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Abstract 20 

The Callovian-Oxfordian (COx) clayey unit is being studied in the Eastern part of the Paris Basin at 21 

depths between 400 and 500 m depth to assess of its suitability for nuclear waste disposal. The 22 

present study combines new mineralogical and isotopic data to describe the sedimentary history of 23 

the COx unit. Petrologic study provided evidence of the following diagenetic mineral sequence: 1) 24 

framboidal pyrite and micritic calcite, 2) iron-rich euhedral carbonates (ankerite, sideroplesite) and 25 

glauconite 3) limpid calcite and dolomite and celestite infilling residual porosity in bioclasts and 26 

cracks, 4) chalcedony 5) quartz/calcite. Pyrite in bioturbations shows a wide range of δ34S (-38 to 27 

+34.5 ‰), providing evidence of bacterial sulphate reduction processes in changing sedimentation 28 

conditions. The most negative values (-38 to -22 ‰), measured in the lower part of the COx unit 29 

indicate precipitation of pyrite in a marine environment with a continuous sulphate supply. The most 30 

positive pyrite δ34S values (-14 up to +34.5 ‰) in the upper part of the COx unit indicate pyrite 31 

precipitation in a closed system. Celestite δ34S values reflect the last evolutionary stage of the 32 

system when bacterial activity ended; however its deposition cannot be possible without sulphate 33 

supply due to carbonate bioclast dissolution. The 87Sr/86Sr ratio of celestite (0.706872-0.707040) is 34 

consistent with deposition from Jurassic marine-derived waters. Carbon and oxygen isotopic 35 

compositions of bulk calcite and dolomite are consistent with marine carbonates. Siderite, only 36 
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present in the maximum clay zone, has chemical composition and δ18O consistent with a marine 37 

environment. Its δ13C is however lower than those of marine carbonates, suggesting a contribution 38 

of 13C-depleted carbon from degradation of organic matter. δ18O values of diagenetic chalcedony 39 

range between +27 and +31 ‰, suggesting precipitation from marine-derived pore waters. Late 40 

calcite crosscutting a vein filled with chalcedony and celestite, and late euhedral quartz in a 41 

limestone from the top of the formation have lower δ18O values (~+19 ‰), suggesting that they 42 

precipitated from meteoric fluids, isotopically close to present-day pore waters of the formation. 43 

Finally, the study illustrates the transition from very active, biotic diagenesis to abiotic diagenesis. 44 

This transition appears to be driven by compaction of the sediment, which inhibited movement of 45 

bacterial cells by reduction of porosity and pore sizes, rather than a lack of inorganic carbon or 46 

sulfates.  47 

Keywords: clay formation, diagenesis, stable isotopes, Bure URL, ANDRA.48 
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1. Introduction 49 

Diagenesis of sedimentary rock is an important area of research both in academic and applied 50 

studies. Its applications include extraction of metals, coal, oil, and gas (Veizer and Mackenzie, 51 

2004), as well as projects investigating options for deep nuclear waste long-term storage. The 52 

diagenesis of formations being considered as host rocks for waste disposal is important in 53 

understanding present-day pore water chemistry and the transport behaviour of solutes which in 54 

turn, is crucial to the determination of the durability of the materials used for repository construction 55 

and waste packaging and the conditions under which radionuclides may be transported in the host 56 

formation. Data to access these issues are thus needed to support safety analysis of the disposal 57 

scheme being proposed. 58 

Since 2004, ANDRA (The National Radioactive Waste Management Agency of France) has been 59 

developing an Underground Research Laboratory (URL) at Bure, in the Eastern part of the Paris 60 

Basin, to study the feasibility of nuclear waste disposal in a deep, thick, Callovian-Oxfordian clay-61 

rich formation (hereafter abbreviated COx). The target formation lies between the Dogger overlaid 62 

limestone and the Oxfordian overlying limestone, and is accessible at 400 meters depth in the URL 63 

(Gaucher et al., 2004; Delay, 2007; Clauer et al., 2007). Since 1994, numerous studies have been 64 

conducted to determine mineral stabilities and present-day porewater chemistry (Gaucher et al., 65 

2006, 2009) and transport mechanisms of solutes within the COx unit and between the COx unit 66 

and adjacent carbonate aquifers (Buschaert et al., 2007). Solute transport and diffusion 67 

mechanisms are illustrated by past water/rock interactions and by physico-chemical processes 68 

associated with sedimentation and diagenesis.  The latter include processes such as compaction, 69 

burial, dissolution, and cementation that generated the present-day petrophysical properties of the 70 

claystones.  71 

Present-day pore waters have been analysed for chemistry and isotopes (Gaucher et al, 2006, 72 

2009, Giannesini, 2006; Vinsot et al., 2008).  Understanding of solute transport has benefited from 73 

texture, porosity, permeability, and diffusion measurements (Gaucher et al., 2004; Yven et al., 2007; 74 

Delay et al., 2007; Decostes et al, 2008) and from experimental measurements (ANDRA, 2005; 75 

Appelo et al., 2008). The oxygen, hydrogen and strontium isotopic compositions of present-day pore 76 

waters in the COx and adjacent units show a meteoric signature (Giannesini, 2006). Contrastingly, 77 

carbon, oxygen, and strontium isotope studies on carbonate (Ader and Javoy, 1998; Casanova et 78 

al., 1999; Buschaert et al., 2004; Lerouge et al., 2010a), suggest that virtually all diagenetic phases 79 

were precipitated from marine-derived waters. In Mesozoic limestones adjacent to the COx unit, 80 

carbon, oxygen, and strontium isotopes show that the late diagenetic calcites in vugs and fractures 81 

were precipitated from meteoric waters (Casanova et al., 2001; Vincent et al., 2001; Buschaert et 82 

al., 2004; Brigaud et al., 2010). 83 
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The purpose of the present work was to establish the mineral sequence of the COx clay formation, 84 

to determine the stability of the diagenetic phases and to delineate the evolution of pore waters 85 

through geological time. Particular emphasis was placed on describing diagenetic phases including 86 

pyrite, celestite, carbonates and chalcedony, on the processes involved in their deposition and on 87 

the effects of these processes on redox conditions and phase stabilities. This was supported by 88 

petrological work on (i) detrital phases, including their chemistry and stability, in order to determine 89 

their role in the precipitation of the late diagenetic phases, and (ii) mineral textures particularly of 90 

diagenetic phases to clarify their sequence of precipitation and their stability during basin evolution. 91 

Oxygen, sulphur and strontium isotopes of sulphates and sulphides, oxygen and carbon isotopes of 92 

the late carbonate phases and oxygen of chalcedony were measured and interpreted to define 93 

deposition processes, and fluid sources along geological time.  94 

 95 

96 
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1. Geological setting 97 

 98 
The Underground Research Laboratory is located at Bure in the eastern part of the Paris Basin. The 99 

lithostratigraphic log of the whole sequence, sedimentation conditions of the Dogger to the 100 

Kimmeridgian sequence and the tectonic setting in the studied area (URL and surrounding area), 101 

are available in ANDRA (2001, 2005). Mineralogy and geochemistry of the COx rocks have been 102 

extensively documented (e.g. Gaucher et al., 2004, ANDRA, 2005) and Clauer et al. (2007). Main 103 

informations are summarized below. 104 

 105 

Lithostratigraphic sequence - sedimentation conditions 106 

Sedimentation of the Dogger to Kimmeridgian sequence occurred in a quiet marine environment 107 

(ANDRA, 2001, 2005). Close to the URL site, the Dogger unit mainly consists of 230 m-thick 108 

limestone of shallow-platform, with local emersion episodes (Vincent, 2001; Carpentier, 2004). The 109 

overlying Callovian-Oxfordian unit (so-called C2) consists of 130 m-thick fine-grained siliciclastic 110 

sediments with a dominant clay component, and represents a deepening of the carbonate plateform 111 

(Figure 1). The boundary between Dogger and COx units is marked by one or several 112 

sedimentation gaps. The sedimentation change to the Oxfordian corresponds to an evolution 113 

towards a new shallow carbonate platform with local emersions and important reef constructions 114 

(Vincent, 2001; Carpentier, 2004). The carbonate platform consists of 290 m-thick limestones 115 

(oolitic shelf limestone, bioherms and microorganisms-rich limestone). Overlying Kimmeridgian 110 116 

m-thick sediments correspond to three carbonate-claystone units that mark another deepening of 117 

the platform.  118 

 119 

Tectonic setting 120 

The eastern Paris basin evolved in an extensional tectonic regime during the Lower and Middle 121 

Jurassic, without any significant structural features during the COx sedimentation (Guillocheau et 122 

al., 2000). Tectonic episodes were recorded at the base of the Cretaceous and during Aptian. The 123 

major extensional phase occurred during Oligocene, producing vertical movements superimposed 124 

on earlier vertical and lateral movements of pre-existing faults (Guillocheau et al., 2000; Bergerat et 125 

al., 2006). Nowadays the COx unit in the studied area slightly dips at 1-2° to the west within a 126 

monocline due to subsidence at the centre of the basin. The URL site is bounded by major regional 127 

fault zones of the Pyrenean and Alpine cycles namely the Vittel fault to the south, the N035 128 

Gondrecourt graben to the east and the NNW-SSE subvertical Marne fault to the west. Geophysical 129 

monitoring indicate low seismicity and only slight vertical movements suggesting minimal tectonic 130 

activity in the area. 131 
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Organic matter study, fluid inclusion microthermometry and the thermal stability of clay indicated 132 

that COx unit has not undergone significant thermicity along geological times, paleotemperature 133 

never exceeding 50°C (Pellenard et al., 1999; Buschaert et al., 2004; Elion et al., 2005; Clauer et 134 

al., 2007). This maximum temperature was reached at the end of Cretaceous sedimentation 135 

(Guillocheau et al., 2000; Vincent et al., 2007). 136 

 137 

Petrography – Previous works 138 

Sediments of the COx unit consist of a dominant clay fraction associated with carbonate, quartz with 139 

minor feldspars (K-feldspar and albite) (Figure 1b). Evolution of clay fraction proportions are 140 

correlated with three transgression/regression cycles identified along long distances on the basis of 141 

some well-known carbonate reference levels (Rousset and Clauer, 2003; Clauer et al., 2007). A 142 

decimetre-thick unit of bentonite was also described at a depth of 351 m in the borehole HTM102 143 

(Pellenard et al., 1999), then identified later in boreholes EST103/104 and EST205 (Pellenard and 144 

Deconinck, 2006). 145 

Two major groups of rocks were distinguished on the basis of the clay content (Rousset and Clauer, 146 

2003; Yven et al., 2007). The first group is essentially observed at the top of the COx unit 147 

(corresponding to C2c and C2d sub-units) between 417 and 445 m depth in the URL site, and 148 

consists of carbonate siltite and silty limestones with alternating hemipelagic clays and detrital 149 

materials. The second group is observed between ~445 and 545 m at the bottom of the COx unit 150 

(corresponding to C2a and C2b sub-units) and consists of silt carbonate claystone with alternating 151 

decimetre-thick layers of bioclastic limestone at 517 m depth. The maximum clay zone (MCZ) 152 

defined at 486-489 m depth in borehole EST205 (sub-unit C2b) corresponds to the maximum depth 153 

of water attained during the major cycle of sea-level variations in the basin. Beneath and within the 154 

MCZ, clay fraction is high (40-60 %) and clay minerals consist of illite, ordered illite/smectite mixed-155 

layers with dominant illite, kaolinite, chlorite and minor biotite (Pellenard et al., 1999; Mosser-Ruck 156 

et al., 1999; Rousset and Clauer, 2003; Blanc and Gaucher, 2003; Gaucher et al., 2004; Pellenard 157 

and Deconinck, 2006; Yven et al., 2007). Chlorite is tri-octahedral, iron-rich and of chamosite-type, 158 

according to the Hey classification (Gaucher et al., 2004). Above the MCZ, the clay fraction 159 

decreases towards the top in favour of a silty then of a calcareous-rich fraction (Gaucher et al., 160 

2004; ANDRA, 2005). Kaolinite and biotite disappear, and the ordered illite/smectite mixed-layers 161 

are replaced by disordered illite/smectite mixed-layers dominated by smectite. The change of clay 162 

minerals is attributed to a change in the sources of terrigenous material related to the 163 

paleogeographic and geodynamic evolution of the basin rather than to burial diagenesis (Landais 164 

and Elie, 1999; Pellenard et al., 1999; Rousset and Clauer, 2003; ANDRA, 2005; Clauer et al., 165 

2006). Several studies of the COx clay fraction using various analytical approaches provided 166 

evidence for very discrete diagenetic clay phases (Mosser-Ruck et al., 1999; Claret et al., 2004; 167 

Clauer et al., 2007).  168 
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Carbonates are composed of an important detrital bioclastic fraction (Vaslet et al., 1995; Le Nindre 169 

et al., 1995) and of diagenetic carbonates (Gaucher et al., 2004; Tournassat et al., 2008). The 170 

carbonate bioclastic fraction studied in the drillholes MSE101, HTM102 and EST103 locally 171 

represents up to 30-40 % of the claystone (Vaslet et al., 1995; Le Nindre et al., 1995; Ferry et al., 172 

2007).  It is composed of fauna from different levels of the benthos and from the dismantling of the 173 

carbonate platforms, the amounts depending on the sedimentation conditions. Prevailing fossils are 174 

bivalves from the upper part of the benthos, but pelagic bivalves (posidonomya), sponges, 175 

foraminifers, brachiopods and echinoderms from the deep benthos are also present. Previous 176 

observations of carbonate bioclasts were performed in the framework of the study of iodine in 177 

carbonates (Claret et al., 2010; Lerouge et al., 2010b). The diagenetic carbonates are virtually all 178 

micritic calcite forming the cement of the rock but minor 10 µm-sized euhedral calcite and dolomite 179 

grains are also dispersed in the sediment (Buschaert et al., 2004; Gaucher et al., 2004; Clauer et 180 

al., 2007). The dolomite content ranges between 2 and 9 %, independently of the whole carbonate 181 

content of the rock (Pearson correlation coefficient = -0.01, p-value = 0.97, data after Gaucher et al., 182 

2004). 183 

Accessory diagenetic minerals are pyrite, sphalerite, celestite, siderite, glauconite, and silica 184 

(Gaucher et al., 2004). Their contents rarely exceed 1-2 %.  Accessory detrital minerals are 185 

chalcopyrite, rutile and titano-magnetite. Detrital organic matter in claystone samples do not exceed 186 

~1.4 w% (Disnar et al., 1996; Cassagnabère, 2001; Claret et al., 2004; Gaucher et al., 2004). 187 

Chemical studies showed that terrestrial organic matter is ubiquitous in the clay formation, whereas 188 

marine-derived organic matter is mostly observed at the Callovian-Oxfordian transition 189 

corresponding to the MCZ (Fauconnier, 1995; Disnar et al., 1996; Michels, 2001; Hautevelle et al., 190 

2007). 191 

Very few tectonic features were described in the COx unit, in contrast to the surrounding limestones 192 

in which joints, tensional cracks, styloliths and microfaults are numerous (ANDRA, 2005). 193 

 194 

Isotopic geochemistry – Previous works 195 

The oxygen and carbon isotopic compositions of micritic cement in the COx unit are those expected 196 

for marine calcite or sometime slightly depleted in 18O (δ13C ~ +0.5 to +2.0 ‰ PDB and δ18O ~+26.2 197 

to +28.3 ‰ SMOW) (Buschaert et al., 2004). Only two objects in the Oxfordian part of the COx unit, 198 

a tiny fracture (sample HTM2343/356.2 m) and small bioclasts filled with calcite (HTM854/371 m), 199 

exhibit δ18O ~ 20.9 to +23.7 ‰ SMOW, indicating a meteoric component with a δ18O ranging 200 

between -6.8 to -2.5 ‰ for temperatures of 32-42°C (Buschaert et al., 2004). 201 

The present-day pore waters in the COx unit have a δ18O (– 7 and -4 ‰ SMOW) indicating a 202 

meteoric origin (Girard et al., 2005; Giannesini, 2006) which is distinct from those of adjacent 203 

limestones (Buschaert et al., 2007). 204 
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The strontium isotopic composition of calcite and other carbonates (dolomite, siderite) was 205 

measured in samples from the COx unit using a sequential extraction procedure avoiding any 206 

contamination from strontium adsorbed on clay minerals (Lerouge et al., 2010). The strontium of the 207 

exchangeable fraction separated using cobalt hexamine trichloride extraction has a relative 208 

homogeneous 87Sr/86Sr ratio ranging between 0.7073 and 0.7075. Its similarity with present-day 209 

porewaters (0.7074–07076; Vinsot et al., 2008) indicates equilibrium between exchangeable 210 

strontium absorbed on clay minerals and present-day waters. The 87Sr/86Sr ratio of the calcite 211 

fraction extracted by Na acetate buffered with acetic acid at pH 5 ranges between 0.706936-212 

0.707163 (0.706930-0.707148 with correction age at 160 Ma). This fraction corresponds to micritic 213 

calcite, euhedral calcite and calcium carbonate polymorphs from the bioclasts of the Callovian-214 

Oxfordian benthic microfauna.  Its strontium signature has a range of values consistent with 215 

Callovian-Oxfordian seawater (0.7068–0.7072; Jones et al., 1994), i.e. the age of sedimentation and 216 

burial. The 87Sr/86Sr ratio of other carbonates (dolomite and siderite) extracted by EDTA (0.706833-217 

0.707135) are also consistent with pristine Callovian-Oxfordian seawater. The small detrital fraction 218 

(K-micas and feldspars) shows high strontium isotope values, in agreement with their Hercynian 219 

continental origin, providing evidence of low exchange with other main strontium fractions. The 220 

87Sr/86Sr ratios of celestite provide evidence of two generations. A first generation (EST05433, Bure 221 

1, Bure 2, EST20714: 87Sr/86Sr ratios ~ 0.7069-0.7070) directly precipitated from the Callovian-222 

Oxfordian porewaters or remobilizing the Sr released by the recrystallization of the primary 223 

carbonate bioclasts, and consequently recorded chemical conditions of sedimentation and early 224 

diagenesis. A later generation of celestite infillings (sample EST05485) exhibits an 87Sr/86Sr ratio 225 

(0.707373) close to present-day pore waters and is clearly in equilibrium with the exchangeable ions 226 

and with present-day porewaters. 227 

 228 

229 
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2. Material 230 

 231 

Twenty-five core samples representative of the COx unit were selected at different depths of seven 232 

boreholes (EST205, EST212, EST423, PAC1001, PAC1002, PAC2001, PAC2002) from different 233 

ANDRA drilling campaigns (Figure 1a). Samples were stored in aluminium bags under vacuum or 234 

under nitrogen gas just after drilling. Samples location is plotted in a stratigraphic log along with the 235 

mineralogy of EST205 borehole (Gaucher et al., 2004 - Figure 1b).  236 

Among these 25 core samples, two are carbonate-rich claystone (EST12436, EST20714) of the 237 

C2b sub-unit, and five are limestone (EST5433, EST20433, EST5485, EST21400, K108) of the C2c 238 

and C2d sub-units. Others are claystone of the C2b and C2c sub-units, containing bioturbations 239 

filled with pyrite. 3 clay-rich samples of the sub-unit C2b contain cm-sized pyritous ammonite 240 

(EST25380, EST5738, EST26479), one clay-rich sample of the C2b sub-unit contains a mm-sized 241 

tooth fossil (EST5724). Sample EST12536, from a decimetre-thick layer of bioclastic carbonate-rich 242 

claystone at the bottom of the C2b sub-unit, contains cm-sized specimens of brachiopods and pyrite 243 

layers. Cracks crosscutting the rock bedding and attributed to compaction were only observed in 244 

two samples (EST20714, EST05485). Core sample EST20714 is a carbonate-rich claystone (sub-245 

unit C2b) crosscut by a cm-thick crack mainly filled by celestite. Core sample EST5485 (sub-unit 246 

C2c) is a limestone containing 5 mm-thick cracks filled with celestite, chalcedony and carbonate. 247 

Among the twenty five selected samples no tectonic feature was identified. 248 

Eight other rock samples, collected from the excavation of the main gallery were selected for their 249 

exceptional mineralogy, texture and fossil contents (samples Bure 1 to Bure 8). They were stored 250 

without any peculiar caution. Bure 1 to 6 are carbonate-rich samples. Bure 1, 2 and 3 contain shells 251 

of bivalve (up to 4-5 cm in size) filled with celestite and chalcedony. Bure 2 shows exceptional cm-252 

scale euhedral grains of celestite filling shell cavities. Bure 4, 5 and 6 contain remnant forms of 253 

shells filled with silica (mainly chalcedony with scarce quartz). Bure 7 and 8 consist of 254 

homogeneous claystone. Bure 7 contains two cm-scale nodules of pyrite. Bure 8 shows scarce 255 

entire cm-sized specimens of bivalve, Terebratula and Rhynchonella. Two of these carbonate shells 256 

were previously characterized (Lerouge et al., 2010b).  257 

 258 

259 
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3. Methods 260 

3.1. Mineral characterization 261 

 262 

Optical observations were performed using an Olympus BH2 microscope under transmitted and 263 

reflected lights. The size of mineral grains and particles were measured under the microscope using 264 

the Archimed®software calibrated with a micrometer. The range of size range given for each 265 

diagenetic phases are approximate and only given for information. 266 

Observations and analyses with Scanning electron microprobe (SEM) were performed on polished 267 

thin sections of samples on a JEOL JSM 6100 coupled with an energy dispersive spectrometer 268 

(Kevex Quantum) tuned at 25 kV. Prior to analysis, a 10-20 nm thick carbon layer was sputter-269 

coated on thin polished sections (Edwards Auto 306). 270 

Observations with Transmission Electron Microscope (TEM) were performed on a Phillips CM20 271 

with a CCD Gatan camera, at 200 kV. TEM samples were prepared by dispersing the powdered 272 

samples in alcohol using ultrasonic treatment, dropping them onto a porous C film supported on a 273 

Cu grid, and then drying them in air. 274 

Cathodoluminescence (CL) was used to identify Ca-carbonate polymorphs (aragonite and calcite) 275 

and to distinguish carbonate biomineralization and diagenetic calcite. The luminescence 276 

characteristics of carbonate minerals are controlled by the relative abundances of rare earth 277 

elements (REE), manganese and iron, and by their crystalline framework. The most common 278 

extrinsic colors of calcite and aragonite are, respectively, yellow–orange to orange and yellow–279 

green to green. As a consequence, CL measurements enable to distinguish easily these two 280 

polymorphs of CaCO3. The system used was a cold cathode Cathodyne from OPEA Society 281 

(Laboratoire Optique Electronique Appliquée). The electron beam has adjustable energies up to 26 282 

keV and currents up to 250 lA. The cathodyne is mounted on a Olympus microscope allowing 283 

magnification up to 10�. The system is equipped with a JVC KYF75U tri-CCD digital camera. The 284 

three 12 mm-sized sensors have a resolution of 1360 � 1024 pixels. 285 

Spot analyses of carbonates, silicates and sulphates were performed on polished thin section of 286 

samples covered with a carbon coating, using a CAMEBAX SX50 electron microprobe with an 287 

acceleration voltage of 15 kV, a current beam of 12 nA and a 1-2 µm beam width. Peak and 288 

background counting times were 10 s for major elements and 40 s for Ba, Sr and S. Detection limits 289 

were 970 ppm for Ba, 570 ppm for Fe, 545 ppm for Mn, 160 ppm for Sr and 210 ppm for S. Electron 290 

microprobe analyses of pyrite were performed with an accelerating voltage of 20 kV and a current 291 

beam of 20 nA. Standards used included both well-characterized natural minerals and synthetic 292 

oxides. Matrix corrections were made with a ZAF computing program. 293 
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3.2. Stable isotopes 294 

 295 

Pyrite and celestite were separated by handpicking under binocular, and then grounded in an 296 

agate mortar. Sulphur isotope analyses were performed on about 200-300 µg of pyrite and celestite 297 

using an elemental analyzer coupled to a delta-Plus CF-IRMS. Oxygen isotope analyses were 298 

performed on about 300 µg of celestite with an elemental analyzer consisting of a high temperature 299 

oxidizer coupled to a Delta-plus CF-IRMS.  300 

Calcite, dolomite and siderite were selectively extracted from about 400 mg of bulk rock by acid 301 

attack with pure phosphoric acid.  Calcite was extracted first by reaction at 25 °C for 4 h (McCrea, 302 

1950), dolomite and ankerite were extracted second by a reaction at 50 °C for 48 h, and siderite 303 

was extracted third by a reaction at 100 °C for 48 h, following Rosenbaum and Sheppard (1986). 304 

CO2 samples obtained in this way were analysed for their isotopic compositions using a Delta S 305 

Finnigan-Mat gas-source mass spectrometer.  306 

Silica phases were separated by handpicking then cleaned using a HCl 25% solution and dried 307 

at 50 °C. Oxygen isotopes were measured on silica using the conventional method of Clayton and 308 

Mayeda (1963). About ten mg of silica were used for analysis. The temperature of the preliminary 309 

step of the sample degassing was fixed at 50 °C.  310 

 311 

All the results are reported in δ units relative to international standards, defined by: δ = 312 

(RSample/RStandard -1) x 1000 ‰, where R is the measured isotopic ratio in the sample and in the 313 

standard: SMOW for oxygen, PDB for carbon and CDT for sulphur. Reproducibility was ± 0.2 ‰ for 314 

oxygen and carbon and ± 0.3 ‰ for sulphur. 315 

 316 

 317 

318 
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4. Petrology 319 

 320 
Petrological work consisted in describing the major mineralogical and textural characteristics of the 321 

studied samples in order to establish the diagenetic mineral sequence in the COx unit. Studied 322 

samples were divided in two groups, limestone and claystones on the basis of their clay content, 323 

according to previous works (Rousset and Clauer, 2003; Yven et al., 2007). The two carbonate-rich 324 

claystone samples (EST12436 and EST20714) were included in the claystone group. Exceptional 325 

macroscopic textures, mineral and fossils are separately described.  A preliminary diagenetic 326 

sequence is established both for limestone and claystones. A complete diagenetic sequence is 327 

presented further, after integration of chemical and isotopic data. 328 

4.1. Petrographic descriptions  329 

 330 

General characteristics of COx samples - carbonate claystones  331 

Samples of claystone from the C2a and C2b appear dark greenish, homogeneous, and very fine-332 

grained; they contains rare pyritous bioturbations (Figure 2a) and fossils (Figure 2b). The matrix 333 

consists of dominant detrital mineral particles and bioclasts, which are cemented by micritic calcite 334 

associated with minor framboidal or euhedral pyrite (Figure 2c). Detrital mineral particles are 335 

composed of dominant <2µm-sized clay particles, 10-50µm-sized grains of dominant quartz and 336 

minor K-feldspar, and rare 10-50 µm-long flakes of muscovite and chlorite, which underline the 337 

bedding. Backscattered electron images of framboidal pyrite in several samples show that 338 

framboids consist of numerous micronic euhedral pyrite recovered by a fine coating of calcite and 339 

organic matter (Figure 2d). Rutile and ilmenite occur as rare <5 µm-sized grains. Detrital mineral 340 

particles do not show significant sign of dissolution under the microscope, except ilmenite grains.  341 

Bioclasts essentially occur as 10 to 50 µm-sized clasts of colourless carbonate shells and tests, 342 

more rarely as calcium phosphate clasts showing a specific honey colour, and as 50-200 µm-sized 343 

black particles of organic matter (Figure 2c). Among carbonate clasts, shells of bivalves 344 

(posidonomya and undetermined bivalves) and brachiopods, and tests of echinoderms were 345 

identified in the samples of this study. Among calcium phosphate clasts, two mm-sized fossils filled 346 

with framboidal pyrite in sample EST5724 were identified as tooth of pycnodonts already described 347 

in the Cox unit elsewhere in the Paris Basin or as tooth of crustacean decapods found in the 348 

Kimmeridgian marls and limestones overlying the Cox unit at Bure (Carpentier et al; 2006). Calcium 349 

phosphate clasts do not show significant sign of dissolution under the microscope. On the contrary, 350 

an important proportion of the carbonate bioclasts is partially dissolved or recrystallized into micritic 351 

calcite and occasionally pyrite. 352 
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Intergranular pores larger than 10 µm and disseminated in the matrix are filled by 10-60 µm-sized 353 

euhedral limpid grains of calcite (Figures 2c, 2e), dolomite (Figure 2f) and scarce deep-green 10-50 354 

µm-sized clusters of glauconite (Figure 2c). Siderite occurs as 10-50 µm-sized anhedral to sub-355 

euhedral grains disseminated in the matrix of samples EST5724 and EST25380 (Figure 2g). 356 

Several euhedral grains of calcite and dolomite show growth zoning with µm-sized pyrite at their 357 

interface (Figure 2f). The residual pores in the largest bioclasts (50-200 µm) are partially filled by 358 

pyrite and micritic calcite on their rims, and by a limpid and 10-50 µm-sized calcite (microsparite) in 359 

their core. In sample K119, few anhedral to euhedral 10-50 µm-sized grains of sphalerite occur with 360 

microsparite (Figures 2h, 2i). In samples EST5554, EST5724 and K119, celestite occurs as 5-20 361 

µm sized crystals associated with calcite infilling a microfossil test. 362 

 363 

General characteristics of COx samples – silty limestones 364 

Samples of silty limestone are hard, greyish, homogeneous and fine-grained, and do not exhibit 365 

bedding (Figure 3a). The matrix consists of dominant micritic calcite containing detrital <2 µm-sized 366 

clay particles, quartz grains and numerous bioclasts which are partially to entirely recristallized into 367 

calcite associated with framboidal pyrite (Figure 3b). Bioclasts are dominantly carbonate tests of 368 

foraminifers. Shells of bivalves, echinoderms, and brachiopods are more heterogeneously 369 

distributed. Glauconite occurs as numerous disseminated green clusters in all the limestone 370 

samples. In sample K108, glauconite is present in the core of a 30 µm-sized cavity rimmed by 371 

micritic calcite with minor pyrite (Figure 3c). The largest pores (10-50 µm) in clay-rich zones contain 372 

limpid calcite (microsparite), whereas the largest bioclasts (50-200 µm) are filled by limpid calcite, 373 

dolomite followed by minor celestite (Figures 3d, 3e). Chalcedony is rarely present, as late phase 374 

filling largest pores with rims of micritic calcite (Figure 3f). 375 

 376 

Pyritous ammonites 377 

Three specimens of pyritous cm-sized ammonites separated in samples EST5738, EST26479 and 378 

EST25380 (bottom of the C2b sub-unit) were cut in half and polished to observe their internal 379 

structure (Figure 4a). On the three polished sections, the ammonite shell is partially preserved as 380 

remnant fragments of calcium phosphate, whereas septa are entirely replaced by limpid calcite 381 

(Figure 4b). Mud is present in core of the shell, whereas the chambers (camerae) are filled with 382 

coalescent framboids of pyrite mixed with euhedral pyrite grains, sparitic calcite, celestite and minor 383 

euhedral crystals of sphalerite (Figured 4b, c). Several crystals of sphalerite contain inclusions of 384 

framboidal pyrite (Figure 4d). 385 

Pyritous nodules in sample Bure 7 from the gallery 386 

Two pyritous cm-sized nodules of the sample Bure 7 were cut in half and polished. First nodule is 387 

fully built-up with coalescent framboids of pyrite showing calcite-filled cracks having a radial 388 

orientation. The second nodule is composed of remnant organic structures surrounded by 389 
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coalescent framboids of pyrite (Figure 4e). The main remnant organic structure is reworked by 390 

polyphased micro-cracks sub-parallel and perpendicular to it (Figure 4f). The micro-cracks are 391 

bordered firstly by sub-euhedral to euhedral pyrite, and secondly by elongated euhedral grains of 392 

marcasite. Organic structures are partially pyritized with traces of galena [PbS] (Figure 4g). The 393 

residual porosity is filled with calcite and celestite (Figure 4h). 394 

 395 

Pyritous structures associated with brachiopods 396 

 The shell-rich carbonate-rich claystone EST12436 (bottom of the C2b sub-unit) contains pyrite 397 

layers and several specimens of brachiopods (Figures 5a, 5b). Tangential and longitudinal sections 398 

through well preserved brachiopod shells provide evidence of punctuate brachiopod (probably 399 

Terebratulid) with elliptic punctuae fully crosscutting the multi-layer low-angle fibrous shell wall and 400 

filled with micritic calcite and framboidal pyrite (Figures 5a, 5c).  401 

Residual cavity of the shell has a geopetal fill that consists of internal mud sediment and diagenetic 402 

minerals: microsparite to sparite on the rims, and celestite and minor sphalerite in the core (Figures 403 

5c-e). A sphalerite mass encapsulates an euhedral dolomite grain (Figure 5d). Complex organic 404 

structures are observed in the longitudinal section through the both valves of the brachiopod and in 405 

pyrite layers (Figures 5f-h). Organic matter is partially degraded and intimately associated with mm-406 

thick pyrite layers and µm-sized barite underlying ancient organic structures (Figures 5f-g). A part of 407 

the pyrite layers is broken and crosscut by barite veinlet (Figure 5f); residual porosity is filled with 408 

calcite, µm-sized crystals of celestite and sphalerite. Backscattered electron image of celestite 409 

crystals provides evidence of Ba-Sr zoning (Figure 5h). 410 

 411 

Entire shells of bivalve and rhynchonella in sample Bure 8 from the gallery 412 

Three entire specimens - rhynchonella, bivalve and Terebratula, were extracted from the carbonate-413 

clay matrix of sample Bure 8, and mounted in thin polished sections. Observations with optical 414 

microscope, electronic microscope and cathodoluminescence were performed to define the shell 415 

organization, its recrystallization state and the type of calcium carbonate polymorph. Rhynchonella 416 

shell is well-preserved (Figure 6a-b). Cathodoluminescence image indicates that shell consists of 417 

elongated aragonite (green colour) partially recrystallized into calcite (red colour) (Figure 6c). 418 

Observations of bivalve shell provide evidence of the wholly recrystallization of bio-carbonate into 419 

diagenetic calcite (dark red in cathodoluminescence) containing numerous inclusions of celestite 420 

(Figures 6d-f). Cross-section of Terebratula shell provides evidence of remnant internal cell 421 

structures filled by diagenetic pyrite in a shell composed of fine prismatic organic structures filled by 422 

bio-carbonate (Figures 6 g-i). 423 

 424 

Replacements and infilling of shells in the samples Bure 1 to Bure 6 from the gallery  425 
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Bure 1, 2 and 3 are samples of hard greyish homogeneous limestone containing several cm-sized 426 

bivalve shells filled with silica and celestite (Figure 7a). The carbonate matrix consists of micritic 427 

calcite with numerous partially to entirely recrystallized carbonate bioclasts (foraminifers, 428 

echinoderms, bivalve). Longitudinal sections of bivalve shell show remnant palissadic (prismatic) 429 

calcite partially dissolved and replaced by fibrous chalcedony (Figure 7b). Bivalve inner-part is filled 430 

with large euhedral crystals of calcite (sparitic calcite) growing on the shell and a central part of 431 

chalcedony and celestite (Figure 7c). Sparitic calcite encapsulated euhedral grains of dolomite and 432 

glauconite (Figure 7d). Rare structures of framboidal pyrite occur in celestite and calcite, without any 433 

evidence of mineral disequilibrium (Figure 7e).  Irregular contact between chalcedony and celestite 434 

and dolomite, and celestite and dolomite inclusions enclosed in chalcedony, observed in Bure 3 435 

indicate a partial dissolution of celestite and dolomite (Figure 7f).  436 

Bure 4, 5 and 6 are quite similar to Bure 1, 2 and 3. They contain cm-sized bivalve shells showing 437 

an important replacement of calcite by chalcedony. Bure 6 also contains small euhedral quartz 438 

growing on the replaced shell. Celestite was barely detected. 439 

 440 

Crack infillings 441 

Carbonate-rich claystone sample EST20714 contains a cm-sized celestite crack crosscutting the 442 

bedding of the rock (Figure 8a). This vein is crosscut by fine mm-sized veinlets of µm-size grained 443 

calcite, and one of these borders is crosscut by a fine mm-sized veinlet of chalcedony (Figure 8b). 444 

No mineralogical change was observed at claystone matrix/crack contact.  445 

Limestone sample EST5485 contains mm-thick cracks rimmed first by limpid fine-grained calcite 446 

and secondly by euhedral dolomite with residual pores filled by celestite (Figures 8c-d). A 100 µm-447 

thick veinlet of chalcedony crosscut dolomite and celestite. The matrix essentially consists of fine-448 

grained greyish calcite with minor quartz grains and foraminifer tests which are replaced and filled 449 

with limpid calcite. 450 

Limestone sample EST20433 contains a 5 mm-thick crack or vug rimmed firstly by limpid fine-451 

grained calcite, secondly by euhedral coarse-grained sparite then filled by euhedral mm-scale 452 

quartz (Figure 8e-f).  A fine veinlet of chalcedony crosscut the border of the crack. The contact 453 

between chalcedony and calcite is irregular. The limestone matrix essentially consists of fine-454 

grained greyish calcite with minor quartz grains and numerous carbonate clasts which are replaced 455 

and filled with limpid calcite. 456 

4.2. Diagenetic sequence 457 

 458 
Mineralogy and textural relationships allowed determining a preliminary chronology of diagenetic 459 

minerals in claystone and limestone relative to major stages of sedimentary history – Eogenesis 460 

(just after the sediment deposit), Mesogenesis (compaction and burial) and possibly Telogenesis 461 
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(tectonic events). Major informations were deduced from claystone; complementary data were 462 

obtained from limestones.  463 

 464 

In all claystone samples, cement of micritic calcite associated with minor framboidal pyrite 465 

surrounds all detrital particles, replaces and filled most of the carbonate bioclasts, and is likely the 466 

first and the main cementation assemblage formed just after the deposition of the sediment 467 

(Eogenesis). Inclusions of framboidal pyrite in euhedral calcite and dolomite suggest that a part of 468 

euhedral calcite and dolomite is contemporaneous of the pyrite formation. The mm-thick pyrite 469 

layers observed in the sample EST12436 are broken and highly reworked, suggesting that pyrite 470 

layer has been affected by the compaction and consequently has been formed before or relatively 471 

early during compaction (Eogenesis to early Mesogenesis). The complex texture of pyritous nodule 472 

(Bure 7) provides clues for at least two generations of pyrite. The first one corresponds to 473 

framboidal pyrite commonly observed in other claystone samples. The second one corresponds to 474 

euhedral pyrite associated with marcasite growing on the walls of micro-cracks perpendicular and 475 

sub-parallel to remnant organic structures, and sediment bedding. This latter is consequently 476 

formed later during compaction (Mesogenesis). Microsparite, sphalerite and minor celestite 477 

crosscutting pyrite layers in sample EST12436, infilling residual cavities in pyritous ammonites 478 

(EST5738, EST25380 and EST26479) and small bioclasts (K119), and filling core of cracks in 479 

pyritous nodule (Bure 7), suggests that these minerals are formed later than the both generations of 480 

pyrite, i.e. Mesogenesis. The celestite presence within cracks core surrounded by microsparite 481 

suggests that celestite is formed later than microsparite. A euhedral grain of dolomite is surrounded 482 

by sphalerite in sample EST12436, confirming that euhedral dolomite is formed before sphalerite. 483 

The observed celestite crack crosscutting the bedding in claystone sample EST20714 indicates that 484 

this celestite is formed later than the major compaction stage (Mesogenesis). Veinlets of fine-485 

grained calcite and of chalcedony crosscutting celestite are consequently formed later than celestite 486 

crack. Calcite veinlet crosscut chalcedony veinlet, indicating that calcite is formed later than 487 

chalcedony. 488 

In all the claystone samples, carbonate bioclasts are partially replaced by cement of micritic calcite 489 

with framboidal pyrite and by limpid microsparite, indicating that dissolution of carbonate bioclasts is 490 

slow and is effective from the deposition to the burial at least. Glauconite and siderite are present in 491 

the clay matrix but never in infillings and cracks, it can be hypothesized that they are formed before 492 

the major stage of compaction of formation of cracks (eogenesis to early mesogenesis). 493 

 494 

In all limestone samples, the important replacement of carbonate bioclasts by micritic calcite with 495 

minor framboidal pyrite provides also evidence of a major micritisation stage beginning just after the 496 

deposition (eogenesis).  Limpid calcite (microsparite) filling bioclasts and also as rims growing on 497 

replaced shells and tests could be also attributed  to early stages of replacement of bio-carbonate 498 
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(aragonite and bio-calcite), corresponding to eogenesis and early mesogenesis. The position of 499 

glauconite in the diagenetic sequence is unclear. However the glauconite is always present in the 500 

limestone matrix, never in infillings and cracks, and exceptionally enclosed in a dolomite grain. It 501 

strongly suggests that it is formed relatively early in the diagenetic sequence, at least before 502 

dolomite in cracks. Rare cracks (EST5485) and bioclasts cavities (Bure 1 to Bure 3) filled firstly with 503 

limpid calcite, secondly with dolomite on the border and celestite in the core indicate later formation 504 

of dolomite and celestite as compared to limpid calcite, during the burial (mesogenesis). They are 505 

partly crosscut by chalcedony veinlets and infillings indicative of later chalcedony formation, as 506 

compared to dolomite and celestite (mesogenesis).  507 

The limestone sample Bure 2, containing cm-sized bivalve shells, is peculiarly informative on the 508 

mineral equilibrium between diagenetic phases. Rare pyrite structures in contact with celestite and 509 

dolomite show that pyrite forms earlier than celestite and dolomite. Regular contact between pyrite 510 

and celestite suggests that fluid forming celestite remains at equilibrium with early pyrite. To the 511 

contrary, chalcedony occurs as replacement of calcite in bioclasts and as infilling crosscutting 512 

sparite, dolomite and celestite in bioclast cavities with dissolution contacts between chalcedony and 513 

other phases. These observations confirm that chalcedony infilling is formed later than celestite, 514 

sparite and dolomite, and from a fluid that was not at equilibrium with them; chalcedony in 515 

replacement of bio-calcite is probably earlier than celestite, and not at equilibrium with calcite which 516 

it replaces.  517 

A crack filled firstly with sparite then by quartz in the limestone sample EST20433 provides 518 

evidence for diagenetic quartz formed later than sparite during burial (mesogenesis). The regular 519 

quartz-sparite contact suggests that the quartz precipitated from a fluid remaining at equilibrium with 520 

calcite. The crack border is reworked by a chalcedony veinlet without contact between chalcedony 521 

and quartz. On the contrary of quartz, chalcedony/sparite contact exhibits dissolution features, 522 

demonstrating that chalcedony is formed from a fluid not at equilibrium with calcite, as previously 523 

observed in sample Bure 2. Although no textural relationship is observed between chalcedony and 524 

quartz, the contrasting contacts with sparite indicates they are not precipitated from the same fluid, 525 

and thus are not contemporaneous. 526 

 527 

According to observations in claystone and limestone samples, a summary of mineral sequence can 528 

be proposed:  529 

1) early diagenesis (eogenesis and early mesogenesis) is marked by an important micritic 530 

cementation associated with minor pyrite, euhedral dolomite and glauconite. Textural 531 

relationships indicate that glauconite is formed later than pyrite. Rare chalcedony in matrix is 532 

formed later than previous diagenetic phases; its formation in replacement of shells in Bure 533 

samples suggests it is earlier than minerals filling cavities and cracks. This early replacement of 534 

shell favours its resistance to mechanical compaction. 535 
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2) Mesogenesis is marked by filling of cavities and cracks successively by: 536 

- Sparite/dolomite and celestite; sphalerite is associated to this stage in claystone. 537 

- Chalcedony which crosscut celestite,  538 

- Post-celestite calcite only in carbonate-rich claystone EST20714 539 

- Quartz in crack only in limestone EST20433 540 

The occurrence of these phases in cracks clearly indicates they are formed during or later than 541 

major compaction.  542 

4.3. Mineral chemistry 543 

 544 
The petrological study was completed by SEM, TEM observations and EPMA elemental mapping 545 

and analyses. The two objectives of this complementary work were first to define the stability of the 546 

detrital clay minerals and bioclasts and second to identify chemical evolution of pore water via 547 

changes of mineral chemistry (such as in carbonates, pyrite, sulphates). 548 

 549 

Clay minerals 550 

 551 
EPMA analyses were performed on detrital clay minerals of the <2 µm fraction deposed on a thin 552 

section and on 10-100 µm-sized flakes of detrital biotite, muscovite and chlorite, and on diagenetic 553 

glauconite observed in polished thin sections of several limestone and claystone samples. 554 

Complementary TEM observation was performed on the <2µm fraction in the sample EST25380 to 555 

estimate biotite content and its stability. 556 

Flakes of chlorite and biotite (7 particles out of 70) were observed by TEM among the <2µm 557 

particles of illite and illite-smectite mixed layer. Biotite occurred as relatively dark particles of 558 

heterogeneous appearance because of numerous associated rutile grains (Figure 9a).  559 

EPMA analyses of clay minerals reported in a Si/4 - (Na+K+2Ca) - (Fe + Mg) ternary diagram show 560 

that the average composition of the <2µm fraction belongs to the triangular field of illite and illite-561 

smectite mixed layer (Figure 9b). Biotite analyses plot along two lines: a first line between biotite 562 

and chlorite end-members interpreted as biotite partially altered to chlorite (K depletion at constant 563 

Fe-Mg), and a second line toward the illite end-member, attributed to illitisation of biotite (iron 564 

depletion at constant K). Chemical cross-sections through biotite grains show the chemical 565 

evolution of biotite into illite at the rims of the grain, marked by the significant loss of iron and of 566 

titanium. The Ti content measured in the core of the biotite particles is relatively high (up to 3 wt %), 567 

in agreement with its metamorphic origin.  568 

Chlorite analyses plot in the field of chlorite, but analyses across several particles plot on a line 569 

toward a biotite end member, suggesting that chlorite likely results from the biotite alteration.  570 
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Muscovite analyses form a line typical for muscovite-phengite solid solution. However, some 571 

analyses plot in the illite field, suggesting muscovite illitisation.  572 

Glauconite chemical composition has low K2O (6.07- 7.43 wt %) and high FeO (14.12-16.58 wt %) 573 

contents.  574 

 575 
Carbonates 576 

EPMA analyses were performed on carbonate bioclasts and the different generations of diagenetic 577 

carbonates (Table 1).  578 

Among bioclasts, EPMA analyses were performed on calcite from well-preserved terebratula shell, 579 

partially recrystallized rhynchonella and recrystallized bivalve shells in the sample limestone Bure 8, 580 

and on undetermined bioclasts of the claystone sample EST25380. Calcite from bioclasts is a low-581 

magnesian and iron-poor calcite containing significant sulphur (up to 0.16 wt% S) and strontium (up 582 

to 0.14 wt% Sr). Sulphur and strontium contents decrease with the degree of replacement of bio-583 

calcite by diagenetic calcite. 584 

Micritic calcite has a relative homogeneous composition in limestone samples (Ca0.978-0.980 Fe0.002-585 

0.003 Mg0.016-0.019 CO3) and in claystone samples (Ca0.957-0.968 Fe0.011-0.012 Mg0.020-0.029 CO3). It is a low 586 

magnesium calcite (LMC) with traces of Mn and Sr. Micritic calcite in claystone is slightly enriched in 587 

Fe, Mg and Mn as compared to micritic calcite in limestone. 588 

Microsparite filling cavities has a composition quite similar to micritic calcite in the limestone sample 589 

EST5485 and shows a slight iron-enrichment in claystone samples (Ca0.943-0.968 Fe0.015-0.038 Mg0.016-590 

0.027 CO3). 591 

Calcite in veinlet crosscutting celestite crack in the carbonate-rich claystone sample EST20714 has 592 

a chemical composition similar to microsparite (Ca0.96-0.968 Fe0.020 Mg0.012 CO3). 593 

All three populations of diagenetic calcite have lower strontium contents than bio-calcite. 594 

 595 

Euhedral dolomite has in general a slightly higher Ca/Mg in limestone (Ca0.55 Fe0.01 Mg0.44 CO3) than 596 

in claystone (Ca0.48-0.50 Fe0.01 Mg0.49-0.51 CO3). Elemental mapping and EPMA analyses show a 597 

significant iron enrichment of the µm-thick rim of euhedral grains (up to 6.1 wt % FeO corresponding 598 

to a structural formulae Ca0.54 Fe0.07 Mg0.38 CO3) (Figure 10). 599 

Dolomite bordering cracks in the limestone sample EST5485 has the same Ca/Mg ratio than 600 

euhedral dolomite in limestone, but significant higher iron content (up to 4.8 wt % FeO 601 

corresponding to Ca0.54 Fe0.06 Mg0.38 CO3). 602 

 603 

Siderite observed in sample EST25687 is not a pure FeCO3 but contains Mg and Ca (Fe0.66 Ca0.12 604 

Mg0.21 CO3), which place it in the sideroplesite family, according to Mozley (1989).  605 

 606 

Pyrite 607 
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EPMA analyses (major and trace elements) were performed on disseminated framboidal pyrite in 608 

claystones and on massive pyrite of nodules, pyrite layer and pyritous ammonite of the sub-unit C2b 609 

(Table 2). All the analyses have roughly pyrite stoichiometry, even when the sum of elements is 610 

lower than 100 wt %, due to the presence of organic matter and micronic calcite.  611 

As, Co, Ni and Pb are main trace elements incorporated in pyrite; Cu and Zn are present in infra-612 

traces. There is no significant chemical variation in pyrite disseminated in matrix from C2b and C2c 613 

sub-units, for Co, Pb, Cu, Ni and Zn, whereas As average content decreases from C2b1 to C2c unit.  614 

The Co/Ni ratio, currently used to define the pyrite type in the literature provides evidence of two 615 

chemical populations depending of its habitus (Figure 11). Pyrite in nodules and pyritous ammonites 616 

from the sub-unit C2b1 is Co-poor (<500 ppm) and has generally a low Co/Ni ratio. In contrast 617 

framboidal pyrite disseminated in the matrix of claystones of the COx unit, whatever the sub-unit, is 618 

richer in Co (500-1400 ppm) and has generally a Co/Ni ratio higher than 1. 619 

 620 

Sulphates 621 

Complex chemical zoning of Ba-Sr sulphate grains is evidenced from elemental mapping, 622 

backscattered electron images and EPMA analyses. Rare barite observed in the claystone sample 623 

EST12436 contains significant amounts of strontium (Sr/(Ba+Sr) ratio up ~0.19). Celestite contains 624 

no barium in limestone samples and variable barium contents in claystone samples, with a 625 

Ba/(Ba+Sr) ratio ranging from 0.07 to 0.16. 626 

 627 

Recorded mineral and chemical changes 628 

Concerning the clay fraction, observations and analyses of clay particles do not indicate signs of 629 

destabilisation, with exception for infra-traces of biotite. 630 

Concerning the carbonate fraction, data indicate 1) diagenetic carbonates are poorer in S and Sr 631 

than detrital carbonate bioclasts, 2) diagenetic carbonates formed at the end of eogenesis and 632 

during mesogenesis are richer in iron than early diagenetic micritic calcite and euhedral dolomite, 633 

and 3) the iron-enrichment of late diagenetic carbonates is more important in claystone samples 634 

than in limestone ones. 635 

EPMA data on pyrite provide evidence of two chemical populations. Early diagenetic pyrite 636 

disseminated in matrix or filling bioturbation contains 500-1400 ppm Co and has Co/Ni ratio higher 637 

than 1. On the contrary pyrite in nodules and pyritous ammonites from the sub-unit C2b1 is Co-poor 638 

(<500 ppm) and has a low Co/Ni ratio. 639 

Late diagenetic celestite occurring through all the COx unit has Ba-Sr chemical zoning in claystone 640 

samples, and is pure in limestone samples. 641 

642 
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5. Stable isotopes 643 

 644 

(C, O, S, Sr) stable isotopes were performed on diagenetic minerals of the mineral sequence in 645 

order to determine the origins of pore waters along the geological times, and to discuss processes 646 

of formation of diagenetic minerals. The analyses were performed on mineral separates when it was 647 

possible, i.e. pyrite, celestite, chalcedony, dolomite and calcite in cracks. (C, O) isotopes on 648 

diagenetic carbonates disseminated in the matrix were performed on bulk matrix using selective 649 

extraction procedure according to Rosenbaum and Sheppard (1986). 650 

 651 

5.1. Carbon and oxygen isotopic data of carbonates 652 

Carbon and oxygen isotopic compositions of calcite, dolomite and siderite were measured on three 653 

samples of bulk rock, on dolomite filling large bioclast in limestone sample EST5433, and on late 654 

calcite crosscutting the celestite crack of the carbonate-rich claystone sample EST20714. Results 655 

are given in Table 3 and reported in a δ18O and δ13C diagram (Figure 12).  656 

Calcite analysed in the bulk rocks correspond to a mixing of carbonate bioclasts (well-preserved 657 

and recrystallized) and micritic calcite with minor euhedral calcite and microsparite. δ18O and δ13C 658 

values range between +27.7 and +28.0 ‰ (SMOW) and between +1.8 and +2.3 ‰ (PDB), 659 

respectively.  660 

Dolomite analysed in bulk rocks essentially corresponds to euhedral dolomite. δ18O and δ13C values 661 

of dolomite range between +27.4 and +27.8‰ (SMOW) and between +1.0 and +2.4 ‰ (PDB), 662 

respectively. Values of calcite and dolomite in bulk rocks are quite similar, and are consistent with 663 

marine carbonates.  664 

Siderite in bulk samples EST25380, EST25687 and EST5724 that have a wide range of δ18O (+25.9 665 

to +29.5 ‰ (SMOW)) and δ13C values (-7.3 to +1.2 ‰ PDB) is slightly 13C-depleted relative to 666 

calcite and dolomite.  667 

δ18O and δ13C values of dolomite filling large bioclast in limestone sample EST5433 (+27.4 and +2.4 668 

‰ respectively) are comparable to values of calcite in bulk rocks, and is slightly 13C-richer than 669 

dolomite in bulk rocks. 670 

Calcite crosscutting celestite crack in sample EST20714, has a δ18O of + 19.6 ‰ (SMOW) and a 671 

δ13C of + 0.1 ‰ (PDB), and is significantly depleted in 18O relatively to calcite in the matrix. 672 

 673 

5.2. Sulphur isotopic data on pyrite 674 

Pyrite was separated from fifteen samples of the sub-units C2b and C2c. Twelve separates consist 675 

of early framboïdal pyrite filling bioturbations and bioclasts, two are of early framboïdal pyrite 676 

disseminated in interstitial, micritic cement and one is of mm-thick pyrite layer in the shell-rich 677 



 

17/12/201017/12/201016/12/2010 22 

carbonate-rich claystone EST12436. Data are given in Table 3. δ34S values of framboidal pyrite, 678 

both filling areas of bioturbation and bioclast and disseminated, range between -38.0 and +34.5 ‰ 679 

(CDT). The mm-thick pyrite layer shows high δ34S value of + 74.0 ‰. Reported in the 680 

lithostratigraphic column, δ34S values of framboidal pyrite are negative in the lower part of the C2b 681 

sub-unit and in the C2c sub-unit, whereas they increase to positive values in the upper part of the 682 

C2b sub-unit (Figure 13).  683 

5.3. Sulphur and oxygen isotopic data on celestite 684 

Celestite filling bioclasts in limestone samples (EST5433, Bure 1, Bure 2, Bure 3) and filling cracks 685 

(limestone EST5485 and carbonate-rich claystone EST20714) was separated and analysed for 686 

sulphur, oxygen (Table 3); strontium isotope data on these celestite separates were acquired in a 687 

previous work (Lerouge et al., 2010a). Celestite filling bioclasts in limestone samples have relatively 688 

homogeneous isotopic signatures (δ34S ~22.5-25.8 ‰ CDT, δ18O ~19.5-20.3 ‰, and 87Sr/86Sr ratios 689 

~ 0.706872-0.706945). Celestite filling cracks in the two samples EST5485 and EST20714 have two 690 

different (O, S, Sr) isotopic signatures (EST20714: δ34S=31.4 ‰ CDT, δ18O=20.7 ‰, and 87Sr/86Sr 691 

ratio ~ 0.707040; EST5485: δ34S =27.3 ‰ CDT, δ18O =21.2 ‰, and 87Sr/86Sr ratio ~ 0.707373).  692 

 693 

5.4. Oxygen isotopic data of chalcedony and authigenic quartz 694 

δ18O values of structural oxygen were measured on the following silica separates: three separates 695 

of chalcedony replacing carbonate shell (Bure 1, 4 and 5), a separate of chalcedony infilling bioclast 696 

and crosscutting celestite and dolomite (Bure 3), a separate of quartz growing on chalcedony which 697 

replaces carbonate shell (Bure 6), two separates of chalcedony crosscutting celestite cracks 698 

(EST5485 and EST20714), and a separate of euhedral quartz filling crack in sample EST20433. 699 

δ18O varied between +19.8 and +31.8 ‰ (Table 3). The isotopic results seem related to the 700 

petrographic groupings. Chalcedony replacing bivalve shells shows high δ18O values, between 701 

+31.3 and +31.8 ‰.  Chalcedony infilling bioclast and partly crosscutting celestite and dolomite has 702 

δ18O values between +26.1 and +28.0 ‰. Euhedral quartz infilling crack in the limestone sample 703 

EST20433 has a significantly lower δ18O value of +19.8 ‰. 704 

 705 

6. Discussion 706 

 707 

Petrological data, textural relationships and mineral chemistry, were informative of phase 708 

stability, texture modifications, diagenetic sequence and consequently chemical evolution of pore 709 

water along geological times. These informations bring constraints on porewater chemistry models. 710 

The mineral stability and texture modifications are also important information to constraint diffusion 711 
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processes through the COx in natural conditions. Stable isotopes complete this data set by giving 712 

information on early sedimentation conditions but also on late diagenetic minerals recording the 713 

diffusion of meteoric waters into the COx unit. Combined petrological and isotopic data allowed 714 

checking mineral stabilities through fluid changes (marine versus meteoric). Strontium isotopic data, 715 

and potentially oxygen isotopes can help to propose a timing of the mineral sequence relative to the 716 

lifetime of the sedimentary basin (Figure 14). 717 

6.1. Detrital minerals and their stability 718 

Among major detrital phases (clays <2 µm, quartz, feldspars and carbonate bioclasts) silicates 719 

(illite/muscovite, illite-smectite mixed layers, chlorite quartz and feldspar) show no evidence of 720 

dissolution in the claystone. Calcium carbonate bioclasts are recrystallized into calcite or dissolved 721 

and replaced by diagenetic phases such as pyrite, chalcedony. Bio-carbonates recrystallization into 722 

diagenetic calcite is associated to the liberation of sulphur (reduced sulphur and sulphate) and 723 

strontium which were involved in the precipitation of diagenetic pyrite and celestite.   724 

The minor, detrital, iron-bearing phases, ilmenite and biotite appear partially destabilized; Ilmenite 725 

breakdown to rutile and biotite breakdown to illite are two reactions that liberate iron which is then 726 

used by the formation of diagenetic iron-bearing phases. However the breakdown of these minor 727 

iron-bearing phases represents a slight contribution to the iron content in pore water. 728 

Among the bioclastic fraction other than bio-carbonates, minor particles of organic matter and 729 

calcium phosphate clasts were identified in the Cox unit, and especially in claystones. Particles of 730 

organic matter was partially degraded and consumed by bacterial sulphate reduction. They are 731 

often associated with pyrite.  732 

The dissolution of detrital phases contributed to initiate secondary porosity. In the Cox unit, the 733 

breakdown of minor detrital micas and accessory ilmenite into secondary clay minerals and rutile, 734 

respectively, did not contribute significantly to create porosity. On the contrary, the dissolution of 735 

carbonate shells and tests could have initiated secondary porosity. 736 

6.2. Chemical changes recorded by cements of the diagenetic mineral sequence 737 

From petrological observations, we deduced that diagenetic phases are not abundant, but that they 738 

have contributed to seal most of the residual porosity visible under the microscope. Mineral 739 

sequence determined in claystone and limestone samples of the COx unit was completed by the 740 

mineral chemistry (Figure 14). 741 

The eogenesis, i.e. just after sedimentation and before any compaction process, is characterized by 742 

a major cementation of micritic low-Mg calcite and pyrite, with minor euhedral calcite and dolomite in 743 

claystone and limestone (stage 1); euhedral calcite and dolomite are essentially identified in 744 

claystone. At the end of this phase, a change of porewater chemistry is recorded by the µm-sized 745 
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rims of euhedral calcite and dolomite, especially marked in claystone, the glauconite deposit at the 746 

scale of the COx unit, and the siderite presence at the maximum clay zone (stage 2).   747 

According to the textural observations, the rare occurrences of other diagenetic minerals: celestite, 748 

sphalerite, chalcedony, associated with late generations of carbonates are formed during the 749 

mesogenesis, i.e. during the burial and the compaction of the COx sediments.  750 

Celestite is observed both in claystone and in limestone; however the mineral association, habitus 751 

and chemistry are slightly different. Celestite is associated with microsparite and sphalerite filling 752 

bioclasts in claystone (EST12436, K119, EST25380, EST26479, EST5738, Bure 7) and without 753 

sphalerite in limestone (Bure 3). Celestite ± dolomite filling crack is only observed in the carbonate-754 

rich claystone sample EST20714 and in the limestone sample EST5485. EPMA analyses of 755 

celestite also provide evidence of significant amounts of Ba in celestite in claystone, whereas 756 

celestite is pure in limestone. Chalcedony replacing and infilling bioclasts, or in veinlets crosscutting 757 

celestite is observed in the carbonate-rich claystone and limestone in the upper part of the COx unit 758 

(Bure 3, EST5485, EST20714, EST20433).  759 

The presence of cracks only in carbonate rich claystone and in limestone is due to difference of rock 760 

competence. Calcite veinlet crosscutting a crack filled with celestite, and chalcedony (EST20714) 761 

and quartz filling crack (EST20433) are the two only mineral records of fluids later than chalcedony 762 

deposit. 763 

6.3. Stage 1: - Micritic calcite, pyrite, euhedral calcite and dolomite - Bacterial activity 764 

and sedimentation conditions 765 

 766 
Carbonate origin 767 
 768 
Micritic calcite and rare euhedral calcite have low Mg and Fe contents, consistent with a marine 769 

environment. The early dolomite deposition has probably to be linked to water loss of clay 770 

sediments and expulsion of Mg2+ during burial. (C, O) isotopic compositions of calcite and dolomite 771 

measured in bulk rocks essentially correspond to those of carbonate bioclasts and carbonates of 772 

early stage (micritic calcite, euhedral calcite and dolomite). δ18O and δ13C values of calcite, 27.7-773 

28.0 ‰ SMOW and 1.0-2.3 ‰ PDB respectively, belong to the field of marine carbonates.  774 

 775 

Pyrite deposition  776 

Framboidal pyrite, euhedral pyrite, and pyritous ammonites and nodules observed in studied 777 

samples are different forms common in marine sediments (Böttcher & Lepland, 2000). Pyritous 778 

ammonites and nodules occur in organic-rich, silty and carbonate claystone samples, often 779 

associated to shell-beds which are believed to mark pauses in sediment accumulation. 780 

The large δ34S values of framboïdal pyrite are informative on the early diagenetic conditions.  781 

Framboids of pyrite with negative δ34S values (-38 to -25 ‰ CDT) located in the lower part of the 782 
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Cox clay formation were probably formed by bacterial reduction of marine sulphate in an open 783 

marine environment, according to literature (Ohmoto et al., 1990; Wortmann et al., 2001; Canfield, 784 

2002). A system open to sulphate, such as the seawater/sediment interface in a marine 785 

environment, has a permanent supply of sulphate. The δ34S of metastable amorphous iron 786 

sulphides (FeSm – not detected in the present study) early formed in the system is determined by 787 

the δ34S of sulphate and the kinetic isotopic fractionation k1/k2 between sulphate and FeSm, as 788 

follows:  δ34SFeSm = δ34SSO4 – 1000 ln k1/k2. FeSm are metastable and transformed into pyrite during 789 

diagenesis; the isotopic fractionation between FeSm and pyrite is neglictible (Rickard and Luther III, 790 

2007). Consequently δ34SPy is quite close to δ34SFeSm. Maximum value of k1/ k2 fractionation between 791 

sulphate and pyrite is estimated to be ~ 1.055 from the lowest pyrite δ34S value (-38 ‰), assuming a 792 

δ34S value of +17 ‰ for Jurassic seawater (Kampschulte and Strauss, 2004). This value is slightly 793 

higher than that obtained experimentally by Canfield (2002) or theorically calculated by Rees 794 

(1973), but is consistent with values estimated from natural samples (Wortmann et al., 2001; 795 

Ohmoto et al., 1990; Werne et al., 2003) and is in agreement with the revised isotope fractionation 796 

model for dissimilatory sulphate reduction proposed by Brunner and Bernasconi (2005). 797 

Pyrite with higher δ34S values were formed in a system closed to sulphate with little or no 798 

recharge of marine sulphate such as a regressive marine environment and/or sediment 799 

disconnected from the marine domain by overlying sediments. In a system closed to sulphate, the  800 

sulphate reduction rate is much more rapid than the rate of SO4
2- supply to the system. The δ34S of 801 

the sulphate remaining at a time t in the diminishing reservoir of reacting sulphate can be 802 

approximated by a Rayleigh distillation law as follows: 803 

δ34SSO4 (t) = δ34SSO4 (0) + 1000 (k1/ k2 – 1) ln F 804 

In these equations, δ34SSO4 (t) is the δ34SSO4 at time t, δ34SSO4 (0) is the initial δ34SSO4, k1/k2 is the 805 

fractionation factor between sulphate and FeSm, and F is the fraction of SO4
2- remaining at time t. 806 

There is also an evolution of the isotopic composition of H2S reservoir produced, from which the 807 

amorphous iron sulphides precipitate, as a result of this Rayleigh distillation. Very high δ34S values 808 

of pyrite suggest that isotopic evolution of the H2S produced is instantaneously removed from the 809 

system by precipitation of iron sulphides and does not mix with subsequent reaction products. The 810 

H2S produced at a time t is at equilibrium with the sulphate remaining at the same time. 811 

Consequently, the δ34S of pyrite produced at a time t is calculated using the sulphur isotopic 812 

fractionation between sulphate and FeSm (Figure 15):  813 

δ34SFeSm(t) = δ34SSO4(t) – 1000 (k1/k2 -1) 814 

Increasing δ34S values of pyrite from the lower part (C2b1) to the upper part (C2b2) of the COx 815 

formation indicates a progressive disconnection from the marine domain suggesting that C2b2 816 

corresponds to a period of regression.  That is in agreement with previous works (Rousset, 2002; 817 

Rousset and Clauer, 2003). The highest δ34S value recorded by massive pyrite from a mm-thick 818 

pyrite layer of the shell-rich carbonate-rich claystone sample EST12436 is consistent with pyrite 819 
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formed by bacterial reduction of residual marine sulphate in a confined and highly evolved system 820 

during burial of the sediment. Based on a Rayleigh modelling, such a high value could be obtained 821 

by reduction of a pore-water sulphate that retained less than 10-20 % of the initial dissolved 822 

sulphate, the other 80-90% being reduced by bacterial reduction and precipitated as iron sulphides 823 

(Figure 15). 824 

 825 

From petrographic observations and the sulphur isotopic compositions of pyrite it can be deduced 826 

that pyrite formation results from intense bacterial sulphate reduction coupled with organic matter 827 

degradation (dissimilatory sulphate reduction) rather than anaerobic oxidation of methane. The 828 

alkanes now present in trace amounts in the COx unit have a thermogenic origin and were not 829 

generated in the formation itself (Prinzhofer et al., 2009). The various forms of pyrite could be 830 

attributed to different reaction pathways. Framboïds of pyrite crystallized after metastable biogenic 831 

FeSm phases formed where, locally, sulfide production rates were high enough for porewaters to 832 

reach supersaturation with respect to FeSm (Raiswell, 1982). Instead, rare euhedral forms of pyrite 833 

probably crystallized directly from the porewater when saturation was reached for FeS2 and not for 834 

FeSm (Rickard and Luther III, 2007). 835 

 836 

Causes of bacterial activity stop 837 

 As burial increased during diagenesis, the bacterial activity recorded by the pyrite precipitation was 838 

stopped. The inability of the sulphate reducers to use pore-water sulphate and remaining organic 839 

substrates in this sediment is most probably a physical effect related to the pore throat sizes of the 840 

COx. Indeed, if we consider the present pore size distribution of the COx (Sammartino et al., 2003; 841 

Yven et al., 2007), 60 to 80% of the porosity is represented by the mesoporosity (3 to 60 nm). In the 842 

more clayey samples the mesoporosity reaches 94% of the total porosity. Macroporosity (>60 nm) 843 

accounts for less than 6% of the total porosity. Porosity volumes larger than 1 µm (size magnitude 844 

of a sulphate reducing bacteria - 0.7 to 3 µm according to Brock et al., 1994) are negligible, 845 

preventing bacteria populations growth. Because celestite and iron-rich carbonates precipitated 846 

after pyrite formation stopped, a lack of sulphate or aqueous iron cannot be evoked. The residual 847 

organic-matter content of the formation (1%) was also not a limiting factor. This effect of pore size in 848 

suppressing bacterial activity has been described in a similar environment by Bottrell et al. (2000) 849 

and Fredrickson et al. (1997). 850 

 851 

6.4. Stage 2: End of the bacterial activity and ferroan phases – carbonates and 852 

glauconite 853 

 854 
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The bacterial sulphate reduction processes were complex and controlled not only the deposition of 855 

sulphur-bearing phases but also such other diagenetic phases as carbonates and glauconite. 856 

Micritic calcite associated with framboïdal pyrite, and euhedral calcite and dolomite which are 857 

formed during bacterial activity are not ferroan. According to the observed mineral relationships, 858 

ferroan carbonates, which include the outer µm-sized rims of euhedral calcite and dolomite, 859 

together with siderite, and glauconite are formed later than framboïdal pyrite, i.e. after the end of the 860 

activity of sulphate reducing bacteria; that has been already observed in Oxford clay sediments in 861 

the UK (Hudson et al., 2001). Ferroan calcite and dolomite are observed in the entire COx unit; 862 

however iron enrichment of calcite and dolomite is more important in claystone samples than in 863 

limestone samples. Sideroplesite is only observed in the studied claystone samples EST5724 and 864 

EST25687 of the C2b1 sub-unit located at depth corresponding to the maximum clay zone.  865 

 866 

Iron enrichment of carbonates 867 

The formation of ferroan carbonates later than pyrite is related to the specific chemical conditions 868 

maintained by bacterial activity. During bacterial sulphate reduction there is a high HS- 869 

concentration, a high CO2 pressure in the system which lowers the pH, and a low iron concentration 870 

due to the formation of Fe-sulphides.  871 

For precipitation kinetics reasons, FeSm solid compounds precipitate in these systems. However, 872 

once bacterial production of HS- ends, FeSm dissolves and is replaced by pyrite (FeS2p) due to the 873 

lower solubility of the latter (Rickards and Luther III, 2007). Considering anaerobic conditions, this 874 

transformation follows the overall reaction balance (without consideration of any particular molecular 875 

mechanism): 876 

2 FeSm + 2 H+ = FeS2p + Fe2+ + H2 877 

This reaction is responsible for an increase of pH and Fe concentration; two conditions that are 878 

favourable to iron carbonate precipitation, provided that bicarbonate concentration is buffered by the 879 

presence of calcite: 880 

Fe2+ + HCO3
- = FeCO3 + H+ 881 

 882 

Origin of the ferroan phases 883 

The chemical composition of sideroplesite in studied samples is characteristic of a marine 884 

sedimentation and is significantly different from a siderite formed in a fresh water environment 885 

(Mozley, 1989). Its δ18O is also consistent with a marine origin, whereas its δ13C is significantly 886 

lower than those of calcite and dolomite in bulk rocks. The 13C depletion may be attributed to a 887 

partial contribution in late diagenetic pore waters of carbonate ions derived from the degradation of 888 

organic matter during bacterial sulphate reduction.  889 

Glauconite clusters are also a seafloor diagenetic product formed in mildly reducing conditions. The 890 

localized reducing environments due to high degradation of organic matter associated with the 891 
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bacterial sulphate reduction in microfauna-rich clay sediments are favourable to the glauconite 892 

formation.   893 

              894 

6.5. Stage 3: Ferroan dolomite, sparite and/or celestite filling bioclasts and cracks 895 

 896 

Ferroan dolomite filling bioclasts and cracks is rare and of small size. The limestone sample 897 

EST5433 is the only sample in which it has been possible to analyse isotopically ferroan dolomite 898 

filling bioclasts. Its δ18O and δ13C values (+27.4 and +2.4 ‰ respectively) belong to the field of 899 

marine carbonates. 900 

On the contrary of ferroan dolomite in bioclasts and cracks, celestite was identified in the studied 901 

samples and its size (>200 µm, up to 2 cm) allowed separating it more easily than ferroan dolomite 902 

of this stage. Celestite and accessory barite, precipitated later than pyrite, represent the deposition 903 

of residual sulphate dissolved in pore waters after the end of bacterial activity. However, even 904 

though dissolved sulphate was still present at the end of the bacterial activity, its concentration in 905 

residual pore waters should have not been higher than in the initial fluid, assuming that the system 906 

was only fed by marine waters. Simplified thermodynamic calculations show that celestite cannot 907 

precipitate from pure seawater but only from sulphate- and/or strontium-enriched seawater. Such 908 

enrichment is possible if one takes into account the sulphate and strontium liberated by the partial to 909 

entire dissolution of carbonate bioclasts. This assumption is validated by the in-situ crystallization of 910 

celestite in recrystallized bivalve shell in the sample Bure 8. These observations are consistent with 911 

previous works on celestite deposition in deep-sea carbonate sediments (Baker and Bloomer, 1988; 912 

Hoareau et al., 2010). 913 

The S and O isotopic compositions of celestite differ slightly from those of Callovian-Oxfordian 914 

seawater (Claypool et al., 1980). The similar variations of δ34S and δ18O are consistent with a 915 

seawater sulphate isotopic signature modified by bacterial activity rather than with introduction of an 916 

external fluid to the system. The variations of δ34S are larger than the variations of δ18O and there is 917 

no good correlation between δ34S and δ18O (Electronic annex EA-1). These data are in good 918 

agreement with the few experimental data and modelling presented by Brunner et al. (2005) of the 919 

oxygen and sulphur isotopic fractionation of sulphates during bacterial reduction processes. 920 

Assuming a Rayleigh modelling of sulphur isotopes in a close system, the celestite values are 921 

consistent with a sulphate system in which 15 to 45 % of initial marine sulphate has been reduced 922 

by bacteria. The proportion of reduced sulphate deduced from the range of celestite δ34S (15-45 %) 923 

is significantly lower than those deduced from the range of pyrite δ34S (up to ~75 % in bioturbation 924 

and 80-90 % in the pyrite layer of the sample EST12436). This inconsistency is due to the fact that 925 

celestite and pyrite did not contemporaneously precipitated from the same fluid. According to 926 

textural relationships observed in studied samples and discussion above, celestite precipitated later 927 
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than pyrite from seawater modified by bacterial sulphate reduction with support of sulphate issue of 928 

the bio-carbonate dissolution. The carbonate shell recorded the sulphur isotopic signature of 929 

seawater. Consequently a sulphate support from the shell dissolution would tend to decrease 930 

sulphur and oxygen isotopic signature of the porewaters. Moreover the variations of pyrite δ34S and 931 

the isotopic pyrite-celestite disequilibrium from different samplings suggests that each pyrite 932 

framboid cluster evolved as a microsystem independently from the others, probably due to the 933 

relative low diffusion of porewater in clay sediment.  934 

 935 

6.6. Stage 4: Chalcedony in replacement of shell, and chalcedony in veinlets 936 

crosscutting dolomite and/or celestite 937 

Oxygen isotopes were used to determine the origin of chalcedony in the COx unit. Isotopic 938 

compositions of different chalcedony separates were compared with theorical δ18O of silica 939 

calculated as a function of the δ18O of the fluid and the formation temperature, using the quartz-940 

water oxygen isotope fractionation data of Knauth and Epstein (1976) (Figure 16). Assuming that 941 

silica is a late diagenetic phase, the temperature of silica formation can be taken as the temperature 942 

of maximum burial, i.e. around 40-50°C (Landais and Elie, 1999).  The high δ18O of chalcedony 943 

replacing bivalves suggests it was formed shortly after deposition from marine waters at low 944 

temperature ~30°C or later from a slightly evolved, 18O-enriched marine fluid at 40-50°C. The δ18O 945 

values of chalcedony crosscutting celestite in cracks indicate that they were precipitated from a fluid 946 

close to or slightly depleted in 18O relative to seawater at the temperature of maximum burial. This 947 

chalcedony could be slightly depleted to the earlier generation of chalcedony that replaces bivalves 948 

because of mixing with a small meteoric component. 949 

 950 

6.7. Stages 5-6: Calcite veinlet crosscutting a crack filled with celestite, and 951 

chalcedony (EST20714) and quartz filling crack (EST20433) 952 

 953 

The calcite crosscutting celestite crack in sample EST20714, with a δ18O of + 19.6 ‰ (SMOW)  and  954 

a δ13C of + 0.1 ‰ (PDB), is significantly depleted in 18O relatively to seawater-derived calcite in the 955 

matrix. The δ18O of the fluid calculated at equilibrium with this calcite at 40°C using the calcite-water 956 

fractionation of Kim and O’Neil (1997) is around -5.5 ‰, corresponding to a meteoric signature. The 957 

δ13C still remains consistent with the signature of the marine carbonates, suggesting that the fluid 958 

was initially carbonate-poor and buffered by carbonates of the COx unit concerning the carbon. 959 

Euhedral quartz infilling crack in the limestone sample EST20433 has a δ18O value (+19.8 ‰) lower 960 

than chalcedony. The δ18O of the fluid calculated at equilibrium with this quartz at 40°C using the 961 
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quartz-water oxygen isotope fractionation data of Matsuhisa (1979) is around -7 ‰, corresponding 962 

to a meteoric signature (Figure 16).  963 

Assuming that this calcite and quartz are formed at temperature of maximum burial, and considering 964 

an analytical error on oxygen measurement of ± 0.2 ‰, the difference of calculated fluid δ18O 965 

between calcite and quartz is significant and strongly suggests that calcite is not formed from the 966 

same fluid than quartz. 967 

6.8. Origins and timing of the multiphase cementation in the COx unit 968 

The (S, C, O) isotope data combined with the mineral sequence showed that carbonate cements 969 

and pyrite in the fine-grained matrix of claystone (stages 1 and 2), chalcedony replacing shells, 970 

carbonates and celestite filling bioclasts and cracks (stage 3) and chalcedony crosscutting celestite 971 

(stage 4) precipitated from dominant marine-derived pore waters, whereas late calcite crosscutting 972 

celestite (EST20714) and euhedral quartz filling crack (EST20433) (stages 5-6) precipitated from 973 

mixing of  dominant meteoric water with residual marine-derived fluids.  974 

A timing of diagenetic minerals was approached using previous strontium isotope data on the COx 975 

unit (Vinsot et al., 2008; Lerouge et al., 2010) combined with stable isotope data and petrology. 976 

87Sr/86Sr ratios of carbonate cements in the claystone matrix (stages 1 and 2) range between 977 

0.7069-0.7071 (Lerouge et al., 2010). The lowest values are consistent with Callovian-Oxfordian 978 

seawater (0.7068–0.7072; Jones et al., 1994), i.e. the age of sedimentation and beginning of 979 

compaction. 980 

The 87Sr/86Sr ratios of celestite filling bioclasts and cracks (stage 3) provide evidence of two 981 

populations of ratio. 87Sr/86Sr ratios of celestite in samples Bure 1-3 (bioclast infilling), EST5433 (vug 982 

infilling) and EST20714 (crack infilling), range between 0.7069 and 0.7070. These values are similar 983 

to lowest values measured in carbonate cements, suggesting that this generation precipitated from 984 

Callovian-Oxfordian marine-derived porewaters or remobilizing the Sr released by the 985 

recrystallization of the primary carbonate bioclasts, and consequently recorded chemical conditions 986 

of sedimentation and early diagenesis. In any case this population is early diagenetic. Celestite in 987 

sample EST5485 (crack infilling) exhibits an 87Sr/86Sr ratio (0.7074) higher than other celestite 988 

separates, suggesting it precipitated later than other celestite infillings. This strontium ratio 989 

corresponds to the ratio of Cretaceous seawater (Jones et al, 1994), but also to the present-day 990 

strontium isotope signature of the exchangeable fraction in claystones (0.7074-0.7075; Lerouge et 991 

al., 2010) and of present-day pore waters in the COx unit (0.7074-0.7076; Vinsot et al., 2008). 992 

Consequently strontium isotopes cannot be used to estimate the age of this celestite, due to 993 

strontium retardation mechanisms, but also to an in-situ 87Sr expulsed from clays during compaction 994 

(Rosenbaum, 1976; Brigaud et al., 2010). 995 

 996 
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due to low porosity and permeability of the COx clay unit but also the relative low porosities and 997 

permeabilities of the adjacent limestone units (Buschaert et al., 2004; Brigaud et al., 2010). Oxygen 998 

isotopes are generally used to date events, but in that case are useful to trace meteoric water inputs 999 

in the COx. Meteoric water inputs in the COx unit could have occurred by (i) lateral diffusion of 1000 

meteoric water into the COx unit at surface during emersion periods, (ii) vertical diffusion of meteoric 1001 

water from adjacent limestones into the COx unit during and after emersion periods, and (iii) vertical 1002 

circulations of meteoric water through fault system favouring lateral diffusion of water into the COx 1003 

unit, even though the unit is not at the surface, according to the geodynamic scenario undergone by 1004 

Jurassic sediments from the eastern Paris Basin  proposed by Brigaud et al. (2010). Three periods 1005 

are favourable for meteoric water inputs: the Late Cimmerian Unconformity (LCU) (145-140 Ma), the 1006 

late Aptian Unconformity (LAU) (112 Ma) and the Oligocene extensional tectonic event (33-23 Ma) 1007 

(Guillocheau et al., 2000).  1008 

The δ18O values calculated at equilibrium with calcite (EST20714) and quartz (EST20433), 1009 

compared with the oxygen isotope profile of pore waters in the COx unit at the same depth indicate 1010 

that calcite and quartz precipitated from meteoric waters whose oxygen isotopic composition is quite 1011 

close to those of present-day pore waters at same depth (Figure 17). These two phases 1012 

consequently would have recorded the late meteoric input after it diffusion into the COx clay unit. 1013 

Oxygen isotopic variations are representative of the mixing of the successive water inputs into the 1014 

clay formation, and are due to the high buffering of the clay formation. 1015 

7. CONCLUSION 1016 

The combined mineralogical and sulphur, carbon, oxygen, and strontium isotopic study of Callovian-1017 

Oxfordian claystones improves our understanding of the origin, textures and temporal distribution of 1018 

late diagenetic phases in the sediment and allows proposing a synthetic  and interpreted diagenetic 1019 

sequence (Figure 16). The early and dominant cement of claystone is micritic, low-magnesium 1020 

(LMC) calcite. Pyrite in the cement and filling bioturbation is formed by bacterial reduction of 1021 

dissolved marine sulphates. It is always associated with micritic calcite and residual organic matter, 1022 

suggesting dissimilatory bacterial reduction processes. The large δ34S variations of pyrite samples 1023 

have recorded the conditions of marine sedimentation and are in agreement with results of other 1024 

clay studies (Rousset and Clauer, 2003). Glauconite and the iron-rich outer rims of euhedral 1025 

carbonates (calcite, dolomite, and siderite) are formed after pyrite as bacterial activity is ending, 1026 

from the iron still available in the system. In rare samples, sparry dolomite followed by celestite was 1027 

deposited as late infilling of vugs and lenses crosscutting bedding. These are formed from residual 1028 

carbonate and sulphate ions dissolved in diagenetic porewaters, and provided in part from the 1029 

dissolution of biologically-formed, primary minerals. 87Sr/86Sr ratios of celestite indicate that it was 1030 

formed from Jurassic marine waters. Chalcedony occurs replacing bivalve shells, in rare veinlets 1031 

crosscutting celestite, and filling the last porosity.  It is only observed in the middle and the upper 1032 



 

17/12/201017/12/201016/12/2010 32 

parts of the COx unit. The oxygen isotopic compositions of different generations of chalcedony 1033 

indicate they were also formed from marine-derived waters (δ18O of fluid close to 0 ‰). The oxygen 1034 

compositions of late calcite in the sample EST20714 (C2b2 sub-unit) and of euhedral quartz in the 1035 

limestone sample EST20433 (C2d sub-unit) indicate that they are the only minerals precipitated 1036 

from meteoric waters in the COx unit. These late diagenetic minerals in the COx unit recorded the 1037 

same type of fluids than late diagenetic calcite in adjacent Dogger and Oxfordian limestones which 1038 

are aquifers (Vincent, 2001; Buschaert et al., 2004), confirming the slow diffusion of meteoric waters 1039 

from the adjacent aquifers through the COx unit (Girard et al., 2005; Giannesini, 2006). However the 1040 

scarcity of the late diagenetic minerals indicates the low reactivity of the COx unit with diffusing 1041 

meteoric waters.  1042 
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Table 1 : EPMA analyses of different generations of carbonates in limestone and claystone 
samples of the Cox unit. Chemical composition is firstly given in weight % of oxides and 
secondly as a structural formula calculated on the basis of 3 oxygen atoms. 

 

    CaO   FeO   MgO   MnO SrO Total   Ca Fe Mg  

    Oxides (in wt %)         FS on the basis of 3 Ox. 

LIMESTONE SAMPLES                     

Bioclasts - Bure 8         SO3             

Terebratula average 58,94 0,12 0,77 0,40 0,16 60,39   0,966 0,002 0,017 

n=92 mean variation 1,19 0,11 0,23 0,11 0,02 1,17   0,008 0,001 0,005 

Rhynchonella average 57,90 0,12 0,35 0,20 0,08 58,65   0,982 0,002 0,008 

n=85 mean variation 1,69 0,10 0,19 0,14 0,02 1,52   0,010 0,001 0,004 

Bivalve average 59,15 1,39 0,56 0,22 0,07 61,39   0,962 0,018 0,013 

n=214 mean variation 1,83 0,35 0,22 0,09 0,02 1,83   0,009 0,004 0,005 

Micritic calcite                       

EST5433 average 52,25 0,13 0,74 0,01  - 55,49  0,979 0,002 0,019 

n=3 mean variation 2,04 0,09 0,04 0,01  - 0,64  0,001 0,001 0,002 

EST21400 average 56,67 0,21 0,66 0,03 0,05 59,21  0,980 0,003 0,016 

n=15 mean variation 1,60 0,20 0,34 0,02 0,04 1,70  0,010 0,003 0,008 

Bure 2 average 54,13 0,22 0,70 0,03 0,04 57,73  0,978 0,003 0,018 

n=11 mean variation 1,58 0,11 0,10 0,02 0,02 1,36  0,004 0,002 0,002 

Limpid microspar calcite                      

EST5485 average 54,31 0,18 0,60 0,02 0,02 56,18  0,982 0,003 0,015 

n=2 mean variation 0,10 0,06 0,02 0,02 0,02 0,21  0,001 0,001 0,000 

Calcite in infillings of bioclasts and vein                 

Bure 3 average 57,43 0,78 0,69 0,08 0,00 59,19  0,972 0,010 0,016 

n=51 mean variation 1,26 0,24 0,15 0,02 0,00 1,19  0,005 0,003 0,004 

K108   58,32 0,56 0,51 0,00  - 60,00   0,981 0,007 0,012 

EST5485 average 51,05 0,72 0,64 0,07  - 56,55   0,971 0,011 0,017 

n=7 mean variation 1,43 0,14 0,11 0,06  - 1,15   0,817 0,064 0,085 

EST20433 average 57,26 0,30 0,45 0,13 0,00 58,31   0,984 0,004 0,011 

n=27 mean variation 1,00 0,23 0,22 0,05 0,00 1,02   0,007 0,003 0,005 

Euhedral dolomite                     

EST5433 average 32,74 0,91 18,64 0,01 0,02 52,98   0,551 0,012 0,437 

n=9 mean variation 0,65 0,17 1,20 0,02 0,02 0,99   0,263 0,053 0,673 

Dolomite in infillings of bioclasts and cracks                 

Bure 3 average 36,55 3,05 15,79 0,13 0,00 55,89   0,599 0,039 0,360 

n=45 mean variation 1,42 0,67 1,20 0,02 0,00 0,53   0,029 0,008 0,025 

EST5485 average 31,58 3,78 15,87 0,09 0,03 54,21   0,557 0,052 0,390 

n=9 mean variation 0,45 1,00 0,48 0,07 0,05 1,14   0,225 0,394 0,339 

CLAYSTONE SAMPLES                     

Bioclasts                       

EST25380 average 50,86 0,51 1,41 0,12 0,08 55,98   0,953 0,007 0,037 

n=8 mean variation 2,93 0,21 0,29 0,06 0,04 3,19   0,010 0,003 0,008 

Micritic calcite                       

EST21439 average 55,77 0,83 0,81 0,07 0,05 59,56   0,968 0,011 0,020 

n=45 mean variation 1,63 0,38 0,31 0,07 0,04 1,06   0,009 0,005 0,007 

EST25380 average 50,06 0,82 1,06 0,05 0,06 56,93   0,957 0,012 0,029 

n=5 mean variation 5,83 0,40 0,25 0,04 0,01 5,21   0,011 0,006 0,009 

Euhedral calcite                     

EST25687  49,01 0,55 1,47 0,15 0,05 52,37   0,949 0,008 0,040 



Limpid microspar calcite                      

EST5474 average 56,24 0,81 0,84 0,04 0,04 59,32   0,968 0,011 0,020 

n=5 mean variation 0,68 0,18 0,18 0,03 0,05 0,66   0,005 0,002 0,004 

EST5554 average 56,02 1,11 0,67 0,05 0,06 59,09   0,968 0,015 0,016 

n=3 mean variation 1,98 0,18 0,18 0,04 0,03 1,69   0,006 0,002 0,004 

EST5724 average 44,41 1,70 0,90 0,12  - 50,21   0,943 0,028 0,027 

n=7 mean variation 0,31 0,51 0,19 0,07  - 8,70   0,127 0,008 0,006 

Calcite in core of siderite                     

EST25687  48,99 5,49 1,08 0,14 0,02 57,84   0,892 0,078 0,027 

n=3  1,48 0,96 0,12 0,04 0,01 1,02   0,016 0,015 0,003 

Calcite veinlets in celestite                     

EST20714 average 50,71 1,36 0,46 0,11 0,54 54,41   0,961 0,020 0,012 

n=2 mean variation 0,85 0,10 0,00 0,02 0,06 1,02   0,00 0,00 0,00 

Euhedral dolomite                     

core1-EST25380   32,75 0,09 23,95 0,07  - 57,63   0,495 0,001 0,503 

rim1-EST25380   30,82 0,16 22,24 0,09  - 54,21   0,497 0,002 0,499 

core2-EST25380   31,07 0,04 22,90 0,13 0,47 55,23   0,491 0,000 0,503 

rim2-EST25380   32,96 0,08 23,60 0,10 0,57 58,06   0,497 0,001 0,496 

rim-EST25380   31,72 0,21 22,48 0,02 0,41 55,38   0,500 0,003 0,493 

EST25380 average 31,46 0,20 22,37 0,14 0,21 55,34   0,500 0,003 0,494 

n=7 mean variation 0,87 0,13 0,99 0,09 0,24 1,44   0,006 0,002 0,007 

core-EST25687   30,49 0,88 21,08 0,07 0,03 55,15   0,503 0,011 0,484 

rim-EST25687   32,35 1,61 21,76 0,03  -  57,75   0,506 0,020 0,474 

core-EST21439   29,70 0,29 22,88 0,38  -  56,79   0,478 0,004 0,513 

rim-EST21439   32,85 6,06 16,56 0,04 0,03 56,46   0,542 0,078 0,380 

EST21439 average 30,99 0,74 23,85 0,12 0,02 57,38   0,478 0,009 0,511 

n=14 mean variation 1,10 0,78 1,89 0,06 0,02 2,00   0,011 0,010 0,019 

core-EST12436   32,33 0,20 23,29 0,29 0,00 58,71   0,496 0,002 0,498 

rim-EST12436   33,66 2,99 15,52 0,12 0,00 55,21   0,584 0,040 0,374 

Siderite-EST25687                     

EST25687 average 5,95 40,64 7,36 0,14  - 55,77   0,124 0,661 0,212 

n=7 mean variation 0,30 1,06 0,69 0,08  - 1,56   0,004 0,015 0,015 

 



Table 2: EPMA analyses of framboidal pyrite disseminated in the matrix of rock from the C2b 
and C2c sub-units. 
 

  

C2b1 (133 analyses) C2b2 (55 analyses) C2c (77 analyses) 

min max average std dev. min max average std dev. min max average std dev. 

   As     0 3460 409 676 0 1780 236 323 0 690 154 178 

   Co     400 1240 814 166 450 1130 813 156 360 1410 812 211 

   Pb     0 3340 1340 692 0 4020 1613 825 0 3330 1489 844 

   Cu     0 380 106 112 0 980 369 276 0 1750 261 286 

   Ni     0 1350 382 316 0 1060 372 306 0 1970 410 365 

   Zn     0 510 61 103 0 550 120 137 0 450 83 117 

 



 
Table 3. (S, C, O, Sr) isotopic data of diagenetic phases of the Callovian-Oxfordian 
formation. Sr data from Lerouge et al.(2010a). 
Abbreviations: Biotur., pyrite from bioturbations; Diss., framboidal pyrite disseminated in 
claystone; Cc, calcite; Cc2, late diagenetic calcite; Dol, dolomite/ankerite; Sid, siderite; 
Chalc1, chalcedony in replacement of bivalve; Chalc2, late chalcedony infilling (post-
celestite); Qtz, late euhedral quartz rimming vug. 
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EST05433 -43.5    22.5 20.0 0.706945 Dol 2.4 27.4   

EST20433          Qtz 19.8 

EST05485 -69.9    27.3 21.2 0.707373      

EST05554 -85.9 Biotur. -32.0            

EST21439 -93.5 Diss. -19.5            

EST5580 -96.0 Biotur. 7.9            

EST5583 -97.6 Biotur. 15.4            

Biotur. -28.7            

EST5632 -108.8 Biotur. 34.5            

EST20714 -109.4 Diss. -2.5 31.4 20.7 0.707040 Cc2  19.6 Chal2 27.7 

EST25687 
 
 

-109.6 
 
 

Biotur. 
Biotur. 
 

12.7 
-32.0 

       

Cc 
Dol 
Sid 

2.3 
1.5 
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28.0 
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EST5643 -112.1 Biotur. -14.1            

EST5688 -123.0 Biotur. -22.3            

Bure1 -124.0   25.5 19.8 0.706935    Chal1 31.7 

Bure2 -124.0   25.8 19.5 0.706932      

Bure3 -124.0   25.6 20.3 0.706872    Chal2 26.1 

Bure 4          Chal1 31.3 

Bure 5          Chal1 31.8 

Bure 6          Chal2 27.3 
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Fig. 1. (a) Location of the Bure Underground Research Laboratory; (b) Lithostratigraphic 

column at the URL site and position of the Callovian-Oxfordian formation. Schematic 

distribution of the principal mineralogy (EST205, EST212 boreholes: Ill (illite), ISR0 and 

ISR1 (illite/ smectite mixed layers), Chl (chlorite), Kln (kaolinite), Silt (quartz + feldspar), Cc 

(calcite), Dol (dolomite). Location of the samples studied and distribution of accessory 

diagenetic siderite (Sid), celestite (Cel) and silica.  



 
Fig. 2. General characteristics of the claystone samples – (a) Claystone sample K119, 
presence of bioturbations; (b) Sample EST25380, presence of pyriteous ammonite.  
Microscopic aspect showing the main mineral phases - (c) General microscopic aspect 
showing the main mineral phases (sample K119, natural transmitted light); (d) Small 
framboïd of pyrite with a small coating of calcite (sample K119, BSE image); (e) Euhedral 
crystal of calcite (sample EST21439, natural transmitted light); (f) Euhedral crystal of 
dolomite (Do) with a Fe-rich rim and with microinclusions of pyrite (sample EST21439, 
natural transmitted light); (i) Calcite core surrounded by a growth of siderite (sample 
EST25380, BSE image). (h)(i) Filling of a small bioclast containing pyrite, limpid calcite and 
sphalerite (sample K119, natural and polarized transmitted lights). 



  

 
 
 
Fig. 3. General characteristics of the limestone samples – (a) homogeneous fine-grained 
limestone (sample EST5485); (b) micro-fossils in a micritic matrix (sample Bure 3, 
transmitted natural light); (c) micro-fossil replaced and filled by micritic calcite and pyrite then 
glauconite (sample K108, transmitted natural light); (d) micritic limestone with small cavities 
filled by euhedral dolomite and celestite (EST5633, transmitted polarized light);  (e) residual 
porosity in limestone filled by sparitic calcite, celestite and chalcedony (sample Bure 3, 
polarized transmitted light); (f) silty micritic limestone with cavities rimmed by micritic calcite 
and filled by chalcedony (EST5485, transmitted polarized light). 



 
 
Fig. 4. Pyriteous Ammonite – (a) macroscopic view of a polished section across a pyriteous 
ammonite; (b) detail of partial replacement and filling of the Ca-phosphorous shell by calcite 
and celestite, whereas camerae are essentially filled with pyrite; (c) detail of pyrite filling 
showing framboids and euhedral grains; (d) detail of sphalerite-calcite filling camerae. 
Pyriteous nodule – (e) macroscopic view of a polished section across a pyriteous nodule; (f) 
BSE image of the organic matter-rich layer crosscut by cracks filled by pyrite and marcasite; 
(g) detail of organic matter structures underlined by pyrite deposition. The white micro-zone 
consists of galena; (h) late filling of calcite and celestite. 



 
 
Fig. 5. Pyriteous structures associated with brachiopods (sample EST12436) – (a) 
macroscopic perpendicular view of a pyrite layer and a longitudinal cross-section of 
brachiopod shell; (b) macroscopic top view of broken pyrite layer; (c) microscopic view of 
longitudinal cross-section of brachiopod showing the pyrite and calcite filling (polarized light); 
(d) sphalerite encapsulating euhedral dolomite associated with pyrite layer (polarized light); 
(e) celestite and limpid calcite associated with pyrite – organic matter layer (polarized light); 
(f) BSE image of calcite and celestite crosscutting broken pyrite layer; (g) BSE image of 
complex organic structures associated with pyrite, barite and calcite; (h) BSE image of Ba-Sr 
zoned celestite, white zones are Ba-rich. 

 



 
 
Fig. 6. Observation of entire shells in sample Bure 8 from the gallery.  
Rhynchonella – (a) overview of the shell; (b1) cross-section parallel to the shell (transmitted 
natural light); (b2) cross-section perpendicular to the shell (transmitted natural light); (c) detail 
of a shell section observed in cathodoluminescence providing evidence of relictual bio-
aragonite (Ara). 
Bivalve – (d) perpendicular section of the shell without visible micro-structures (transmitted 
polarized light); (e) secondary electron image of the perpendicular section providing evidence 
of celestite inclusions in recrystallized shell; (f) same perpendicular section observed in 
cathodoluminescence indicating calcite composition of the shell. 
Terebratula – (g) overview of the shell; (h) sub-parallel cross-section of the shell providing 
evidence of numerous tubular structures filled by diagenetic pyrite (black points) (transmitted 
natural light); (i) detail of the shell showing tubular structures filled by pyrite and well-
preserved organic micro-structures (transmitted natural light). 



 
 
Fig. 7. Limestone sample Bure 3 from the gallery - (a) Replacement and infilling of shells by 
chalcedony; (b) Infilling of shell by cm-sized euhedral crystals of celestite; (c) microscopic 
view of the shell replacement by calcite and chalcedony (polarized transmitted light); (d) 
limpid euhedral grains of calcite encapsulating euhedral dolomite and glauconite (natural 
transmitted light); (e) infilling of shell by celestite and chalcedony (natural transmitted light); 
(f) contact between celestite and pyrite (BSE image); (g) irregular contact between 
chalcedony and celestite and dolomite suggesting disequilibrium (BSE image). 



 
 

 
 
Fig. 8. (a) Celestite-dolomite crack in limestone (sample EST5485); (b) Late veinlet infilled 
with dolomite and minor celestite crosscut by chalcedony (sample EST5485, transmitted 
light); (c) Celestite crack in carbonate-rich claystone (sample EST20714); (d) Chalcedony 
followed by calcite veinlets crosscutting celestite crack (sample EST20714, polarized 
transmitted light); (e) Calcite-quartz crack in limestone (sample EST20433); (f) Crack rimmed 
by calcite and filled by euhedral quartz; a chalcedony veinlet crosscut the calcite rim (sample 
EST20433, polarized transmitted light). 
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 (e) 
Fig. 9. (a) Micrograph of biotite in the sample EST20714 (Natural transmitted light); (b) 
micrograph of chlorite in sample EST25687 (Natural transmitted light); (c) and (d) 
Transmitted electron microscope photos of biotite particles showing their variable size, their 
irregular rims and the presence of dark rutile grains between the layers; (e) Triangular 
diagram Si/4-(Na+K+2Ca)-(Fe+Mg) in which EPMA analyses of clay minerals, biotite (Bi), 
chlorite (Chl) and muscovite (Mus) are plotted. 



  
 
Fig. 10. BSE image of a euhedral dolomite grain encapsulated in sphalerite and EPMA Ca, 
Mg and Fe elemental mapping providing evidence of iron-rich rim. 
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Fig. 11. Binary diagram of Co/Ni ratio (atom ratio) in function of Co content (in ppm) in which 
the different types pyrite disseminated in the matrix, and on pyriteous nodules and 
ammonites of claystones from the COx unit. 
Abbreviations: Isolated framboids of pyrite (F), small clusters of framboids (M), and 
framboids associated with organic structures filling fossils (O). 
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Fig. 12. Evolution of δ34S of disseminated pyrite in bioturbation (black points) and of late 
pyrite mm-thick level (white point) as a function of depth. 
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Fig. 13. Isotopic compositions of diagenetic carbonates of the clay formation (red symbols – 
this study) reported in a δ13C-δ18O diagram. Data of previous work of Buschaert et al (2004) 
concerning carbonates of the clay formation and adjacent carbonate platforms (black and 
white symbols). 
Abbreviations: Cc, calcite; Dol, dolomite; Sid, siderite; LK, Lower Kimmeridgien limestones; 
Up Ox, Upper Oxfordian limestones; Mi Ox, Middle Oxfordian limestones; COx, Callovian-
Oxfordian clay formation; Bath, Bathonian limestones. Bulk refers to the whole carbonate 
matrix in limestones and clay rocks, while vug refers to late diagenetic infillings.  
 
 



 
 
Fig. 14. δ34S Curves of pyrite/H2S and sulphate resulting of a bacterial reduction of sulphate, 
in function of residual sulphate fraction (F).   
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Fig. 15. T-δ18Osilica  diagram in which are reported curves of temperatures in function of silica 
δ18O calculated at equilibrium with fluids whose δ18O are 0, -2, -4, -6, -8, -10, -12 ‰ 
(SMOW). Grey areas correspond to temperature ranges of chalcedony formation in the 
Callovian-Oxfordian formation. Low temperatures around 30°C may correspond to beginning 
of burial, whereas 40-50°C range corresponds to the maximal burial of the clay formation. 



 
 
 
Fig. 16. Synthetic diagenetic sequence in the COx unit considering mineral formation 
processes, fluid origins and assumptions of absolute timing using the burial curve of 
Callovian sediments in the studied area for the EST210 borehole (URL) until the 
Kimmeridgian (modified from Brigaud et al., 2010, after the data of Vincent et al., 2007, 
Thierry et al., 1980 and Magniez et al., 1980). 
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Fig. 17. δ18O of fluids at equilibrium with chalcedony and late diagenetic quartz and calcite 
reported in a δ18O profile of porewaters in the Cox unit. δ18O of groundwaters in adjacent 
limestones are also reported (after Giannesini, 2006). 


