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ABSTRACT

Dinoflagellate cyst (dinocyst) analysis was conddain two cores from the SW Iberian margin
and central Alboran Sea from which high qualityorels of Marine Isotope Stage 3 have been
previously derived. Our aim in this study is to gare the dinocyst signature between 50 and 25
ka BP with existing datasets of foraminiferal amechemical proxies related to hydrological
parameters. Quantitative reconstructions of se@seitemperatures (SSTs) and salinities (SSS)
based on dinocysts are performed for the first fimhis area. The results are compared to SSTs
derived from planktonic foraminifera and alkenoneasurements, and to SSS calculated from
planktonic3'®0 and foraminiferal SST. Significant oscillatiomsated to Dansgaard-Oeschger
cycles are recorded in both cores. Dinocyst-deriwatiological parameters exhibit synchronous
fluctuations and similar values to those derivexhfithe other methods, in particular when
considering quantitative reconstructions for Febrdeased on foraminifera and dinocysts. Our
study shows that the influence of subpolar wateas #&lt during each Greenland Stadial (GS) off
Portugal, and that the amplification of the Heihr&tadial cooling in the Alboran Sea was
related to the penetration of subpolar waters thindhe Strait of Gibraltar. During Greenland
Interstadials (GI), we provide evidence for thewoence of warm and nutrient-rich sea-surface
waters in the Alboran Sea, probably due to gyrerved upwelling. Finally, the difference
between August and February dinocyst SST estinsaiggests higher seasonal contrasts during
GS compared to Gl at the two core sites. Additignarecession appears to have an imprint on
dinocyst-derived long-term seasonality record. Heavgethis observation needs to be confirmed
by longer records.

KEYWORDS: Dinocysts; SST and SSS quantifications@aard-Oeschger; Greenland and

Heinrich stadials; Alboran Sea; Iberian margin.
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1. Introduction

The climate of the last glacial was characterisgd Histinctive oscillatory mode, the so-called
Dansgaard-Oeschger (D-O) cycles, originally descriand defined in Greenland ice cores
(Johnsen et al., 1992; Dansgaard et al., 1993;t€saa al., 1993) and paced by an empirical
1470-year factor, the nature of which being prdgerit known (Schulz et al., 1999; Moreno et
al., 2005; Voelker et al., 2006). Greenland Inta&tls (Gl) and Greenland Stadials (GS)
including Heinrich Stadials (HS, followirginchezGoii and Harrison, 2010), have previously
been observed in marine climate records worldwedg. (Voelker et al., 2002; Hemming, 2004;
Clement and Peterson, 2008). The impacts of HS;wiimarily correspond to large ice-sheet
collapses, are now fairly well characterised inktieAtlantic and Mediterranean areas. Their
occurrence is associated with enhanced ariditieradjacent borderlands (Combourieu-Nebout
et al., 2002SanchezGoni et al., 2002), increases in northward Saharantdaissport (Moreno et
al., 2002; Bout-Roumazeilles et al., 2007) andseéace temperature coolings in the western
Mediterranean Sea (e.g. Cacho et al., 1999) arideoRortuguese margin (e.g. Cayre et al.,
1999; Pailler and Bard, 2002; de Abreu et al., 2088wever, the forcing mechanisms behind
the initiation of HS and the inferred reorganisatad Meridional Overturning Circulation within
the last glacial period are still a matter of delf#tageyama et al., 2009). Furthermore, a full
understanding of this rapid transmission of milli@tscale climatic variability from boreal to
subtropical latitudes, involving both atmosphend aceanic processes, remains elusive. It has
been demonstrated that convection in the westeuitbteanean, and thus export of
Mediterranean Outflow Water (MOW), was strengthededng GS of the last 50 ka (Cacho et
al., 2000, 2006; Sierro et al., 2005; Voelker et2006; Toucanne et al., 2007; Frigola et al.,

2008). Consequently, it has been suggested thallégerranean could act as a major trigger for
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the Meridional Overturning Circulation to switclofn stadial to interstadial mode through the
influence of MOW, providing saline water to the HoAtlantic at times when the Meridional
Overturning Circulation was patrtially interruptebbfinson, 1997; Bigg and Wadley, 2001;
Rogerson et al., 2006; Voelker et al., 2006). Tioelpction of MOW is mainly controlled by the
salinity budget of the Mediterranean Sea which ddpen the climate characteristics over the
region and therefore on dominant modes of climaitability, notably the North Atlantic
Oscillation (NAO). At present, the NAO pattern, iating at decadal and centennial scales, has
a strong influence on climate over a large pa&wfope during winter, by affecting the storm
tracks and the associated relative moisture oveMéditerranean and northern Europe (e.g.
Hurrell, 1995; Serreze et al., 1997; Osborn etl@99). Over the eastern Atlantic subtropical
sector, it has been argued that this oscillatisn Ahs an imprint at centennial or millennial
timescales, and has been implicated in abrupt titnreaents of the last glacisd{nchezGoni et

al., 2002; Moreno et al., 2005; Bout-Roumazeilleal €2007; Daniau et al., 2007; Naughton et
al., 2009). Consequently, a change between twog®reach of them characterised by sustained
frequencies of a particular atmospheric configorativer several centuries, may have caused
significant variations of hydrological exchangesotigh time between the Atlantic and the
Mediterranean Sea (Moreno et al., 2005).

Previous high resolution palynological analysislioioflagellate cysts (dinocysts) and pollen on
core MD95-2042, collected off Portugal, indicatewgth changes in sea surface and atmospheric
conditions, respectively, in response to D-O cy¢{®saud, 19995anchezGoiii et al., 2000).
Additionally, a climatic contrast has been obsemn#th respect to precipitation between the SW
Iberian margin and the Alboran region, with dryenditions in southeastern Iberia than in its
southwestern part (Sanchez-Goiii et al., 2002). Wewehese studies do not quantify either

changes in SST and SSS, or discuss the possibéeirapthe observed precipitation gradient on
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the hydrological conditions of both sides of thea®tof Gibraltar between 25 and 50 ka BP. To
fill this gap, we have analyzed dinocyst assemiddgsm core MD95-2043, located in the
Alboran Sea, and applied transfer functions. Funtioee, we have tested, for subtropical
latitudes, the robustness of quantitative paleotFatpre and paleosalinity reconstructions
inferred from dinocysts against other proxy recarions (i.e. dinocystrersusforaminifera-
versusalkenone- derived SST, and dinocyst- derived $3SusSSS estimates calculated on the

basis of theé>'?0 of Globigerina bulloidesassociated with foraminiferal SST).
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2. Core locations and present-day environmental sitgs

Calypso cores MD95-2043 (36°8.6'N; 2°37.3'W; 184manter depth; 36 m long) and MD95-
2042 (37°48'N; 10°10°'W; 3146 m water depth; 39.560mg) were retrieved from the central
Alboran Sea and the SW Iberian margin, respecti@fély. 1), and were both collected by the
oceanographic R/V Marion Dufresne during the 1986rhational Marine Global Change
Studies | (IMAGES |) cruise (Bassinot and Labeyti@96).

The Mediterranean Sea is located between the patie onid-latitude westerlies which dominate
northern and central Europe, and the Azores Higiprésent, this basin experiences a typical
seasonal cycle marked by cool-wet winters, and wadnyrsummers. The resulting Mediterranean
water budget is marked by a strong freshwater defie to a net excess evaporation (Béthoux,
1979, 1984). During winter and spring, intense @id dry continental air outbursts induce
strong evaporation and cooling in the northern Metinean Sea, and thus an increased density
of surface water masses. As a result, surface svaiek in several specific Mediterranean
regions, flow westward, and finally form the Medisnean Outflow Water (MOW). The outflow
current is exported at depth towards the Atlante#&n, through the narrow Strait of Gibraltar
(main sill depth of 280 m) and is split into twalsility levels: an upper core centred between 500
m and 800 m, and a more saline and dense lowerf@ane between 1000 and 1400 m (Ambar
et al., 2002). The MOW can be traced in the Nortlartic as a salinity and temperature
maximum at about 1 km depth (e.g. Hill and Mitcbelslacob, 1993; lorga and Lorzier, 1999;
O’Neill-Baringer and Price, 1999), and mixes pragieely with North Atlantic Intermediate
Waters (NAIW; Mauritzen, 1996). In the oppositeediion, a North-Atlantic low-salinity surface
current penetrates the Alboran Sea and mixes vatlahtine Intermediate Waters (which

resurface in the westernmost part of the Alboraa) Serming the so-called Modified Atlantic
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Waters (MAW). The strong flow of MAW along the coa$ Spain initiates the formation of two
anticyclonic gyres, the Western and Eastern Alb@gres (WAG and EAG,; Fig. 1) whose
position and intensity fluctuate at a seasonalesddie degree of development of the EAG, under
which core MD95-2043 is located (Fig. 1), contritle position and intensity of the permanent
Almeria-Oran Front (AOF; Fig. 1) (Tintoré et al988; Rohling et al., 1995, 2009; Viudez and
Tintoré, 1995). Upwelling cells occur along the A@is front marking the deflection of MAW
along the Algerian margin, forming the Algerian @t (AC; Fig. 1).

The main modern hydrological structures and cusrehthe western Iberian margin form part of
the North Atlantic Eastern Boundary Current (FigP#liz et al., 2005; Relvas et al., 2007). They
are driven by the North Atlantic subtropical gynéensity in relation to the seasonal
displacement of the Azores High (e.g. Filza, 1984za et al., 1998). Core MD95-2042 is
located in the seasonal coastal upwelling bantdePortugal-Canary eastern boundary
upwelling system that is active mainly from Apol ©ctober (Aristegui et al., 2005; Peliz et al.,
2005). The upwelling predominantly receives NorttaAtic Central Waters (NACW) and, in
part, also MOW (Sanchez and Relvas, 2003). Occaltyouring winter months, a warm
northward-flowing surface current known as the ifreiPoleward Current or Portugal Coastal
Counter Current is formed by coastal convergenaegalhe western Iberian margin. This
phenomenon occurs when weak northerlies are irgeseg with strong south-southwesterly
winds (e.g. Filza et al., 1998; Peliz et al., 200%)s current can be traced as far as the Bay of
Biscay where it is known as the “Navidad CurreNYinter warming in the southern Bay of
Biscay during Navidad years has been correlatel it values of the NAO index and this
current was found to extend from Portugal to Norweagxceptional Navidad years (Garcia-Soto

et al., 2002).
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Modern sea-surface conditions of the SW Iberiangmaaind Alboran Sea are characterised
respectively by mean annual salinities of 36.53nd psu (world dataset atlas compiled by
Schmidt, 1999 and Bigg and Rohling, 2000, httptddass.nasa.gov/ol8data: Craig and Gordon
dataset for the Iberian margin and C. Pierre dafas¢he Alboran Sea), February SSTs are

around 15.2 and 14.7°C, respectively, and Augu3sSfse around 20 and 23.7°C (WOA 2001).
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3. Methodology

3.1. Chronostratigraphy

Cores MD95-2043 (central Alboran Sea) and MD95-2(B\ Iberian margin), characterised by
high sedimentation rates, are composed mainlylohoeous hemipelagic clays and have yielded
high resolution paleoceanographic records (e.gh@atal., 1999 and Shackleton et al., 2000,
respectively).

The age model of core MD95-2042 is derived fronAMS *C dates and, for the period beyond
AMS *C range, by graphical tuning of the MD95-2042 ptanic 5'%0 record with Greenland

ice core3*®0 records. The GISP 2 chronology (Bard et al., 2006 used between 26 and 47 ka,
and the GRIPSS09sea chronology (Shackleton é&t(4) was applied between 47 and 77 ka.
Further details of the age models are given in 8aet al. (2007) ansanchezGoiii et al.

(2008).

The age model of core MD95-2043 is based on 21 Af@Slates and graphical tuning of the
MD95-2043 alkenone SST record to GISP? (Cacho et al., 1999). Due to the recent
improvement of the chronology of the SW Iberian giacore, some discrepancies in the two
age models appear in the dates of the climaticte\araround 40 ka BP. In these cases, we have
slightly modified the chronology of the Alboran Seaord for the time interval between 40 and
50 ka, according t8anchezGoni et al. (2009), in order to align the latter sedittary sequence

with that of the SW Iberian margin.

3.2. Dinoflagellate analysis
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Dinoflagellates are flagellate protists that odouboth marine and freshwater environments, and
which thrive in the depth range of 18-100 m in eteaomains (Dodge and Harland, 1991,
Raine et al., 2002) and 0-10 m at the coastlinge¥arbulence is greater in the neritic zone and
represents a limiting factor for light penetrateomd thus the maximum depth of dinoflagellate
habitats. Dinoflagellates reproduce primarily thgbdission, but sexual reproduction also occurs
resulting in a resting cyst which is preservedddisients (Dodge et Harland, 1991; Head, 1996).
The distribution of dinoflagellate cysts (dinocystsflects physico-chemical parameters of the
overlying water masses (temperature, salinity,ise@over, seasonality and nutrient availability)
(e.g. Turon, 1984; Mudie, 1992; Matthiessen, 1%a&chon et al., 1999; Devillers and de Vernal,
2000; Zonneveld et al., 2001; Marret and Zonnev&d®3; de Vernal and Marret, 2007).
Dinocyst analysis is therefore an essential tootdéoonstructing Quaternary paleoenvironments
(e.g. Turon, 1984; Turon and Londeix, 1988; Eynaudl., 2000, 2004, 2009; de Vernal et al.,
1997, 2001, 2005; Mudie et al., 2002, 2004; Gribie al., 2006; Penaud et al., 2008, 2009,

2010).

Dinocyst assemblages were characterised at théesgetel on the sediment fraction smaller
than 150 um on 61 palynological slides for core ME2®43 (this study) and on 71 slides for
core MD95-2042 (Eynaud, 199S4nchezGoiii et al., 2000). The preparation technique followed
the protocol described by de Vernal et al. (199@) Bochon et al. (1999), slightly modified at
the EPOC laboratory (Castera and Turon, http://vepac.u-
bordeaux.fr/index.php?lang=fr&page=eq_paleo26)hEambsample of 8 chwas weighed, dried
overnight and then weighed again to obtain dry Wei§ubsamples were then washed through a
150 um sieve and the fraction smaller than 150 (as wged for palynological analysis. After

chemical and physical treatments (cold HCI, coldafB sieving through single-use 10 um nylon
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mesh screens), the final residue was mounted betslele and coverslip with glycerine jelly
coloured with fuschin. Identifications and countsrevperformed using a Leica DM 6000
microscope a400x magnification, and counts aimed to reach 300 spstsmvherever possible
for each sample (cf. Appendix A). Taxonomic iddnéfions are consistent with those of
Fensome et al. (1998) and Fensome and Williams4(2B80igantediniumcysts are grouped
together and include all spherical brown cyst;esihis rarely possible to identify them at the
species level due to their crumbled aspect whickksithe archeopyle.

Dinocyst assemblages were described by the pegestd each species calculated on the basis
of the total dinocyst sum including the few unidged taxa and excluding pre-Quaternary cysts.
Palynomorph concentrations were calculated usiegrtarker grain method (de Vernal et al.,
1999). Aliquot volumes dfycopodiunspores were added to each sample before chemical

treatments in order to obtain palynomorph concéotra.

3.3. Quantitative reconstructions of sea-surface pameters

3.3.1. Dinocyst SST and SSS reconstructions

We used a transfer function based on the Moderrofyjna Technique (MAT) to reconstruct sea-
surface hydrological parameters from dinocysts. MG principally uses the statistical distance
between fossil (paleoceanographic record) and su(neodern database) assemblages. The
calculation of past hydrological parameters reties weighted average of the SST values of the
best modern analogues found (minimum and maximumibeu of analogues imposed in the

transfer functions are 5; cf. Appendix B for th& bf analogues found for each sample). The



217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

12

maximum weight is given for the closest analoguteims of statistical distance. The reader is
referred to Guiot and de Vernal (2007) for a revidtheory of transfer functions and to de
Vernal et al. (2001, 2005) for a step by step desan of the application of transfer functions to

dinocysts, including discussion about the degregcofiracy of the method.

The dinocyst transfer function used in this work ¢e Vernal et al., 2005; GEOTOP website:
http://www.unites.ugam.ca/geotop/monographie_n9¥fliedex.shtml) is derived from a

modern database comprising 60 dinocyst specie94hdtations from the North Atlantic, Arctic
and North Pacific oceans and their adjacent sealsiding the Mediterranean Sea (84 stations
including station “M1039”, cf. Fig. 1, Mangin, 20Qas well as epicontinental environments
such as the Estuary and Gulf of St. Lawrence, #mnB Sea and the Hudson Bay. The transfer
function (n=940) is run under the “3Pbase” softw@aiot and Goeury, 1996). This software
was originally developed for pollen-based quantitatlimate reconstruction (http://www.imep-
cnrs.com/pages/3pbase.htm) and was subsequentigdafgpdinocyst assemblages (e.g. de
Vernal et al., 2001, 2005). An index “Dmin”, proeid by the software “3PBase”, allows testing
the reliability of the reconstructions (cf. de Vaket al., 2005). This index describes, for each
sample analyzed, the distance between the closaktgue found by the transfer function and the
fossil assemblage. A threshold value is calcul&i@u the calibration of the database for the
identification of non-similar or very bad analogué&his threshold value provided by the
software “3PBase” is 71.72 and, below this valbe,dimilarity between the modern data and the
fossil record is considered significant (cf. Apper# for the Dmin values calculated for each
sample). The authors caution that the full refeees®et has been used for the calculations of
hydrological parameters without any regional sé&ctf samples within the modern database. In

this study, we present February and August meassdace temperatures (SST, with prediction



241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

13

errors of +1.2°C and +1.8°C respectively), and Baby and August mean sea-surface salinities

(SSS, with prediction errors of +1.7 for both).

3.3.2. Foraminiferal SST and SSS reconstructions

In the same way, we used a transfer function basdtle MAT to reconstruct foraminiferal SST
from the foraminiferal assemblages of cores MD982(Cayre et al., 1999) and MD95-2043
(Pérez-Folgado et al., 2003). Calculation of pgstblogical parameters relies on a weighted
average of the SST values of the best 5 modermgmnes found systematically. This transfer
function has been developed at EPOC laboratoryWitBnnements et Paléoenvironnements
OCéaniques”, Bordeaux1 University, France). The MATD. Kucera, 2007) is run under the “R”
software using a script first developed for dinddyansfer functions
(http://www.cerege.fr/IMG/pdf/ECCOR_StatRAvr08.pdhhe modern database relies on a
modern database of 1007 modern assemblages aadvedifrom the ones developed separately
for the North Atlantic and the Mediterranean saasng) the MARGO project (Kucera et al.,
2005; Hayes et al., 2005). These databases wegethargether to offer a larger set of analogues
for subtropical reconstructions over the last glhperiod notably (Eynaud et al., 2009;
Matsuzaki et al., in press). Modern hydrologicaigpaeters were requested from the WOA 2008
database using the tool developed during the MARG(ECt (http://www.geo.uni-
bremen.de/geomod/staff/csn/woasample.html). Thihiogeallows the reconstruction of annual
and seasonal (winter, spring, summer and fall) $&this paper, we present winter and summer
mean SST with a prediction error of £ 1.2°C and3C respectively, and annual SST with a

prediction error of + 1.1°C (Eynaud et al, 2009;tMeaki et al., in press).
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SSS estimates have been derived using the appsoauharised in Malaizé and Caley (2009) for
calibration of the salinity-water isotope relatibips Craig and Gordon (1965) established the
first salinity-water isotope relationship as follew
5'°0Osw = 0.66 SSS — 23.5

Since this pioneer work, many measurements haven lpeeformed and many different
relationships, with different slopes, have beenveerfor different oceans (Ostlund et al., 1987,
Schmidt, 1999; LeGrande and Schmidt, 2006). Disurejes in slope and in intercept values are
due to local characteristics, on spatial and teadprales. For the Atlantic Ocean, an important
dataset, established from several decades of ogespioc measurements, allows revision of the
Craig and Gordon (1965) calibration and the deteation of a new relationship, with a mean
slope component of 0.558.
In order to estimate past changes in oceaif©sw, Epstein et al. (1953) established a
paleotemperature equation which links temperatuith whe isotopic composition of calcite
(5'®0c) in calcareous shells (e.g. foraminifera) arelambient waters>t®0Osw). Shackleton and
Opdyke (1973) have adapted the equation of Epsteah (1953) as follows:

T = 16.9 — 4.38%°0c —5"%0sw) + 0.13 §*0c —5'%0swy
Stable isotop&'®0Oc measurements in cores MD95-2042 (Cayre et 29;1Shackleton et al.,
2000) and MD95-2043 (Cacho et al., 1999) were edrout onG. bulloidesmonospecific
samples. Following the pioneer study of Duplessyalet(1991), we corrected the summer
temperature by 1°C fo6. bulloidesspecies. By solving the Shackleton and Opdyke 3197
equation, we obtai5™®Osw variations, which integrate the signal of béthal and global
variations. To remove the global influence of coetital ice volume, we used estimations of past

global 3'*0sw changes based on benthic isotopic recordsamatiterrace growth (Waelbroeck et
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al., 2002), and used the modeiOsw values (1.2 %o for the Alboran Sea and 0.97 %dtie
Iberian margin) extracted from the world datasktsatompiled by Schmidt (1999) and Bigg and
Rohling (2000) (C. Pierre dataset for the Alboraa,Sand Craig and Gordon dataset for the
Iberian margin, from http://data.giss.nasa.gov/@t8d The residuab™®Osw “ice-corrected”
signal is then converted into quantitative SSS eslior both cores, using a mean slope of 0.558.
SSS uncertainties of around 1 psu derive from tlegliption error of the foraminiferal SST
reconstructions (1.8°C uncertainty linked with Agg8ST reconstructions corresponds to a 0.45
%o uncertainty on & scale), as well as on uncertainties in the gl@%Dsw changes linked to

sea level changes (0.15 %o).



297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

16

4. Dinocyst assemblages through time

Concerning the species of the geBugantediniumspp., round brown cysts formed by
heterotrophic dinoflagellates, it is important ae into account the fact that high occurrences of
Brigantediniumspp. can be linked to better preservation undpokig or anoxic bottom
conditions (Combourieu-Nebout et al., 1998; Zonietet al., 2001; Kodrans-Nsiah et al., 2008).
We can not exclude th8frigantediniumspp. may have been subjected to dissolution slaep
ventilation in the western Mediterranean Sea (&nd bxidation processes) during GS was
stronger than during Gl of the last glacial (cfothec 3"°C in Fig. 4; Cacho et al., 2006).
However,Brigantediniumspp. are present throughout the Alboran core withay clear trend
between few percentages during GS and high pegentiuring Gl. We can thus expect to
reconstruct dinocyst assemblages without signifipa@servational problems.

When comparing both cores (Fig. 2), we note exthemmigh relative abundances of
Brigantediniumspp. (30-89%) on the SW Iberian margin (Fig. dh)is may reflect the high
productivity induced by permanent or intensifiedvefling cells along the Portuguese margin
during the last glacial (e.g. Abrantes, 2000; Lebret al., 1997); this zone today is characterised
by a seasonal upwelling system (Peliz et al., 2@@8Brigantediniumspp. percentages only
reach a maximum of 2-5% in the modern databaseeR&yges of these cysts fluctuate more in
the Alboran Sea, with pronounced oscillations (agerof 19% and peaks reaching 30 to 45%)

(Fig. 2a).

4.1. Dinocysts occurring during Greenland Stadials
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Dinocysts which feature prominently during GS irdgBitectatodinium tepikiens&piniferites
lazus, Spiniferites elongatusypagidinium aculeatungndOperculodinium centrocarpuim the
Alboran Sea (Fig. 2a), ai®l tepikiensgS. elongatuscysts ofPentapharsodinium dalgi
Lingulodinium machaerophoruandNematosphaeropsis labyrinthas the SW Iberian margin
(Fig. 2b). It is also interesting to note that nmaal dinocyst concentrations occur during GS off
Portugal (most notably during HS 4; Fig. 2b) conltyado what we observe in the Alboran record

(Fig. 2a).

In the Alboran SedB. tepikiensencreases during HS events, especially HS 3 and H%g. 2a),
whereas it occurs during each GS on the SW Ibeniargin, where it consistently makes up
almost 10% of the total dinocyst assemblage (F. Poday B. tepikienses mainly distributed
between 40°N and 60°N in temperate to sub-arctie@mments of the North Atlantic, with the
highest abundances found south of the Gulf of &wrence in coastal environments of Nova
Scotia and the Gulf of Maine (Wall et al., 1977;diy 1992). This species is characteristic of
areas marked by strong seasonal contrasts, wihifrg winter SSTs and up to 16°C summer
SST (Rochon et al., 1999; de Vernal et al., 2088, enhanced surface water stratification
(Rochon et al., 1999; Marret and Zonneveld, 20B8vious results from the North Atlantic
(Zaragosi et al., 2001; Penaud et al., 2009), Wdl&rian margin§anchezGoni et al., 2000;
Turon et al., 2003), and the western Mediterrar&san (Turon and Londeix, 1988; Combourieu-

Nebout et al., 2002) have shown increased abundariée tepikienseluring HS.

S. elongatuslevelops during each GS with low percentages nreg@5% in the Alboran Sea
(Fig. 2a) and 1-2% on the western Iberian margig. b). Maximum present-day occurrences

of this species are observed in the Baffin Bay an@®arSea, and this taxon is generally related
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344 to cool to temperate conditions (Rochon et al..9)9%he significant occurrence Bf tepikiense
345 andS. elongatuss attributed to strong seasonality characterisedinter sea-surface

346 temperatures probably less than 5°C (Marret e2@04).

347

348 Cysts ofP. daleioccur sporadically in the Alboran Sea core (Fa. 2ut mark clearly the cold
349 events in core MD95-2042, most notably HS 2 anddH{Big. 2b). Cysts oP. daleiare well

350 represented in modern sediments from polar to dabpavironments that experience summer
351 sea-surface temperatures higher than 4°C (Rochaln, 4999; Matthiessen, 1995; Marret et al.,
352 2004; de Vernal et al., 2005). They are particylprevalent as part of the spring bloom within
353 North Atlantic fjord systems (Dale, 1977; Harlartcak, 2004a,b).

354

355 Inthe Alboran Sea, we show tHatlazugs associated with cold HS and especially HS §.(Fi
356 2a). Today, the distribution &. lazugs restricted to coastal regions of western Eurajveays
357 with low abundances (less than 2% of the dinocysemblages) (Reid, 1974). This species can
358 be regarded as a neritic temperate species ofregiwaracterised by oligotrophic to eutrophic
359 surface water conditions (Reid, 1974; Harland, 1983

360

361 Finally, the most striking feature visible in thiaakcyst distribution during the D-O cycles is the
362 systematic occurrence bhpagidinium aculeaturduring GS in the Alboran Sea, with low

363 percentages reaching a maximum of 5% (Fig. 2a)fh®nvestern Iberian margin, this species
364 peaks during Gl, although a local maximum is alsseoved during HS 5 (Fig. 2b). At present,
365 this taxon is associated with warm water dinocgseablages; high relative abundances are
366 found in tropical/subtropical oligotrophic open aoe sites (Turon, 1984). In SW Iberian and

367 western Mediterranean paleoclimate records, thesiep is characteristic of the Holocene with
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percentages close to 20% (Combourieu-Nebout e13983; Turon et al., 2003; Rouis-Zargouni
et al., 2010). However, percentages close to 5% waiso previously observed during cold

stadials (HS 1 and HS 2) in a core from the Sigilfainisian Strait (Rouis-Zargouni et al., 2010).

4.2. Dinocysts occurring during Greenland Interstadals

Dinocysts which feature prominently during Gl iretAlboran Sea includ8piniferites mirabilis
Impagidiniumpatulum, L. machaerophorum. labyrinthusas well as some heterotrophic
species (ProtoperidinioidSelenopemphix nephroidasdSelenopemphix quanthut excluding
Brigantediniumspp. whose ecology is rather complex) (Fig. 2a)tl@ SW Iberian margin they
includelmpagidiniumspecieg|. aculeatumandl. patulun), S. mirabilis O. centrocarpunandS.
nephroideqFig. 2b). Unlike the SW Iberian margin (Fig. 2bjaximal dinocyst concentrations

occur during Gl in the Alboran Sea (especially dgrGl 8 and Gl 12; Fig. 2a).

In the Alboran Sea, Gl are characterised by theisp8. mirabilis(Fig. 2a) with percentages on
average four times higher than on the SW IberiargmgFig. 2b). The highest relative
abundances @&. mirabilisare recorded during GI 7 and Gl 8. Tod8ymirabilisis mainly
distributed between 35°N and 50°N in warm tempei@temperate environments of the North
Atlantic with highest occurrences found off the stoaf Portugal and in the Bay of Biscay
(Rochon et al., 1999). This species extends asofath as 10°N and is generally absent from
areas with summer SST below 12°C and salinity bél8, and thrives optimally when winter

SSTs are between 10°C and 15°C and summer SSabare 15°C.

On the SW Iberian margin, Gl are characteriset pgtulum(Fig. 2b) with abundances four
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times higher than in the Alboran Sea (Fig. 2a). Mimpagidiniumspecies occur today with
maximum frequencies in tropical to warm temperat¢ens between 20°N and 35°N and are
representative of full-oceanic conditions (Harlab@83; Turon, 1984; Bouimetarhan et al.,

2009).

Spiniferites delicatuss common on the SW Iberian margin and is maimlydd with interstadial
conditions (Fig. 2b), while it is rare in the Allaor Sea (Fig. 2ap. delicatuss a temperate

species adapted to warm and neritic conditions @tall., 1977; Harland, 1983; Marret, 1994).

S. quantaS. nephroideand some Protoperidinioids show a distributiorigratclosely linked to

Gl in the Alboran Sea (Fig. 2a). This associatilso &olds forS. nephroidesn the SW Iberian
margin, but is less obvious f&: quantaand Protoperidinioids as they also increase du&S8g

(Fig. 2b). These latter taxa, represented by |dativee abundances in the modern database and a
scattered distribution in the North Atlantic (Roohet al., 1999), are derived from heterotrophic
dinoflagellates and are mainly related to high foesburces. Their heterotrophic strategy of
nutrition probably links them to the presence gfeir concentrations of nutrients in surface
waters.S. quantehas previously been linked to the dynamics of Ulmegecells off NW Africa

(Dodge and Harland, 1991; Penaud et al., 2010).

4.3. Opposite dinocyst patterns between Iberian andlboran environments over D-O cycles

Other dinocyst species not described abbvenachaerophorumy. labyrinthus andO.

centrocarpumare an important component of the dinocyst askegab and show opposite

patterns in both cores
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N. labyrinthusshows very high percentages in the Alboran Searége 24%), where it occurs
generally within Gl (Fig. 2a). Peaks of this speggstematically exceed 40% and can reach 60
to 70% of the total dinocyst assemblage. On thell$¥ian margin, this taxon is less prevalent
(average of 4.5%) with peaks generally reaching #0¢ng GS (except during HS) (Fig. 2b). At
presentN. labyrinthusis a typical open-ocean species found predominéetiveen 45°N and
65°N in the North Atlantic Ocean (Rochon et al.999Matthiessen, 1995; Marret et al., 2004; de
Vernal et al., 2005). Maximum abundances of thexcss are recorded off southern Greenland
where cold waters from the East Greenland and ldabreurrents mix with warm North Atlantic
waters of the Irminger Current (Rochon et al., 19@8rret et al., 2004). This species, in
association wittB. tepikiensgwas previously related to polar water incursidnsng MIS 5 cold
substages off Portuga{nchezGoni et al., 1999; Eynaud et al., 2000), and durirgyYlounger
Dryas off Portugal (Turon et al., 2003), in the Medanean (Turon and Londeix, 1988; Rouis-
Zargouni et al., 2010) and off NW Morocco (Marratla uron, 1994; Penaud et al., 20190).
labyrinthushas also been positively correlated with nutrigett-and cool waters (Turon and

Londeix, 1988; Devillers and de Vernal, 2000).

L. machaerophorumccurs during Gl in the Alboran Sea, particul&ly8, 9 and 12 (Fig. 2a),
while it occurs during GS on the SW Iberian mai@iig. 2b).L. machaerophoruris today
considered to be a temperate to tropical coastghaline species (Mertens et al., 2009). It
dominates associations from the northern Africash ssuthern European Atlantic shelves, and it
is also found in abundance in North African coasfadelling regions (Targarona et al., 1999;
Sprangers et al., 2004) and near the Congo oMiatrét, 1994). Extremely high concentrations

of these cysts have been found in areas with tipeasonally stratified water columns such as
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440 fjords, bays, and estuaries (e.g. Reid, 1972; Bradind Wall, 1984; Dale, 1985; Lewis, 1988;
441 Morzadec-Kerfourn, 1988; Dale et al., 1999). Thison has often been related to warm and
442  stratified surface waters (Marret and Zonnevel@30and has also been used as a proxy for
443 fluvial inputs towards the ocean (Zaragosi et2001; Holzwarth et al., 2010).

444

445 O. centrocarpunoccurs frequently in the Alboran Sea record withcpntages reaching 20 to
446  40% during almost every GS (Fig. 2a). On the SWidlbemargin, this species shows relatively
447 low percentages, with peaks generally less than d@ddag Gl and reaching a maximum of 20%
448 during GI 3 (Fig. 2b). This species is consideretd¢ a cosmopolitan, cool to temperate taxon
449 (Turon, 1984; Rochon et al., 1999; Marret and Zeeite 2003), and an abundance pattern
450 following the route of the North Atlantic Drift (NB) has been identified from its present

451 geographical distribution in North Atlantic surfasediments (Turon, 1984; Rochon et al., 1999).
452  This observation was previously used to intergretgresence of an active NAD at times when
453 this species was abundant in the Quaternary Nattn#ic sediments (Zaragosi et al., 2001;
454  Eynaud et al., 2004; Penaud et al., 2008, 2009).

455

456 5. Temperature and salinity records: convergencesnd discrepancies

457

458 5.1. SST: dinocystwversus planktonic foraminifera

459

460 Quantitative reconstructions derived from the tvamsfer functions (dinocyst and foraminifera)
461 are not directly comparable since the reconstrugggdmeters are not exactly the same. The
462 dinocyst transfer function 3PBase-940 only proviBlebruary and August SST reconstructions

463 while the foraminiferal transfer function R-1007pprovides annual and seasonal-mean (i.e.
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winter, spring, summer and fall) SST reconstrudidtiowever, February and August
foraminiferal SST can be estimated using the MAihsfer function derived from Pflaumann et
al. (1996) which relies on a modern database off6@@ern assemblages (only Atlantic stations),
improved during the MARGO project (Kucera et ab03). It is, however, more appropriate for
us to discuss the foraminiferal data from the R710@nsfer function (Atlantic and

Mediterranean modern databases) for the Alborarc&eawhich is located at the boundary of
the two basins. The comparison of wintersusFebruary SST values on the 664 common
stations from the foraminiferal north Atlantic dagéses (n=100Versusn=692) generates a mean
difference of 0.26°C (with a maximum differencelo®5°C). For the summeersusAugust SST
values, the mean difference is 0.37°C (with a maxmdifference of 1.1°C). These values are
within the range of the error bars of the foranerad reconstructions and therefore encourage us
to consider that monthly and seasonal foraminif8&iI' values can be discussed interchangeably.
Concerning dinocysts, the n=940 database alsodaslMediterranean stations. It is worth noting
that, among the 84 Mediterranean analogues (inodudly stations in the Alboran Sea), the only
Mediterranean analogue found by the transfer fonds located in the Alboran Sea and named
“M1039” (Fig. 1; Appendix B). This is mainly the aduring GI conditions (GIs 3, 5, 7, 8, 9,

11, 12 and 13; cf. Appendix B), suggesting that@iditions in the Alboran Sea between 25 and

50 ka were roughly equivalent to conditions pramgikt the “M1039” site today (Fig. 1).

When comparing SST reconstructions from both miglegntological proxies on the two cores,
one can note that Februargrsuswinter SST values obtained with dinocysts (3PB24@) and
foraminifera (R-1007), respectively, are closemtidaigustversussummer ones (Fig. 3).
However, the general good consistency of Februarsuswinter SST is not valid for the SW

Iberian margin during HS 5 with about 8°C differermetween both micropaleontological
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reconstructions (dinocyst SST estimates around BBtCforaminiferal ones close to 5°C; Fig.

3). This offset is unrealistically large given hediction error for each method (around 1.2°C).
This minor SST drop expressed in dinocyst poputatimay be underestimated, as also revealed
by the annual alkenone-derived SST values warnaer titie February dinocyst-based SST ones
(Fig. 3). One reason may come from the occurrehtigecdinocyst specidspagidinium
aculeatumduring HS 5 (Fig. 2). Indeed, on the western Bxemargin, this species peaks during
Gl, although a local maximum is observed duringdHpercentages slightly higher than 5%).
However, this species is associated with warm wditescyst assemblages and is found today in
tropical/subtropical oligotrophic open oceanic sif€uron, 1984). Although the occurrence of
this taxon during a cold HS is not understood,alyrawitch the transfer function towards warmer

SST values.

Augustversussummer SST reconstructions for both cores showasiwverall trends but differ
more in terms of amplitudes, with dinocyst SSTsigd to 10°C higher than foraminiferal SST
estimates (Fig. 3). Two hypotheses can be put farwéth respect to this observation. Either the
August/summer (dinocyst or/and foraminiferal) qufesgtions are less reliable or the
discrepancy reflects an ecological bias. Dinocgstsindeed produced by dinoflagellates that
thrive in the photic zone while foraminifera cangnaite deeply in the water column with living
depths ranging from 0 to 1000 m. Dinoflagellatesng found in shallower water, would thus
record warmer SST consistently with a higher dtcatiion during the warmest month, i.e.
August. Various biases between different micropati@ogical reconstructions can thus occur in
relation to the ecological strategy (depth of hattéind growth seasons) of the different
planktonic populations (de Vernal et al., 2005)e Tollowing comparison with alkenones will

help us to decipher whether the foraminiferal eodyst signal is too cold or warm, respectively.
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Finally, concerning the Alboran Sea core, one aae that dinocysts and foraminiferal show
closer Augustersussummer SST values between 31 and 38 ka and laffgets between 38

and 50 ka. This point will be further discussedégction 6.2.3. of this manuscript.

5.2. SST: transfer functionsversus alkenones

Alkenone-derived SST from cores MD95-2043 (Cachal.et1999) and MD95-2042 (Pailler and
Bard, 2002) has previously been compared with are-cecords, demonstrating a close linking
between SSTs in the western Mediterranean and ramope developments over the wider North
Atlantic region, including Greenland. Here, it appethat our dinocyst-based SST
reconstructions for both cores match peak to padktive SSTs derived from alkenones,
showing minimum values during GS (Fig. 3). Furthere) the alkenone-based SST, which
records an annual signal of temperature, fluctusystematically in between the temperature
range given by seasonal dinocyst SST reconstrigctiod is closer to February than August SST
(Fig. 3). A co-variation between February dinocySIT and alkenone-derived SST
reconstructions was previously observed off NW Momduring the last glacial over the last 30
ka (Penaud et al., 2010). This would confirm thpdtliesis that switches in mean annual
temperatures were dominated by, and thus weigbtedrts, the winter season during the last

glacial cycle as suggested by Denton et al. (2005).

The foraminiferal transfer function n=1007 alsoypdes annual SST reconstructions that can
directly be compared with the alkenone signal. Garenote that annual SST values
reconstructed with both proxies are closer durihgh@n during GS (Fig. 3). Foraminifera

routinely provide much colder temperatures durir®) @&d especially during HS that are
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characterised by significant SST anomalies betwleamd 7°C (Fig. 3). This shift of annual SST
values towards cold SSTs is mainly due to extreroelg summer SSTs reconstructed with
foraminifera during GS (Fig. 3). This contrast Ipasallels to the previous observation on the
considerable offsets between dinocyst and foraemalifAugustvversussummer SST. Since
alkenones are synthesised by coccolithophoridsiwénie single-celled algae, protists and
phytoplankton such as dinoflagellates, we can asghat they both give a signature of sea-
surface hydrological changes occurring in the ghmtine, while foraminifera may yield a bias
towards colder SSTs, especially during GS. Howaveiill be crucial to understand if this
finding reflects a real ecological strategy of foraifera (different depths of habitat following

different seasons) or a problem associated withrémsfer function.

5.3. SSS: dinocytsersus planktonic foraminifera

Quantifications of salinity are of critical intetess they are fairly rare in paleoclimate studfes.
major challenge in paleoceanography is to incréasavailability of SSS reconstructions for
comparison with climate models (e.g. MARGO proj@embers, 2009). In our records, similar
changes, both in amplitude and timing, are revetiliezligh the comparison of February
dinocyst-based SS&rsuswinter foraminiferal derived ones (Fig. 3). Nunoatiresults are
always very close or at least within the predic&oror of 1-1.8 psu, except during HS 5 and Gl
12 at the SW Iberian margin which are marked bfeddhces of 2 to 3 psu between both
micropaleontological proxies (Fig. 3). Comparisdnhe February/winter SSS data is
particularly striking because the methods of quation are different. One method requires

MAT calculation of SST based on planktonic forarféra and'%0 analysis (e.g. Malaizé and
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Caley, 2009), while the other one is obtained @nlthsis of MAT transfer function applied to
dinocyst assemblages (e.g. de Vernal et al., 2605)ever, correlations between fluctuations in
August dinocyst-based SSS and summer foraminifEnaved ones are less evident with

fluctuations similar in timing but divergent in tes of amplitudes, especially for the Alboran Sea

(Fig. 3).

For the SW Iberian margin, our study shows thabmiaw salinity events are recorded during
HS (Fig. 3b). HS 4 displays the maximum drop inrdaby/winter SSS with values reaching 31
psu, corresponding to the largest fluxes of fregbm® the ocean over our study period. Our data
for HS 3 (around 31.5-32.5 psu, 4 psu lower thamtlodern value) also show a major low
salinity event and are consistent with previousltesacquired further north along the Celtic
margin over the last 35 ka BP where this intervas \&lso characterised by a 4 psu depletion in
SSS (Eynaud et al., submitted).

For the Alboran Sea, the difference in the resotutif analysis between dinocyst and
foraminiferal/isotope reconstructions makes itidifft to compare some sections (Fig. 3a). This
is mainly due to the fact that foraminiferal SS$atculated from both foraminiferal SST and
planktonic3'®0 data and the resolution of th¥0 record is lower than the foraminiferal SST
record. For the whole Alboran Sea record, Februangér SSS shows changes of similar order
of magnitude between each GS, with the stronggetkbdf freshening recorded during HS 4

reaching 33 psu (4 psu lower than the modern value)

6. Paleohydrological changes affecting subtropic@tlantic latitudes through D-O cycles
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6.1. The new contribution of dinocyst assemblages the Alboran Sea

6.1.1. Warm intervals (Gl) in the Alboran Sea

During GI, we observe an expansion of warm tempexatropical species with a trend of
decreasing abundance, and decreasing Februarykambae SST, from immediately prior to a
Heinrich Stadial to the next HS (Fig. 4). This pattis similar to that seen in the Greenland ice
core isotope records showing progressively sh@teand smaller increases in Greenland air
temperatures between HS 5 and HS 4 and betweenard8 KS 3 (Fig. 4, NGRIP GICCO05).
This demonstrates a similar trend between Alboiah &1d atmospheric temperatures over
Greenland, involving a rapid transmission of NorthAtlantic climate changes into the western
Mediterranean region.

When comparing the amplitude of warm taxa develagrdaring individual D-O warming (Fig.
4), we note less frequent occurrences of thermophitaxa during the earlier interstadials (Gl
12-9) than during the subsequent interstadials8(6). This is consistent with pollen analysis
conducted on the same core (Fletcher &mthezGoii, 2008) demonstrating high values for
Mediterranean forest during G1 8, 7, 6 and 5 reiitecthe maximum in subtropical summer
insolation associated with the precession minimentred around 30-35 ka (Fig. 4). Such a
development is also seen in paleo-vegetation recatrdearby Alboran site ODP 976
(Combourieu-Nebout et al., 2002) and on the SWdbemargin (MD95-2042SanchezGoiii et
al., 2000).

The interstadials Gl 8 and GI 12, immediately sedoeg HS 4 and HS 5, respectively, exhibit
particularly long and warm periods. They are botirkad by high relative abundances of warm

water dinocysts, high SST estimates (especiallgraleth alkenones; Fig. 4), and by the highest
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606 paleoproductivity conditions indicated by heterptiw taxa in the early interstadials and high
607 dinocyst concentrations in the second half of @h8l GI 12 (Fig. 4). In terms of sea-surface
608 paleohydrology, Gl 8 and GI 12 are thus very simitdh a comparable bipartite structure (Fig.
609 4). Palynological investigations of GI 8 and Glifh2Zhe same Alboran Sea core showed that
610 these periods were characterised by the strongpansions of mixed oak forest between 48 and
611 15 ka (Fletcher anfanchezGoii, 2008). Furthermore, Fletcher aléhchezGoni (2008)

612 identified an Atlantic oceanic character duringl@| in contrast to a markedly Mediterranean
613 character during Gl 8, linked to the precessionimirm that likely enhanced the Mediterranean
614 climate and caused an enhanced seasonal conttasielpedry summers and wet winters

615 (SanchezGoii et al., 2008, 2009; Fletcher aBénchezGoiii, 2008). Our dinocyst data also
616 reveal a strong expansion of the spetiemachaerophorunm the second half of Gl 8,

617 representing between 20 and 40% of the total distorysemblage (Fig. 4). This species has
618 sometimes been used to trace fluvial inputs (Zasiagjoal., 2001; Holzwarth et al., 2010) and
619 could reflect higher river run-off to the Alborae& providing further evidence for increased
620 winter precipitations during this interval.

621 Throughout our record, heterotrophic dinocyst sge@. nephroidesS. quantaand

622 Protoperidinioids cysts) occur during each Gl i@ &boran Sea (Fig. 4). Their occurrences
623 suggest sea-surface conditions characterised bgased productivity (Rochon et al., 1999), as
624 also indicated by increased total dinocyst conegiotns (Fig. 4). This general pattern of higher
625 productivity during Gl relative to GS has previogusken discussed based on geochemical
626 evidence (calcium carbonate, barium excess, aatidgjanic carbon) from the same core

627 (Moreno et al., 2004). Today, the two semi-perméaaeticyclonic gyres found in the Alboran
628 Sea represent energetic mesoscale features anththdéorcing maintaining these gyres is the

629 Atlantic jet which enters through the Strait of @Gilbar (Bormans and Garret, 1989; Benzohra



630

631

632

633

634

635

636

637

638

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

30

and Millot, 1995; Garcia-Lafuente et al., 1998; Macet al., 2008). The intensity of the jet is
typically modulated by atmospheric pressure vaatiover the western Mediterranean. Indeed,
when atmospheric pressures are lower than averagéguration close to a NAO negative
mode, westerlies prevail above the MediterrandanAtlantic jet flows northward near the
Spanish coast and the western Alboran gyre isaesiéloped in the entire western Alboran Sea.
The opposite (NAO positive mode) occurs when ebstgnds prevail, the inflow of Atlantic
waters is lower and the Atlantic jet is directedtbavard, reducing the western Alboran gyre
extent (Candela et al., 1989; Garcia-Lafuente.e28D2; Macias et al., 2008). At an annual
scale, on the basis of satellite imagery analysig Garcia-Gorriz and Carr, 1999; Baldacci et
al., 2001; Macias et al., 2007, 2008) maximum sgrfehlorophyll concentrations were usually
found in winter and minimum values were observesummer (July and August). Biological
patterns are thus also tightly coupled to atmosplpeessure above the Mediterranean Basin with
westerlies being shifted southward during wintetrth® millennial-scale resolution of our study
and in agreement with Moreno et al. (2004), ouadaiggest that Gl conditions would exhibit a
prolonged southward shift of the westerly wind pigllucing a more intense Atlantic surface jet

that favoured gyre-induced upwelling in the AlboZea.

6.1.2. Cold intervals (GS) recorded in the AlborarSea

The associatioB. tepikiense S. elongatusepresents an indicator for the incursion of sldupo
water masses at the Alboran site that is highlgevi during HS (Fig. 4). This latter pattern is
similar to that of the subpolar foraminifddeogloboquadrina pachydernsarecorded in the
same core (Cacho et al., 1999) that shows higheeptages during HS (Fig. 4). This

foraminifer displays the highest percentages durd8g, then HS 3 and finally HS 5, whise



654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

31

tepikienseshows higher percentages during HS 3 comparedbtd (tf. Figs. 2 and 4B.
tepikiensas absent from the Mediterranean Sea today, agttekt abundances of this species
occur in areas characterised by high-amplitude@)8&asonal temperature shifts (Rochon et al.,
1999). Therefore, its occurrence during HS in AlvtoSea surface waters implies enhanced
seasonal temperature contrast (15°C; cf. Fig. B)paved to the present-day one.(10°C;

23.5°C in summer and 14.5°C in winter; cf. Fig.&@used by a strong decrease of winter SST
(Fig. 4). Our February dinocyst SST reconstructiansforce this hypothesis by showing low
SST with values around 5.5°C and 6.5°C during H8d HS 3, respectivelyge. 9°C less than at
present (Fig. 4). Itis thus important to note tiacontrast tdN. pachyderms.,B. tepikiense

does not mark systematically colder intervals hténvals with larger seasonal contrasts. Our
results are also in agreement with other obsemsatmmade at ODP Site 976 (Alboran Sea) that
reflect coeval increases Bf tepikiensavith N. pachyderma. percentages during HS, over the
last 50 ka BP (Turon and Londeix, 1988; Combouh@out et al., 2002). Our data thus
confirm that sea-surface cooling in the Alboran #eaa mainly linked to the advection of cold
Atlantic water to the western Mediterranean (Caehal., 1999). Such cold-water advection
occurred synchronously with regional cooling rediatie@ atmospheric conditions over the western
Mediterranean (Combourieu-Nebout et al., 2002; Bancoiii et al., 2002). Indeed, on the
adjacent continent, the Mediterranean forest femperate taxa) collapsed (Fig. 4) and estimated
winter atmospheric conditions indicate a 10°C langand a decrease of 400 mm in
precipitation (Sanchez-Gofii et al., 2002).

The HS configuration contrasts with the other @3he Alboran Sea, before or during each GS
(especially those not associated with HS condijiaresnote pronounced peaks@f
centrocarpum(Fig. 4). The occurrence @f. centrocarpunin the Alboran Sea, whose present-

day distribution directly mirrors the flow path thie NAD, may result from the influx of cool
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North Atlantic waters entering into the Mediterrangtemperatures of these waters, while
presumably low, remained above those of the subp@ters that entered the Mediterranean
during HS. GS events of the last glacial have liBsmonstrated to coincide with intensification
of the deep circulation in the Mediterranean (Caghal., 2000, 2006; Sierro et al., 2005; Frigola
et al., 2008). Our data suggest that the interadibo of deep ventilation in the Alboran Sea,
reflected in benthi®**C data (Fig. 4; Cacho et al., 2006), was synchrsmith the advection of
North Atlantic waters to the Mediterranean, asa@fd by highest relative abundances of cool-
water dinocyst taxa (Fig. 4).

We demonstrate two different patterns during G8sé¢hassociated with HS are marked by
increased abundances of cold water species assbeveth subpolar waters, and those not
associated with HS are marked by an expansionafitorth Atlantic species. Interestingly, it
has been demonstrated that the densest WestertekMadean Deep Water was formed during
GS not associated with HS (Cacho et al., 2006 ofaigt al., 2008). More precisely, it has been
suggested that a strong mode of overturning pregdailring GS not associated with HS, an
intermediate mode of overturning during HS and akvaode of overturning during Gl (Sierro
et al., 2005; Frigola et al., 2008). Strong overitng was expected during HS since strong and
cold northern continental winds prevailed over Mediterranean resulting in dry-cold conditions
on land (Fig. 4, Combourieu-Nebout et al., 208#chezGoiii et al., 2002). However, the HS
intermediate mode has been linked with a strorigentce of subpolar waters that lowered sea-
surface salinity thus reducing deep water formagind favouring water column stratification
(Sierro et al., 2005). The observation of subpsfaciesl. pachyderma. andB. tepikiensg
during HS (especially HS 3 and HS 4), as well addlv winter and summer salinities

reconstructed from dinocysts, lowered by around® 55 psu compared to the other GS in both
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seasonal configurations (Fig. 3), within low prétEpon phases, reinforce the idea of sustained
cold conditions with subpolar water masses advedtwards the Mediterranean Sea and

decreased deep water formation.

6.2. Alboran Seaversus SW Iberian margin between 50 and 25 ka

6.2.1. SST reconstructions and paleoenvironmentaignatures

In both cores, lowest SST estimates are observedgddS 4 which represents the most
pronounced cold event between 25 and 50 ka, witinugey/winter SST of about 5.5°C and 4°C
recorded in the Alboran Sea and the SW Iberian margspectively (Fig. 3). Previously, the
coldest deep water temperatures in the Alboran(Saeho et al., 2006), maximum
concentrations of IRD off the Portuguese margino{ifeny et al., 2000), and a significant
increase in the transport of Saharan dust (Moréab,e2002) were observed to occur during HS
4. This confirms the magnitude of HS 4 (cf. Eynatidl., 2009) in terms of expansion of polar
waters towards the Iberian margin (i.e. February $8°C lower than modern ones) and even
towards the western Mediterranean (i.e. Februaily & lower than modern ones), in phase
with a nearly complete shutdown of the thermohatineulation (Maslin et al., 1995; Elliot et al.,
2002; Roche et al., 2004).

HS 3 is marked by a change in surface hydrologioatlitions with February/winter SST of
about 6.5°C in the Alboran Sea and 5.5°C off PatBig. 3). Winter conditions seem thus to
have been less severe during HS 3 than HS 4, githihwey are nevertheless characterised in both

paleo-records by significant cooling.
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Finally, HS 5 is the event which displays the wesakdanges both in the Alboran Sea and off
Portugal, where dinocyst February SST are abouta®tC13°C, respectively (Fig. 4). However,
foraminiferal winter SST estimates are close to 8@ 5°C in the Alboran Sea and off Portugal,
respectively. Quantifications derived from trandterctions appear less reliable during this
interval. The alkenone annual signal (around 1@.%1in the Alboran Sea and 12-12.5°C off
Portugal) probably provide an intermediate sigrehetween dinocyst-based (too warm) and

foraminiferal-based (too cold) February/winter S&timates.

Micropaleontological evidence in the subpolar N@ktlantic has shown that abrupt SST changes
associated with the D-O events in Greenland wertehmed by SST variations of at least 3-5°C
(Bond et al., 1992, 1993; Elliot et al., 2002)the subtropical North Atlantic, SST excursions of
4-5°C across stadial-interstadial transitions efldst glacial were recorded from the Bermuda
Rise (alkenones: Sachs and Lehman, 1999; isot&gégwin and Boyle, 1999) and off Portugal
(alkenones: Bard et al., 2000; Martrat et al., 208BT changes of up to 6°C are also
documented in the western Mediterranean (alkendviadrat et al., 2004), due to southward
shifts in the position of the Polar Front. Congisiewith these previous results, we show here
that the Alboran Sea and the SW Iberian margin empeed fluctuations of dinocyst SST of
around 5-6°C between Gl and GS, except for HS evamd more specifically HS 4 with a SST
drop of around 11°C off Portugal and of 8°C in &leoran Sea. This demonstrates the extreme

sensitivity of dinocysts to climate fluctuationssubtropical latitudes.

6.2.2. Multiproxy evidence for paleohydrological chnges through time

During Gl, the expansion of the Mediterranean fo(Egy. 4) was attributed to atmospheric
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conditions close to present-day ones with warm semand wet winter conditions over south-
western Europe (e.§anchezGoii et al., 2002; Combourieu-Nebout et al., 2002; Bou
Roumazeilles et al., 2007; Daniau et al., 2007Yim@uthose times, we show that warm

temperate speci€s mirabilisandl. patulumexpanded in the Alboran Sea and on the SW Iberian
margin, respectively (Fig. 4), and high SST is rded at both sites during Gl revealing sea-

surface conditions closer to present-day ones (Bigsd 4).

During GS, the decline of the Mediterranean fo(Egj. 4) and the development of steppe and
semi-desert vegetation over the south-western Earoporderlands were attributed to
intensified winter dryness with cold continentahddions affecting the western Mediterranean
area (e.gSanchezGoni et al., 2002; Combourieu-Nebout et al., 2002; &far et al., 2002, 2005;
Roucoux et al., 2005; Bout-Roumazeilles et al.,2@xaniau et al., 2007). At that time,
assemblages of cold-water dinocyst species, intfi Bl tepikiensandS. elongatusleveloped,
reflecting cold-water advection along the SW Ibemaargin and towards the Alboran Sea (Fig.
4). However, unlike the western Iberian margin wetirtepikienseccurs during each GB8B,
tepikienseexpands principally in the Alboran Sea during HsJ especially during HS 3 and HS
4. In the western Mediterranean Sea, HS impacte therefore greater than those associated
with the other GS. Broecker (2006) has compile@ di@m several areas and has identified sites
where the impact associated with North Atlanticritlieh events is larger (eastern Brazil, central
Florida, Arabian Sea, Chinese stalagmites, andenedlediterranean area), in contrast to sites
where impacts are similar to those observed duhiagther stadials (Greenland ice and Cariaco
Basin). To explain this discrepancy, Broecker (900@olves the greater magnitude of north-
hemispheric sea ice expansion associated with Mdlémtic Heinrich events which exceeded

that associated with the other stadials.
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B. tepikiensavas previously used to trace subpolar water massése western Iberian margin
(Eynaud et al., 2000; Turon et al., 2003) and enAltboran Sea (Turon and Londeix, 1988;
Combourieu-Nebout et al., 2002) during HS. In catagthe observation of subpolar dinocysts in
both cores, in phase and synchronous with peaks pachyderma. (Fig. 4), confirms the idea
of the shift of the Polar Front (PF) towards soutHatitudes during North Atlantic Heinrich
events. Indeed, Eynaud et al. (2009) proposed eepbnal scheme for the position of the PF on
the western Iberian margin during Heinrich evemis iés influence on the local hydrology, and
noticed that the protrusion of subpolar watersrekeel until approximately 40°N. Core MD95-
2042 (37°48'N), at the southern limb of the Ruddinbalt (i.e. between 40 and 55°N;
Ruddiman, 1977), was affected by subpolar wateds@berg discharges. However, it is
surprising to observe that the peak8ofepikiensare even larger during GS not associated with
HS on the SW Iberian margin. When considering diggdoraminiferal, and especially
alkenone-based SST reconstructions, HS are chasactdy the coldest temperatures (Figs. 3
and 4). We can therefore assume that temperataesmobably too cold during summer
months to permit the expansionBftepikienseThis hypothesis is reinforced by the large
excursions towards cold summer temperatures olsevite dinocyst and foraminiferal SST
reconstructions (Fig. 3). The huge advection opsldr waters down to the SW Iberian margin
during each GS, and especially HS, is furthermermgforced by the dinocyst SSS reconstructions
that show a generally more pronounced influenaaealtwater in this sector compared with the
westernmost part of the Mediterranean Sea (avesagety offset of around 1 psu between the
sectors; Fig. 3). This is especially true for H&Haracterised by salinities of around 31 on the
SW Iberian margin and 33 in the Alboran Sea (FjgV& thus show the pronounced impact of
subpolar waters affecting the SW Iberian marginrdpueach GS and especially during HS, while

the Alboran Sea is only impacted by huge freshwa@isaharges during HS.
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797 6.2.3. Afirst attempt to interpret the dinocyst sasonality signal

798

799 Sea surface temperatures and precipitation arecmaental parameters directly linked to

800 seasonality in the study region, and the differdmet&een August and February SST estimates
801 derived from dinocysts may contain important infatimn regarding the seasonality (Fig. 5).
802 Overall, the two cores show excursions in seastyna&constructions towards a higher seasonal
803 contrast during GS due to extremely cold Febru&Y 8corded during these cold intervals. At
804 the SW lberian margin, seasonal contrasts duringppear similar to the present-day range,
805 while extremely pronounced seasonal contrastsugjiy similar magnitude are recorded during
806 each GS. The pattern of seasonality is very closkd relative abundance curveBoftepikiense
807 (Fig. 5). In the Alboran Sea, higher seasonal estgrare mainly noted during HS and also

808 correspond to higher percentageBotepikienselt is not surprising to find parallels between
809 this species and the seasonal signal since highestdances of this species are found in areas
810 today characterised by high-amplitude (10°C) seasemperature shifts (Rochon et al., 1999).
811 Inthe Alboran Sea, it confirms the establishmdraroenhanced seasonal temperature contrast
812 compared to the present-day caused by a strongaerim winter SST during HS (Combourieu-
813 Nebout et al., 2002). At the SW Iberian margimgiteals very clearly the marked shift between
814 seasonal temperatures during each GS.

815 Inthe Alboran Sea, another climatic trend is supeosed on the general observations made
816 above with, in broad terms, stronger seasonal aststduring the early part of the record

817 between 50 and 38 ka, compared to the period 3&3Eig. 5). Since seasonality and precession
818 are closely linked, we show the precession cunexd@ and Loutre, 1991) alongside the

819 reconstruction of seasonality (Fig. 5). It appehet lower seasonal contrasts are observed during
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the precession minimum andate versgFig. 5). We would have expected higher seasonal
contrasts during the precession minimum sincedtigal parameter enhanced the Mediterranean
climate with warmer summer and wetter winters (Eegnd Tuenter, 2007). When looking at
February SST reconstructions in the Alboran Sea,oam note that fluctuations during GS and
Gl are of similar magnitude (Fig. 5). The contrigsnainly due to August SST reconstructions
that show colder values between HS 4 and HS 3libameen HS 5 and HS 4. Our data would
suggest a link between the Alboran Sea paleohygyadod the precession signal through a
climatic forcing acting on August temperatures.irAtfhypothesis could involve the general
strengthening of the gyre-induced upwelling in Atieoran Sea during the time interval 38-31 ka
favouring a cooling of sea-surface waters comptodle period 50-38 ka. However, the
functioning of the gyres is mainly controlled todaywinter conditions. Furthermore, no large
differences are observed between 50-38 ka and 3&-81terms of total dinocyst concentrations
and heterotrophic dinocyst species, these lattetigs indicating paleoproductivity conditions
probably connected to gyre-induced upwelling initgn&reater stratification of the Alboran
water column may also be suggested for the pef@e88ka compared to the period 38-31 ka on
the basis of the observation of dinocyst and forglierial August/summer SST (Fig. 3). Indeed,
SSTs in August and summer are similar between @88arka and are more distinct between 50
and 38 ka (Fig. 3). This might suggest a greatatiftation of water masses during summers
within the interval 50-38 ka and a stronger mixaigvater masses during summers within the
interval 38-31 ka. Warmer dinocyst SSTs might eetatsea-surface conditions while
foraminiferal SSTs would incorporate SST signalgratiter depths in the water column for the
period 50-38 ka. Further investigation will be nesagy to verify and explore on longer time-
scales: a) the imprint of precession on the sedispohanges inferred from dinocysts, and b) the

functioning of the mesoscale energetic featureébenAlboran Sea represented by two
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844 anticyclonic gyres today.
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845 7. CONCLUSION

846

847 We have characterised glacial climate variabilgéyveen 25 and 50 ka BP by comparing surface
848 paleohydrology signals on both sides of the Stfadibraltar (Alboran Sea and SW Iberian

849 margin). Comparison of dinocyst assemblages en#ieeconstruction of hydrological features
850 at both locations and we present, in this studyfitist quantitative dinocyst reconstructions (SST
851 and SSS) for MIS 3 obtained at mid-latitudes. Ogdrblogical quantifications acquired for both
852 cores reproduce millennial-scale changes correlatéite D-O climatic variability, with a pattern
853 of marked decrease in SST accompanied by a streslgening of sea-surface waters evident
854 during each GS on the SW Iberian margin and dud8gn the Alboran Sea. Furthermore, we
855 show similar patterns and amplitudes in SST recaasbns based on dinocysts, foraminifera
856 and alkenones, and in SSS derived from dinocystd@aminiferal SST coupled with planktonic
857 &'®0. Larger discrepancies between dinocyst and forifenal estimates occur for summer

858 reconstructions than for winter reconstructionsicivtare very similar in amplitude. We

859 furthermore show the occurrence of cold taxa (idiclg B. tepikiensendS. elongatusduring

860 GS and the presence of thermophilous oBesnrabilisandimpagidiniumspp.) during GI.

861 However, the amplitude of variation in these taxaot equivalent at both sitd3. tepikiense

862 characterises each GS in the SW Iberian margirewithdnly develops during HS in the Alboran
863 Sea. This pattern reflects, in the Alboran Seaptagimum climatic deterioration during HS and
864 the incursion of low-salinity subpolar waters te thestern Mediterranean. During other GS (i.e.
865 excluding HS), conditions were less severe in thman Sea as is reflected by the occurrence of
866 O. centrocarpunat very high relative abundances in the Alboraa &&l low values on the SW

867 Iberian margin. This species conceivably reflebesihflow of cool North Atlantic waters to the
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western Mediterranean, synchronously with stromgep convection occurring at that time in the
western Mediterranean. Finally, expansions of teatpeo tropical taxa testify to the installation
of warm sea-surface waters during Gl. In the AlbdBaa, a high primary productivity pattern is
deduced from heterotrophic species and high tatalogst concentrations, suggesting gyre-
induced upwelling due to prevailing southward-gdftvesterlies above the Mediterranean at that
time. The functioning of the gyre on multi-mille@htimescales has also been discussed in light
of seasonality reconstructions based on dinoclfsisiever, the relationships between gyre
dynamics, seasonality and precession need to berespn longer records covering several
precession cycles. The dinocyst data thus extegibnal trends and suggest distinct oscillations
of sea-surface temperature and salinity, documgititie@ combined influence of atmospheric and
hydrologic processes impacting on the western Medihean Sea and eastern subtropical

latitudes of the North Atlantic during the abruptmatic events of MIS 3.
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10. Figure captions

Figure 1: Area of interest with major sea-surface featuré® 3tudied cores MD95-2043
(Alboran Sea; 36°8.6'N; 2°37.3'W; 1841 m water dg@nd MD95-2042 (Iberian margin;
37°48’N; 10°10'W; 3146 m water depth) are locatedlue large map, depicting also the
bathymetry of the study area and the major surtaceents within the Alboran sea; WAG:
Western Alboran Gyre; EAG: Eastern Alboran Gyre;FA@Imeria-Oran Front; AC: Algerian
Current. The small map on the left shows largeeshlairth-Atlantic currents with: the North
Atlantic Drift (NAD), the Portugal Current (PC) fdong southward from 45°N to 30°N, the
Azores Current (AzC) derived from the southern bhaof the Gulf Stream and flowing eastward
to the Gulf of Cadiz at about 35°N, and the Car@uyrent (CC) fed by both the AzC and the PC.
Together, these currents form the Eastern Boun@argent of the North Atlantic subtropical
gyre. A Mediterranean analogue of the dinocyst modatabase has been located on the map
(M1039). Colors from red to dark blue on the mdfert growing bathymetry towards the

deepest areas.

Figure 2: MD95-2043 (a) and MD95-2042 (b). Core depths @spldyed in centimetres along
the vertical axis. The relative abundances of setkdinocyst species are compared with
planktonics'®0 data and (J;~-SST (Core MD95-2043: Cacho et al., 1999; Core MOB2:
Cayre et al., 1999; Shackleton et al., 2000; Raltel Bard, 2002), providing the stratigraphical
framework for the two cores. Quaternary dinocystoemtrations are also illustrated. HS:

Heinrich Stadial; Gl: Greenland Interstadial.
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Figure 3: MD95-2043 (a) and MD95-2042 (b). Quantitative diyst reconstructions (February
and August SST and SSS, 3PBase-940) compared @itlp@®vided by foraminifera (winter,
summer and annual, R-1007) and alkenon&s{USST), and SSS provided by calculations
based on planktonig'®0 (G. bulloide$ and foraminiferal SST estimates (winter and sumiRe
1007). Error bars are shown in the figure for thifedent reconstructions. HS: Heinrich Stadial,

Gl: Greenland Interstadial.

Figure 4: Comparison between cores MD95-2043 and MD95-2042ratilti-proxy compilation
including: selected dinocyst species, total dinocyst conceoiis February dinocyst (3PBase-
940) and alkenone SST (Cacho et al., 1999; PaifidrBard, 2002) reconstructions, percentages
of N. pachyderma. (Cacho et al., 1999; Pérez-Folgado et al., R@@ithics**C (Cacho et al.,
2006), and percentages of the Mediterranean f(BésthezGoiii et al., 2000, 2002; Fletcher
andSanchezGoni, 2008). These data are compared WiflD ice core records and the precession

signal (Berger and Loutre, 1991). HS: Heinrich &hdsl: Greenland Interstadial.

Figure 5: MD95-2043 (a) and MD95-2042 (g stimation of a parameter of seasonality based
on the difference between February and August ¢std8ST reconstructions (3PBase-940),
compared with percentages of the dinocyst sp&itestatodinium tepikienseéhe precession
signal (Berger and Loutre, 1991) and plankta@if© records G. bulloide$. Dinocyst and
alkenone SST records are also represented, aasvelbdern SST values. HS: Heinrich Stadial;

Gl: Greenland Interstadial.

11. Appendices
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Appendix A: MD95-2042 (SW Iberian Margin) and MD95-2043 (Albor@ea): individual

counts of dinocyst species, total dinocysts couatetitotal dinocyst concentrations per sample.

Appendix B: MD95-2042 (SW Iberian Margin) and MD95-2043 (Albor&ea): lists of the five
best analogues found with the transfer function &@B940. The geographical coordinates of
each named analogue can be found on the GEOTORt&vebs
(http://www.geotop.ca/index.php?option=com_contéatk=view&id=762&Itemid=226). The
five analogues found by 3PBase-940 have systerfigtizzen used for the calculations, the
threshold (Dmin value of 71.72) may then be considi¢o judge the good reliability of the
reconstructed hydrological parameters. The M102®ogue, highlighted in the tables in bold, is

a Mediterranean analogue located in Figure 1.
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a) MD95-2043 - Alboran Sea
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b) MD95-2042 - Iberian Margin
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