows
us to reduce the number of unknowns while keeping the
accuracy of classical MHFEs. However, the system matrix
is not always positive definite contrary to the standard
MHFE method. Therefore, iterative solvers like conjugate
gradients methods are no longer suited. The conditions to
obtain a positive definite system depend on the shape of the
triangular element and the tensor K (see equation (71)). This
property of the final matrix is not required when direct
solvers are used. In this case, a significant reduction of, say,
45%–50% CPU time can be obtained with the single‐
unknown formulation compared with the classical one
[Younes et al., 1999a]. Note that the single‐unknown for-

Figure 5. A triangular element with its three neighbors.
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mulation presented above cannot be extended to 3‐D pro-
blems with general tetrahedral meshes, except for a very
specific tetrahedral discretization [Younes et al., 2004].

4. LINKS BETWEEN MIXED FINITE ELEMENTS AND
OTHER METHODS

[58] The MFE method can be shown equivalent to other
locally conservative discretization methods which handle
discontinuous coefficients [Brezzi et al., 2004; Klausen and
Russell, 2005]. In sections 4.1–4.3 the relationships of the
MFE method with the nonconforming finite element method,
finite differences, and multipoint flux approximation
methods are detailed.

4.1. MHFE and Nonconforming Finite Element
Methods on Triangles
[59] The equivalence between RT0 on triangles and the

nonconforming Crouzeix‐Raviart [Crouzeix and Raviart,
1973] finite elements was shown more than 20 years ago
[Marini, 1985]. The nonconforming finite element method
uses the chapeau functions as basis functions like the stan-
dard finite element method. However, seed nodes are the
midpoints of the edges; that is, 
E,i (x, y) = 1 at the midpoint
of the edge i of coordinates ((xj + xk)/2, (yj + yk)/2) and zero
at the midpoints of edges j and k (see Figure 6).
[60] As for the standard finite element method, the pres-

sure head h is considered to be piecewise linear:

h ¼
XNed
i¼1

Thi 
i x; yð Þ; ð73Þ

where Thi is the local pressure head at edge i and 
i (x, y) is
the chapeau function defined as


i x; yð Þ ¼


E;i x; yð Þ on E


E 0;i x; yð Þ on E 0

0 elsewhere:

8>>>><>>>>: ð74Þ

Contrary to the mixed approach where the equations are
discretized separately, Darcy’s law is substituted in the mass
balance equation yielding the diffusivity equation which is,
in the elliptic (stationary) case, written as

r � �Krhð Þ ¼ f : ð75Þ

The variational formulation is written by using 
i (x, y) as
test functions: Z

�

r � �Krhð Þ
i ¼
Z
�

f 
i: ð76Þ

[61] Given the property (74) of the functions 
i (x, y) and
by using integration by parts, the diffusivity equation (76)
for the node (or the edge) i shared by the two elements E
and E′ can be rewritten as

X3
j¼1

ThE;j

Z
E

r
E;iKEr
E;j þ
X3
j¼1

ThE 0;j

Z
E 0

r
E 0;iKE 0r
E 0;j

¼
Z
E

f 
E;i þ
Z
E0

f 
E;j: ð77Þ

Since 
E,i (x, y) is a linear function, r
E,i is constant, which
transforms (77) into

Ej j
X3
j¼1

ThE;j r
E;iKEr
E;j

� �þ E 0j j
X3
j¼1

ThE 0;j r
E0
;iKE 0r
E 0;j

� �
¼ QE;s

3
þ QE 0;s

3
: ð78Þ

The constant gradient r
E,i can be expressed as

r
E;i ¼ 1

Ej j x
?
kj ; ð79Þ

where xkj
? is a vector obtained by a p/2 rotation of xkj.

Therefore, with a full tensor KE one gets

Ej j r
E;iKEr
E;j

� � ¼ det KEð Þ
Ej j xTjk K�1

E

� �
xki: ð80Þ

Thus, equation (78) can be rewritten as

� det KEð Þ
Ej j xTjk K

�1
E xjk

� �
ThE;i þ xTjk K

�1
E xki

� �
ThE;j

n
þ xTjkK

�1
E xij

� �
ThE;k

o
þ . . .f gE 0¼ QE;s

3
þ QE 0;s

3

: ð81Þ

[62] This equation drawn from the nonconforming finite
element method is similar to (62) expressing the continuity
of RT0 fluxes between two adjacent elements. Therefore,
the RT0 MFE method for the elliptic case over triangles,
even with a full tensor coefficient and sink/source terms, is
strictly equivalent to the nonconforming finite element
method. This equivalence will be used later to develop a
mass lumping scheme for the MHFE method.

Figure 6. Numbering for the nonconforming finite element
method.
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4.2. MHFE and the Finite Difference Method
[63] Here an equivalence is sought between the MHFE

method reformulated with a new variable per element (see
section 3.3) and the finite difference (FD) method without
any quadrature formula. To this aim, consider a triangula-
tion obtained by subdivision of rectangles with a diagonal
tensor K constant per rectangle (Figure 7).
[64] The classical MHFE method on triangles is equiva-

lent to the single‐unknown formulation for which fluxes
through edges of triangles are given by (64). Each triangle
E1 and E2 encloses an angle of p/2. Therefore, by using (68)
and the indexation of Figure 7, the following relationship
can be obtained:

HE1 ¼ HE2 ¼ Th2 ¼ HE; ð82Þ
where HE is the head for the rectangle E. The fluxes ob-
tained from (64) reduce to

Q1 ¼ 2
�x

�y

����
E

KE;x HE � Th1ð Þ;

Q4 ¼ 2
�x

�y

����
E

KE;x HE � Th4ð Þ;

Q3 ¼ 2
�y

�x

����
E

KE;y HE � Th3ð Þ;

Q5 ¼ 2
�y

�x

����
E

KE;y HE � Th5ð Þ;

ð83Þ

whereDx andDy are the length and width of the rectangular
element E.
[65] By using the continuity of the fluxes and heads at

edges between adjacent rectangles, each flux in (83) across
an edge can be expressed as a function of the mean heads at
the two rectangles sharing that edge (similarly to (69)).
Then, these expressions are substituted in the mass balance
equation over the rectangle (Q1 + Q3 + Q4 + Q5 = 0) which
leads to the standard FD scheme on rectangles with a five‐
point stencil. Therefore, the MHFE method on triangles
formed by the subdivision of rectangles is algebraically
equivalent to the FD method on the parent rectangular grid.
It remains that MHFE is less efficient since it uses 3 times
more unknowns than the finite difference method. Note that
for a 2‐D problem with full tensor coefficients, this equiv-
alence does not hold (in this case HE1 ≠ HE2 ≠ HE).

4.3. MHFE and the Multipoint Flux Approximation
Method
[66] The multipoint flux approximation (MPFA) method

is a control volume formulation, where more than two
pressure values are used in the flux approximation
[Aavatsmark et al., 1998a, 1998b]. The first derivation of
the method was published in 1994 [Aavatsmark et al., 1994;
Edwards and Rogers, 1994]. In contrast to MFEs, the
MPFA method gives fluxes at cell interfaces explicitly by
weighted sums of discrete node pressures. The MPFA
method can be applied in the physical space or in the ref-
erence space. Reference space discretizations are symmetric,
but their convergence diminishes or vanishes for rough
quadrangular grids [Aavatsmark et al., 2007]. On the other
hand, physical space approximations have good conver-
gence properties but are nonsymmetric for quadrilaterals
which are not parallelograms [Aavatsmark et al., 2007].
[67] When numerical approximations or quadrature rules

are used, relationships can be found between MPFA variants
and MFEs. For instance, the reference space MPFA method
was shown equivalent to MFEs by Klausen and Winther
[2006a] and Wheeler and Yotov [2006a, 2006b]. In the
work by Klausen and Winther [2006b], a MFE method with
broken Raviart‐Thomas elements and nonconventional
quadrature rule was shown equivalent to the MPFA derived
in the physical space. For triangular meshes, Vohralik
[2006] proved that the RT0 MFE method was similar to a
particular nonsymmetric MPFA method, and this was done
without any numerical integration. In sections 4.3.1–4.3.4,
the links between MPFA and MHFE formulations of both
RT0 and BDM1 methods on triangular meshes are estab-
lished algebraically.
4.3.1. Multipoint Flux Approximation Method on
Triangles
[68] The basic idea prevailing in MPFA is to divide each

triangle into three subcells (see Figure 8 for the splitting into
subcells and notations). Inside, e.g., the subcell (xi, xi

2, x,
xi
1), a linear variation of the pressure head is postulated and

Figure 7. Calculation of fluxes for a rectangular element E
subdivided into two triangles E1 and E2.

Figure 8. Triangle splitting into three subcells and linear
head approximation on each subcell.
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defined by the pressure heads li
1 at the midpoint edge xi

1, li
2

at the midpoint edge xi
2, and hE at the center x of element E

(Figure 8).
[69] With these settings, the fluxes at subedges (half

edges) Qi
1 =
Rx1i
xi

− KErh · n1 and Qi
2 =
Rx2i
xi

− KErh · n2, taken

positive for outflow, are given by

Q1
i

Q2
i

0B@
1CA ¼

1

2 S�xx1i x2i

��� ���
x1i � xi
� �?

KE x2i � �x
� �?

x1i � xi
� �?

KE �x� x1i
� �?

xi � x2i
� �?

KE x2i � �x
� �?

xi � x2i
� �?

KE �x� x1i
� �?

0B@
1CA

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
GE;i

�
�1
i � hE

�2
i � hE

0B@
1CA; ð84Þ

where ∣Sxxi1xi2∣ is the surface area of the triangle spanning
between the points x, xi

1, and xi
2 and, e.g., (xi

1 − xi)
? is a p/2

rotation of the vector xi
1 − xi. All subcells sharing the vertex

xi create an interaction region (Figure 9).
[70] The discretization of the flow equation is performed

by assuming continuity of both fluxes and pressure heads
for each subedge. With these assumptions, an explicit dis-
crete expression of fluxes can be found after solving a local
linear system and after algebraic elimination of heads li

j at
each subedge within the interaction volume (see Aavatsmark
[2002] for details). For each subedge, the flux can then be
written explicitly as a weighted sum of the cell heads within
the interaction volume. In the example sketched in Figure 9,
the flux Qi

1, for example, is written as

Q1
i ¼

X5
k¼1

tki hEk ; ð85Þ

where ti
k are transmissibility coefficients and hEk are mean

heads located at the gravity center of triangles of the original
mesh. The final MPFA system is obtained by writing a mass
balance equation over each triangle; that is, the sum of the
six subedge fluxes of the element equals the sink/source
terms over that element. However, the resulting matrix of
the complete system is nonsymmetric since the local matrix
GE,i in (84) is nonsymmetric too.
[71] As shown by Pal et al. [2006], there exists some

flexibility in the location of each continuity point along the
edges of the triangle. A continuity point can be located
between the edge midpoint and the vertex i (Figure 8). The
symmetry is achieved when the continuity point is located at
w = 2/3 (w = jxi1 − xij/jxij − xij where xij = (xi + xj)/2). In this
case, xi

1, xi, xi
2, and x is a parallelogram, and the local matrix

GE,i of expression (84) can be replaced by the following
symmetric matrix:

Gsym
E;i ¼ 1

2 Sxx1i x2i

��� ���
�

xij � xi
� �?

KE x2i � x
� �?

xij � xi
� �?

KE x� x1i
� �?

xi � xikð Þ? KE x2i � x
� �?

xi � xikð Þ? KE x� x1i
� �?

0@ 1A:
ð86Þ

4.3.2. MPFA Formulation of RT0
[72] This part derives the algebraic link between triangular

RT0 MHFE and MPFA formulations as developed by
Vohralik [2004, 2006]. Recall that with MHFEs on triangles,
the steady state mass conservation equation given in (32) is

written as
P3
i¼1

Q∂E,i = QE,s, and the discretization of Darcy’s

law given in (31) is

Q@E;i ¼
X3
k¼1

B�1
E;i;k hE � Th@E;k
� �

: ð87Þ

[73] The inverse of the matrix BE for triangles is given by
(61). Equation (87) is substituted in the mass balance
equation, and the value of Th∂E,1 is expressed from this
equation as a function of Th∂E,2, Th∂E,3, and QE,s. Then,
Th∂E,1 is reintroduced into expression (87) to calculate Q∂E,1
and Q∂E,2. This yields

Q@E;3

Q@E;2

0B@
1CA ¼ det KEð Þ

Ej j
x12K�1

E x23 � x12ð Þ x12K�1
E x23 � x31ð Þ

x31K�1
E x23 � x12ð Þ x31K�1

E x23 � x31ð Þ

0B@
1CA

�
Th@E;3 � hE

Th@E;2 � hE

0B@
1CA

þ QE;s

det KEð Þ
Ej j x12K

�1
E x23

� �
LE þ 1

3

det KEð Þ
Ej j x32K

�1
E x23

� �
LE þ 1

3

0BBB@
1CCCA: ð88Þ

Figure 9. The interaction region sharing the vertex i.
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Using the following properties on triangles,

det KEð Þ
Ej j xijK

�1
E xjk � xij
� � ¼ 1

4 Sxx1i x2i

��� ��� x1i � xi
� �?

KE x2i � x
� �?

;

det KEð Þ
Ej j xijK

�1
E xjk � xki
� � ¼ 1

4 Sxx1i x2i

��� ��� x1i � xi
� �?

KE x� x1i
� �?

;

ð89Þ

the two fluxes in (88) become

Q@E;3

Q@E;2

0B@
1CA ¼ 1

4 Sxx11x21

��� ���
�

x11 � x1
� �?

KE x21 � x
� �?

x11 � x1
� �?

KE x� x11
� �?

x1 � x21
� �?

KE x21 � x
� �?

x1 � x21
� �?

KE x� x11
� �?

0B@
1CA

�
Th@E;3 � hE

Th@E;2 � hE

0B@
1CAþ QE;s

det KEð Þ
Ej j x12K

�1
E x23

� �
LE þ 1

3

det KEð Þ
Ej j x32K

�1
E x23

� �
LE þ 1

3

0BBB@
1CCCA:

ð90Þ

Therefore, the half‐edge fluxes with hybrid RT0 can be
written in the following form:

Q@E;3

�
2

Q@E;2

�
2

0@ 1A ¼ GE;1

� � Th@E;3 � hE

Th@E;2 � hE

0@ 1A

þ QE;s

det KEð Þ
2 Ej j x12K

�1
E x23

� �
LE þ 1

6

det KEð Þ
2 Ej j x32K

�1
E x23

� �
LE þ 1

6

0BB@
1CCA; ð91Þ

where [GE,1] is the matrix defined by equation (84). This
form in (90), directly stemming from MHFEs, looks similar
to the general formulation of the MPFA approach. Identi-
fication between (91) and (84) simply yields Qi

1 = Q∂E,3/2,
Qi
2 = Q∂E,2/2, li

1 = Th∂E,3, and li
2 = Th∂E,2.

[74] In the case of steady state flow without sink/source
terms, (91) reduces to (84), and the hybrid mixed formula-
tion of RT0 rewritten in MPFA formalism is algebraically
equivalent to the standard MPFA method. It must be men-
tioned that sink/source terms are not treated in the same
way. For the MHFE‐based formulation, each subedge flux
is written explicitly as a weighted sum of not only the cell
pressure heads but also the cell sink/source terms of the
elements in the interaction volume [Vohralik, 2006].
4.3.3. MPFA Formulation of BDM1
[75] Again, MHFE equations are manipulated to derive a

form similar to the MPFA system (84). In the case of BDM1
and contrary to RT0, numerical integration is required at the
scale of each element. The local matrix BE of BDM1 given
in (41) is evaluated by using a quadrature rule [Wheeler and
Yotov, 2006b]. The integrals are transferred to the reference
space (see Appendix A) and evaluated with the point values

at the vertices of the reference triangle (with coordinates
(0, 0), (1, 0), (0,1)):

BE;i;j;k;l ¼
R
bE bwBDM1;T

E;i;j
bK�1bwBDM1

E;k;l

’ bE�� ��
3

� bwBDM1;T
E;i;j

bK�1bwBDM1
E;k;l

� �
0;0ð Þ

þ bwBDM1;T
E;i;j

bK�1bwBDM1
E;k;l

� �
1;0ð Þ

þ bwBDM1;T
E;i;j

bK�1bwBDM1
E;k;l

� �
0;1ð Þ

�
: ð92Þ

[76] Recall that the BDM1 vector basis functions are set
up to verify (26), namely, for an edge l formed by the two
end points rlk (k = 1,2) with a normal vector n∂El

:

bwBDM1
E;i;j rlkð Þn@El ¼

2

Elj j �il�jk for l ¼ 1; ::; 3 and k ¼ 1; 2: ð93Þ

Therefore, handling (92) and (93) to compute the local
matrix BE results in a block‐diagonal matrix where only the
two vector basis functions associated with a corner (xi, yi)
are coupled. The (6 × 6) linear system (40) reduces to three
(2 × 2) linear systems (one for each vertex). Taking, for
example, the vertex 1 of coordinates (0,0), only bwE,3,1

BDM1

and bwE,2,2
BDM1 are nonzero (see Figure 3), and the corresponding

(2 × 2) local system is

1

6

bwBDM1;T
E;3;1

bK�1
E bwBDM1;T

E;3;1

� �
0;0ð Þ

bwBDM1;T
E;3;1

bK�1
E bwBDM1

E;2;2

� �
0;0ð Þ

bwBDM1;T
E;3;1

bK�1
E bwBDM1

E;2;2

� �
0;0ð Þ

bwBDM1;T
E;2;2

bK�1
E bwBDM1

E;2;2

� �
0;0ð Þ

0BB@
1CCA

�
Q@E;3;1

Q@E;2;2

0B@
1CA ¼

hE � Th@E;3;1

hE � Th@E;2;2

0B@
1CA: ð94Þ

[77] Substituting expressions from Appendix B ofbwE,3,1
BDM1,T and bwE,2,2

BDM1 in (94) and inverting the resulting
system yields the following formulation:

Q@E;3;1

Q@E;2;2

0@ 1A ¼ Gsym
E;i

h i Th@E;3;1 � hE

Th@E;2;2 � hE

0@ 1A; ð95Þ

where [GE,i
sym] is the local matrix given in (86). By identi-

fying the rearranged BDM1‐MHFE system in (95) and the
MPFA symmetric system in (84), it is obvious that both
methods are equivalent: Qi

1 = Q∂E,3,1, Qi
2 = Q∂E,2,2, li

1 =
Th∂E,3,1, and li

2 = Th∂E,2,2.
4.3.4. Comparison of Hybrid and MPFA Formulations
of RT0 and BDM1
[78] In this section, four mixed formulations for triangles

are compared: (1) the hybrid form of RT0 (one pressure
head per edge for the unknowns), (2) the hybrid form of
BDM1 (two pressure heads per edge for the unknowns), (3)
the MPFA form of RT0 (one pressure head per element for
the unknowns), and (4) the MPFA form of BDM1 (one
pressure head per element for the unknowns). Main prop-
erties of these four mixed formulations are summarized in
Table 1.
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[79] The comparisons carried out by Younes and Fontaine
[2008b] for heterogeneous domains and unstructured trian-
gular meshes result in the following main conclusions: (1) the
MPFA‐RT0 is the less efficient method because of the
nonsymmetric character of the linear system to solve which
can be indefinite [Vohralik, 2006]; (2) the Hybrid‐BDM1
formulation requires less CPU time than Hybrid‐RT0 to
achieve the same accuracy of the velocity field; (3) for the
same computation effort, MPFA‐BDM1 is more accurate
than Hybrid‐RT0 but less accurate than Hybrid‐BDM1; and
(4) in general, the accuracy of MPFA‐BDM1 does not dete-
riorate with highly unstructured triangular meshes (contrary
to quadrilateral meshes for which a lack of convergence can
be encountered with rough grids).
[80] These results are in agreement with previous works

by Bergamaschi et al. [1994], Matringe et al. [2006], and
Bause [2008]. The point is that BDM1 formulations (Hy-
brid‐BDM1 and MPFA‐BDM1) often require less CPU
time than Hybrid‐RT0 to provide accurate velocity fields.

5. MONOTONICITY AND STABILITY OF THE MFE
METHOD

[81] The MHFE method yields a symmetric and positive
definite matrix which generally does not satisfy the M ma-
trix property [Hoteit et al., 2002a, 2002b; Mazzia, 2008;
Younes and Fontaine, 2008a]. The obtained MFE solution
may contain unphysical oscillations. In this section, the
behavior of MFE solutions is studied for steady state pro-
blems when the diffusion tensor is heterogeneous and
anisotropic and for transient problems.

5.1. Monotonicity of the MFE Method for Steady State
Problems
[82] MFE like finite elements and finite volumes fail to

preserve positivity of a continuum solution when the dif-
fusion tensor is heterogeneous and anisotropic or the com-
putational mesh is strongly perturbed. To preserve the
positivity of the solution, the method must satisfy the so‐
called discrete maximum principle; that is, local maxima or
minima do not appear in the numerical solution for a domain
free of local sink/source terms. Therefore, the resulting
numerical state variable and its related fluxes are consistent
with the continuity of the physics supposedly mimicked by
the discrete equations. A way to guarantee the respect of the
discrete maximum principle is to obtain a final matrix which
satisfies the M matrix property (i.e., nonsingular matrix with
mii > 0 and mij ≤ 0). Note that the M matrix property is
sufficient but not necessary to respect the discrete maximum

principle. The property M is difficult to satisfy with MHFE
matrices. This can be shown easily with the case of scalar
conductivity and rectangular shaped element Dx × Dy.
5.1.1. MHFE Method on Rectangles
[83] The system matrix of the MHFE method is obtained

by writing the continuity of fluxes between two adjacent
elements A and B. From (34) and (35), the diagonal and off‐
diagonal terms of the final matrix can be written as

mii ¼ B�1
ii � �2

i

�

� �
A

þ B�1
ii � �2

i

�

� �
B

mij ¼ B�1
ij � �i�j

�

h i
A

: ð96Þ

The elemental matrix B−1 for a rectangular element A is

B�1
A ¼ 2

2�Ax �Ax 0 0

�Ax 2�Abfx 0 0

0 0 2�Ay �Ay

0 0 �Ay 2�Ay

0BBBBBBBB@

1CCCCCCCCA
; ð97Þ

where dx
A = �y

�x K
A, dy

A = �x
�y K

A, a1 = a2 = 6dx
A, a3 = a4 = 6dy

A,
and a = 12(dx

A + dy
A). In view of (96) and (97), the diagonal

terms mii are always positive since

B�1
ii > �2

i =� for i ¼ 1; 2; 3; 4: ð98Þ

On the other hand, getting negative off‐diagonal terms
yields the following conditions, e.g.,

m12 ¼ B�1
12 � �1�2

�
¼ �Ax �

A
y

�Ax þ �Ay
2� �Ax

.
�Ay

� �
� 0 if �Ax

.
�Ay � 2

ð99Þ

m34 ¼ B�1
34 � �3�4

�
¼ �Ay �

A
x

�Ax þ �Ay

� � 2� �Ay

.
�Ax

� �
� 0

if �Ax

.
�Ay � 1=2:

ð100Þ

[84] Obviously, conditions (99) and (100) cannot be ful-
filled at the same time, and therefore, the matrix system of
MHFE is never an M matrix in this case. The same study for
triangular elements shows that the MHFE matrix is an M
matrix in the case of a weakly acute triangulation (all angles
are <p/2) [Brezzi and Fortin, 1991].

TABLE 1. Properties of Hybrid‐RT0, MPFA‐RT0, Hybrid‐BDM1, and MPFA‐BDM1 Formulations

Hybrid‐RT0 MPFA‐RT0 Hybrid‐BDM1 MPFA‐BDM1

Numerical quadrature no no no yes
Symmetric and positive

definite matrix
yes no yes yes

Number of unknowns number of
edges

number of
elements

2 × number
of edges

number of
elements

Stencil 5 ≈15 10 ≈15
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5.1.2. Improving the Monotonicity of the MHFE
Method
[85] In the case of rectangles and diagonal conductivity

tensor, a way to improve monotonicity of MHFEs is to use
the quadrature formula (43) leading to a diagonal local
matrix B. The MHFE method reduces to a five‐point cell‐
centered FD scheme with a harmonic mean of conductivity
at interfaces between cells. It is easy to show that the
corresponding matrix is an M matrix.
[86] In the case of nonrectangular parallelograms with

diagonal K or in the case of rectangular elements and full
tensor coefficients, the same quadrature rule (43) allows
transformation of the BDM1‐MHFE method into a MPFA
method. The resulting scheme is a nine‐point cell‐centered
FD scheme with a generalized form of harmonic mean of
conductivity at interfaces between cells [Aavatsmark et al.,
2007]. However, the resulting matrix is not an M matrix
in general [Edwards and Rogers, 1998] even though this
MPFA formulation of MHFEs improves the monotonicity
and reduces the occurrence of unphysical oscillations
[Younes and Fontaine, 2008a].
[87] Note that Mlacnik and Durlofsky [2006] developed a

method for optimizing unstructured grids to improve the
monotonicity of theMPFAmethod.Nordbotten and Eigestad
[2005] and Chen et al. [2008] also developed new MPFA
formulations improving monotonicity for strongly aniso-
tropic domains.
[88] Another approach to reinforce the capability of MFEs

to obey the discrete maximum principle was recently pro-
posed by Nakshatrala and Valocchi [2009]. The basic idea
of the method is to rewrite the MFE formulation as a
problem of optimization under linear constraints explicitly
introduced to satisfy positivity of the solution. This tech-
nique may, however, induce violation of the local mass
balance in a part of the domain [Nakshatrala and Valocchi,
2009].

5.2. Improving the Stability of Triangular MHFE for
Transient Problems
[89] For steady state problems handled with triangular

MHFEs, the resulting matrix is an M matrix in the case of a
weakly acute triangulation (all angles are <p/2) [Brezzi and
Fortin, 1991]. This condition on angles is no longer suffi-
cient for parabolic (transient) problems. A first approach to
preserve the M matrix property is to change the Raviart‐
Thomas finite element space for the flux variable [Marini
and Pietra, 1990]. Another technique commonly used in
finite element methods is the so‐called mass lumping.
Basically, mass lumping consists of making diagonal (or
“as diagonal as possible”) the elemental matrix attached to
the accumulation term in ∂/∂t.
[90] A recent mass lumping procedure, suitable for vari-

ous shapes of 2‐D elements, was developed by Younes et al.
[2006] without resorting to any numerical integration. The
basic idea of this procedure is (1) to calculate steady state
fluxes by using the classical MHFE method and (2) to add
the accumulation and sink/source terms directly on the
edges. In this procedure, the MHFE method is seen as a

nonconforming finite element method. This scheme was
shown to be efficient by smoothing unphysical oscillations
for transient saturated flow problems [Younes et al., 2006].
[91] In the following, it is shown how the mass lumping

procedure can be set up for MHFE over triangles. The
benefit of this technique is illustrated by mimicking transient
two‐phase flow (air plus water) in a porous medium initially
dry and subjected to infiltration of water. Even though
the physical relevance of mimicking infiltration by using
Richards’s equation can be deeply questioned, the equation
remains largely used for unsaturated flow. Here this equa-
tion is just used for the purpose of illustration, knowing that
the nonlinearity of the problem emphasizes discrepancies
due to violations of the discrete maximum principle.
[92] The flux Q∂E,i in transient conditions with an im-

plicit scheme of RT0‐MHFEs is given by (34) and recalled
here:

Qnþ1
@E;i ¼

XNedE
j¼1

NE;ijTh
nþ1
@E;j þ Fn

E;i; ð101Þ

where

NE;ij ¼ �E;i�E;j

�E
� B�1

E;ij; ð102Þ

Fn
E;i ¼ �E

�E;i

�E
hnE þ �E;i

�E
QE;s;

�E ¼ cE Ej j
�t

;

�E; i ¼
PNedE
j¼1

B�1
E;ij;

�E ¼ PNedE
i¼1

�E; i;

�E ¼ �E þ �Eð Þ:

With the hybrid formulation, each row i of the global
system represents the continuity of fluxes between two
adjacent elements E and E′ sharing the edge i (the sum of
the two fluxes Q∂E,i and Q∂E′,i is null). Therefore, in view
of (101), the global matrix will be an M matrix provided
all local matrices NE and NE′ are of type M.
[93] For triangles and scalar conductivity, the local matrix

NE simplifies (using (61)) into

NE ¼� KE

x223
Ej j �2 cot ’E;12

� � �2 cot ’E;13

� �
�2 cot ’E;12

� � x231
Ej j �2 cot ’E;23

� �
�2 cot ’E;13

� � �2 cot ’E;23

� � x212
Ej j

26666666664

37777777775

� �E

3 3þ �ELEð Þ

1 1 1

1 1 1

1 1 1

26666664

37777775; ð103Þ
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where ’E,ij is the angle between edges i and j, xij is the edge
vector from node i toward node j, and LE is the shape
coefficient in (59). The diagonal terms of NE are always
positive whatever the parameters and the shape of the ele-
ment. The off‐diagonal terms are conditionally negative. For
the elliptic case (lE = 0, steady state case), these terms are
negative in the case of acute triangulation (all angles <p/2).
For the parabolic (transient) case, it can be shown that NE is
of type M if the time step verifies [Younes et al., 2006]:

1

18

cE
KE

Ej j tan ’ð Þ � 6LE½ �
�t

< 1; ð104Þ

where ’ is one of the three angles of the triangle E. Con-
dition (104) is always verified (whatever Dt) for 0 ≤ ’ ≤
40.89° [Younes et al., 2006], which obviously cannot be
fulfilled for all angles of a triangle. Thus, for a given spatial
acute triangulation and a given set of parameters, the global
system is an M matrix only if the time step is large enough
to fulfill condition (104).
[94] With the lumped formulation of the MHFE proposed

by Younes et al. [2006], the stationary and the accumulation
parts of the flux are distinguished:

Qnþ1
@E;i ¼ Q@E;i þ

QE;s

3
� �E

3
Thnþ1

@E;i � Thn@E;i

� �
; ð105Þ

where Q∂E,i is the flux corresponding to the stationary
problem without sink/source terms.The expression of the
flux in (101) is then replaced by the following one:

Qnþ1
@E;i ¼

XNedE
j¼1

N lump
E;ij Thnþ1

@E;j þ Fn
E;i; ð106Þ

where FE,i
n = �E;i

�E
QE,S +

�E
3 Th∂E,i

n and the local matrix NE
lump is

given by

Nlump
E ¼� KE

x223
Ej j �2cot ’E;12

� � �2cot ’E;13

� �
�2cot ’E;12

� � x231
Ej j �2cot ’E;23

� �
�2cot ’E;13

� � �2cot ’E;23

� � x212
Ej j

2666666664

3777777775

� �E

3

1 0 0

0 1 0

0 0 1

26666664

37777775: ð107Þ

[95] Contrary to the local matrix NE of the classical
MHFE scheme, the matrix NE

lump of the lumped form is al-
ways of type M for an acute triangulation, irrespective of the
size of the time step. It remains that this lumped formulation
cannot guarantee the M matrix property for any general
triangulation. However, the lumping procedure can still be
useful since it improves the monotonous character of the
scheme.

5.3. Lumped Formulation of MHFE for Unsaturated
Flow Problems
[96] The illustrative example given here is drawn from

works by Belfort et al. [2009] and deals with unsaturated
flow. Because of the nonlinearity of the problem, the cal-
culations are strongly exposed to unphysical oscillations and
convergence problems, especially in the case depicted below
of infiltration with sharp wetting fronts in dry soils. The
MHFE method was used for the discretization of the widely
used Richards’s equation, even though its physical rele-
vance for simulating air‐water flow in soils can be ques-
tioned [e.g., Glass et al., 1989; Selker et al., 1992].
[97] Simulations were performed with the general settings

of infiltration of water in a soil initially dry. Infiltration is
performed at constant rate for a period of 1 day over four
types of meshes: a general quadrangular mesh, a general
triangular mesh, a Delaunay triangulation, and an acute
triangulation. Small time steps of 5 s or large time steps of
200 s are used, and all simulations are calculated with the
classical (101) and the lumped (106) formulations of the
MHFE method.
[98] Given the simulation settings, the expected numerical

solutions should be bounded [Belfort et al., 2009]. The
values of the pressure head calculated at the edges of the
elements should range between 25 cm (the top Dirichlet
boundary condition) and −1000 cm (the bottom Dirichlet
boundary condition). Because of the violation of the discrete
maximum principle, the calculated solution may give values
less than −1000 cm. To quantify how badly the solution
breaks the maximum principle, results are summarized by
providing hmin, the minimal negative values of the solutions,
and err_g, the relative size in % of the total surface area of
the domain where the maximum principle is not matched up.
Table 2 reports on these values for a prescribed simulation
time of 1600 s.
[99] Strong unphysical oscillations appear with the classi-

cal MHFE method even with the large time step Dt = 200 s.
The minimal value hmin reaches −1313.8 cm with quad-
rangles, and 9.3% of the domain is subjected to unphysical
oscillations. The shorter the time step, the larger the un-
physical oscillations, and sometimes the nonlinear problem
may not converge. For instance, the classical MHFEs with a
time step of 5 s do not converge whatever the type of mesh
used.
[100] Compared with the classical approach, the mass

lumping formulation reduces the unphysical oscillations for
the quadrangular meshing. The minimal value reaches
−1009 cm, and <2% of the domain is concerned with this
problem. When dealing with triangular meshes (general or
Delaunay triangulation) and large time steps of 200 s, the
lumped formulation allows a significant reduction of the
unphysical oscillations, and <0.1% of the domain is sub-
jected to anomalies. As expected with acute triangulations,
the lumped formulation results in a matrix of type M, and
therefore, all unphysical discrepancies are eradicated. Con-
trary to the classical formulation, a decrease of the time step
does not alter capabilities of the lumped formulation to solve

Younes et al.: REVIEW OF MIXED FINITE ELEMENTS RG1004RG1004

18 of 26



correctly the nonlinear problem. In terms of unphysical
oscillations, for a given spatial discretization, the results are
almost similar to a 5 s or a 200 s time step.

5.4. A Technique for Improving the Stability of
Quadrangular MHFE for Transient Problems
[101] As reported in Table 2, the unphysical oscillations

with the lumped formulation remain much more important
with quadrangles (err_g = 1.34%) than with triangles (err_g =
0.02%). It was shown by Younes et al. [2006] that the
lumped formulation of MHFE never resulted in an M matrix
with rectangular meshes, even for a homogeneous problem.
However, the monotonicity of the lumped MHFE method on
general quadrangular meshing can be improved by consid-
ering each quadrilateral as a macroelement of triangles. The
idea of fictitious subdivision into triangles has already been
discussed for mixed finite elements [Brezzi and Fortin,
1991; Kuznetsov and Repin, 2003; Kuznetsov and Repin,
2005; Jaffré et al., 2006] and used in the mimetic finite
element/finite difference methods [Kuznetsov et al., 2004;
Lipnikov et al., 2006; Brezzi et al., 2005a, 2005b].
[102] To make it simple, consider a quadrangular element

E as the aggregation of two triangles A and B (Figure 10).
Equation (106) for each triangle gives fluxes Q∂A,i and Q∂B,i
as functions of the average pressure heads Th∂A,j and Th∂B,j
on edges. The trick is to write the average pressure head of
the interior edge as a function of the average heads at the
four edges of the quadrangle. The continuity of fluxes and
heads between triangles A and B (see Figure 10 for notations
and numbering) results in the following expressions:

Qnþ1
A;3 þ Qnþ1

B;3 ¼P3
j¼1

N lump
A;3j Thnþ1

A;j þ Fn
A;3 þ

P3
j¼1

N lump
B;3j Thnþ1

B;j þ Fn
B;3 ¼ 0

Thnþ1
int ¼ Thnþ1

A;3 ¼ Thnþ1
B;3 ;

ð108Þ

which is transformed into

Thnþ1
int ¼ �1

N lump
A;33 þ N lump

B;33

�
X2
j¼1

N lump
A;3j Thnþ1

@A;j þ Fn
A;3 þ

X2
j¼1

N lump
B;3j Thnþ1

@B;j þ Fn
B;3

 !
:

ð109Þ

[103] Inserting equation (109) in (106) (i.e., the lumped
equations of fluxes for triangles), the fluxes of both triangles
A and B are functions of heads at the exterior edges (i.e., the
edges of the quadrangular element E). Therefore, it becomes
possible to calculate the fluxes Q∂E,i of a quadrangle by
using equation (106) but with a modified matrix N and a
modified vector F. For example, the flux across edge 1 of
the quadrangular element E becomes

Qnþ1
@E;1 ¼ N lump

B;11 � N lump
B;13 N

lump
B;31

N lump
A;33 þ N lump

B;33

" #
Thnþ1

@E;1

þ �N lump
A;31 N

lump
B;13

N lump
A;33 þ N lump

B;33

" #
Thnþ1

@E;2 þ N lump
B;12 � N lump

B;13 N
lump
B;32

N lump
A;33 þ N lump

B;33

" #
Thnþ1

@E;3

þ �N lump
A;32 N

lump
B;13

N lump
A;33 þ N lump

B;33

" #
Thnþ1

@E;4 �
N lump
B;13

N lump
A;33 þ N lump

B33

Fn
A;3

� N lump
B;13

N lump
A;33 þ N lump

B;33

Fn
B;3 þ Fn

B;1: ð110Þ

[104] With this formulation, it can be shown that the final
assembled system is made of an M matrix provided the
fictive triangulation is acute (angles of the triangles A and B
are <p/2). This triangular subdiscretization of the quad-
rangles has the following advantages:
[105] 1. The procedure can be applied at convenience to

some elements and not necessarily to the whole meshing.
This can be interesting for nonconvex meshes which cannot

TABLE 2. Results of the Standard and Lumped Formulation for the Infiltration Problem at t = 1600 sa

Dt (s)

Quadrangles General Triangles Delaunay Triangles Acute Triangles

err_g hmin err_g hmin err_g hmin err_g hmin

MHFE
200 9.3% −1313.8 2.9% −1171.4 3% −1186.4 5.7% −1273.8
5 n.c. n.c. n.c. n.c. n.c. n.c. n.c. n.c.

Lumped MHFE
200 1.3% −1009 0.06% −1000.04 0.02% −1009.9 0.00% −1000.00
5 1.1% −1011.2 0.04% −1000.03 1.49E‐04 −1009.7 0.00% −1000.00
aAbbreviation n.c. means convergence not reached.

Figure 10. Subdivision of a quadrangular cell E into two
triangular elements A and B.
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be handled by the classical MHFE method. For example, the
nonconvex quadrangular element can be divided in two
interior triangles (A, B) by dividing the most opened angle
by 2.
[106] 2. The cost is the same as for the standard approach.

In both formulations (subdiscretized and standard), the final
system is solved for heads at the edges of the quadrangular
elements.
[107] 3. The monotonous behavior of the discretization is

improved and damps unphysical oscillations.
[108] 4. The procedure is quite simple to implement since

only the local matrix is changed.
[109] Table 3 illustrates how the modified local matrix can

improve the solution calculated by the lumped MHFE over
quadrangular meshes. With the simulations of infiltration as
depicted in section 5.2, the nonphysical oscillations are
strongly reduced by the proposed technique. The minimal
value of head decreases from −1028 cm to −1000.3 cm,
whereas the area subject to oscillations decreases from 2.9%
to 0.09%. When the splitting of quadrangles generates acute
triangles over the whole domain, the maximum principle is
verified, and oscillations are completely removed by the
new technique.

6. STREAMLINE TRACING WITH MFE

[110] Accurate tracing of streamlines and accurate com-
putation of traveltime along these streamlines may become
challenging when performed on unstructured meshes. This
section discusses the benefits of MFE velocity approxima-
tions to obtain accurate streamline tracing. This discussion is
based on a recent work by Matringe et al. [2006], who
studied streamline tracing for both RT0 and BDM1 MFE
methods on general triangular and quadrangular grids. Note
that the same authors also applied the same technique to
finite volume discretizations [Matringe et al., 2008] by re-
lying on the correspondence between MPFA and MFE
methods depicted in section 4.
[111] MFEs provide an approximation of the velocity field

that is especially well suited to streamline tracing
[Kaasschieter, 1995]. A simple way to draw streamlines is
by following the movement of a fluid particle in time
(particle tracking). In this case, the fluid particle inside each
element moves by following the MFE velocity inside the
element until it reaches an exit point. This point then be-
comes the entry point of the downstream element. During
the procedure, the residence time (time of flight) can also be
stored when leaving each element.

[112] Most streamline simulators for groundwater trans-
port are based on the Pollock method [Pollock, 1988]. This
is a semianalytical method that recovers the exit point of a
streamline and the time of flight in an element of the mesh
by assuming that each component of the velocity field varies
linearly inside the element. The method, initially developed
for rectangles, was extended to irregular grids [Prevost et
al., 2002; Jimenez et al., 2005] by using the Piola trans-
form of the velocity vector from the reference element to the
physical one.
[113] Since vector basis functions of the velocity are de-

fined in the reference space, the entry point of the physical
point is first mapped onto the reference space. Then the
streamline is integrated in the reference space, and both the
exit point and residence time are calculated. Finally, the exit
point is mapped back to the physical space, and the proce-
dure is repeated until a sink or an outflow boundary is
reached.
[114] Analytical integration can be used to compute the

streamline within the reference element. This integration
works fine with RT0 since each component of the velocity
in the reference space only depends on its own coordinates
(see vector basis functions of RT0 velocity in Appendix B).
This method is equivalent to the Pollock algorithm. Note,
however, that the residence time can be integrated analyti-
cally only in the case of constant Jacobian J (i.e., when the
physical element is a triangle or a parallelogram).
[115] For BDM1 velocities, the Pollock method cannot be

used since each component of the velocity depends on local
coordinates (see BDM1 vector basis functions in Appendix B).
In this case, numerical integration is performed in time to
solve the initial value problem for the streamline locationbx =

bxby
�

on the reference element:

"E
dbx
dt

¼ bqRT0 or BDM1
E ;

bx bt ¼bt0� � ¼ bx0; ð111Þ

where "E is the porosity of the element E. In the work by
Matringe et al. [2006], the system (111) is solved by
using an explicit Runge‐Kutta method of fourth order.
Similarly, the residence time t can be computed in the
reference element as follows:

� ¼ "E

Z
}

Jj jbqRT0 or BDM1
E

�� �� ds: ð112Þ

[116] This integral can be computed numerically within
the Runge‐Kutta stepping. This streamline tracing was im-
plemented for both RT0 and BDM1 by Matringe et al.
[2006]. The authors found that for the same computational
cost, high‐order tracing was more accurate and robust (less
sensitive to grid orientation) than low‐order tracing.
[117] As a concluding remark to this section, it must be

pointed out that in the case of a cell with a sink term, the
particle tracking based on MFE velocity inside the cell is not
consistent [Healy and Russell, 2000; Wang et al., 2005]. If

TABLE 3. Results With the Lumped MHFE and a Small Time
Step of 5 s

Time (s)

Quadrangles With
Standard Local Matrix

Quadrangles With the
Modified Local Matrix

err_g Hmin err_g Hmin

1,600 1.1% −1,011.2 0.07% −1,000.0
7,600 2.0% −1,007. 0.09% −1,000.3
25,000 2.9% −1,028. 0.03% −1,000.02
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all fluxes are inflows, the velocity components are dimin-
ishing and cancel out at some point inside the element
(depending on the numerical values of the fluxes). This
problem is partly circumvented by using a very small cell
containing the well at its center.

7. COMMENTS AND CONCLUSION

[118] MFE is an accurate method to solve diffusion‐type
partial differential equations. The basic idea of the method is
to allow a simultaneous approximation of both the state
variable and its related flux. MFE methods have received
growing attention because (1) they satisfy mass conserva-
tion at the element level, (2) they provide continuous fluxes
from one element to an adjacent one, (3) they preserve the
same order of convergence for the state variable and the
related fluxes, and (4) they are able to handle full parameter
tensors and their incidence on unstructured meshes. These
properties make MFEs well suited to computation problems
in geosciences.

[119] Hybridization reduces the size of the standard MFE
system and leads to a symmetric positive definite matrix that
can be solved by efficient iterative methods. Thus, tackling
problems including a large number of unknowns becomes
feasible.
[120] In this paper, both RT0 and BDM1 hybrid for-

mulations of MFEs have been presented since these methods
are frequently used for practical applications. These for-
mulations require more unknowns (one per edge or face for
RT0) than standard methods (one per vertex or per cell).
Many studies tried to reduce the number of unknowns and,
within this context, to seek eventual links between MFEs
and other numerical methods like finite volume or multi-
point flux approximation methods. The MFE method is
based on well‐known and rigorous fundaments. Therefore,
the links evoked above have provided the mathematical
foundation for the numerical analysis of other methods.
Along this line, MFEs helped, for instance, to bring the
proof of convergence of finite differences in two dimensions

Figure A1. Mapping from the reference to the physical element for triangles and quadrangles and local
numbering.

TABLE B1. BDM1 Vector Basis Functions for Triangles and Quadrangles in the Reference Element

Triangles Quadrangles

Edge 1 b!1,1
BDM1 = 2(x̂,0)T and b!1,2

BDM1 = 2(0,ŷ)T b!1,1
BDM1 = [2x̂ (1 − ŷ), −ŷ (1 − ŷ)]T and b!1,2

BDM1 = [2x̂ŷ, ŷ(1 − ŷ)]T

Edge 2 b!2,1
BDM1 = 2(−ŷ, ŷ)T and bw2,2

BDM1 = 2(x̂ + ŷ − 1,0)T b!2,1
BDM1 = [−2(1 − x̂) ŷ, ŷ(1 − ŷ)]T and b!2,2

BDM1 = [−2 (1 − x̂) (1 − ŷ), − ŷ(1 − ŷ)]T

Edge 3 b!3,1
BDM1 = 2(0, x̂ + ŷ − 1)T and b!3,2

BDM1 = 2(x̂, −x̂)T b!3,1
BDM1 = [x̂(1 − x̂), 2x̂ŷ]T and b!3,2

BDM1 = [−x̂ (1 − x̂), 2ŷ (1 − x̂)]T

Edge 4 b!4,1
BDM1 = [−x̂ (1 − x̂), −2(1 − x̂) (1 − ŷ)]T and b!4,2

BDM1 = [x̂ (1 − x̂), −2x̂(1 − ŷ)]T
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with diagonal tensor coefficients [Russell and Wheeler,
1983; Weiser and Wheeler, 1988], of finite differences
with full tensor coefficients [Arbogast et al., 1997], of
MPFA on 2‐D quadrilaterals [Klausen and Winther, 2006a,

2006b], of MPFA on 2‐D triangles and quadrilaterals
[Wheeler and Yotov, 2006b], of MPFA on 3‐D tetrahedrons
[Wheeler and Yotov, 2006b], and of MPFA on 3‐D hexa-
hedrons [Matringe et al., 2007, 2009].
[121] Generally, the MFE method does not satisfy the

discrete maximum principle, and the resulting solution may
contain unphysical oscillations. This drawback occurs for
steady state problems with heterogeneous anisotropic dif-
fusion tensor and for transient problems. In the latter case,
the unphysical oscillations can be damped or avoided by the
mass lumping procedure.
[122] Contrary to the standard finite volume and the

multipoint flux approximation methods, the mathematical

TABLE B2. RT0 Vector Basis Functions for Triangles and
Quadrangles in the Reference Element

Triangles Quadrangles

Edge 1 b!1
RT0 = (x̂; ŷ)T b!1

RT0 = (x̂; 0)T

Edge 2 b!2
RT0 = (x̂ − 1, ŷ)T b!2

RT0 = (x̂ − 1)T

Edge 3 b!3
RT0 = (x̂, ŷ − 1)T b!3

RT0 = (0, ŷ)T

Edge 4 b!4
RT0 = (0, ŷ − 1)T

Figure B1. RT0 and BDM1 vector basis functions for triangles and quadrangles in the reference
element.
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extension and implementation of MHFE to 3‐D problems
are not too complicated, especially with RT0 basis func-
tions. Even in three dimensions for both regular and un-
structured meshing, only local matrices have to be
calculated. The resulting stencil is also smaller than with
other methods since each line of the final system contains,
as in two dimensions, the contribution of only two adjacent
elements. However, the number of unknowns (i.e., the
number of faces with RT0 basis functions) becomes much
larger than the number of elements (3 times in the case of
hexahedra).

APPENDIX A

[123] For any triangular element E, the mapping F = FE :bE → E is linear. Let xi = (xi, yi); i = 1, 2, and 3 be the three
vertices numbered counterclockwise of the triangle E; and
xij = xi − xj. If bx1 = (0, 0)T, bx2 = (1, 0)T, and bx3 = (0, 1)T, then
(Figure A1)

FE bx; byð Þ : x1 þ x21bxþ x31by: ðA1Þ

[124] For any quadrangular element E, the mapping is
nonlinear. Again, let xi = (xi, yi); i = 1, 2, 3, and 4 be the four
vertices indexed counterclockwise of the element E; and
xij = xi ‐ xj. If bx1 = (0, 0)T, bx2 = (1, 0)T, bx3 = (1, 1)T, andbx4 = (0, 1)T, then

FE bx; byð Þ : x1 þ x21bx þ x41byþ x32 � x41ð Þbxby: ðA2Þ

APPENDIX B

[125] The analytical formulations of the vectorial basis
function for triangular and quadrangular reference elements
are given for BDM1 (see Table B1) and for RT0 (see Table B2)
spaces. Two vectors of the basis function are shown in
Figure B1 for triangular and rectangular elements and for
both RT0 and BDM1.
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