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Abstract

The Saint-Jean-du-Doigt (France) and Nérth—Guernsey (Channe! Islands) Intrusive
Complexes (hereafter referred to as SJIC and NGIC, respectively) are examples of mafic-
silicic layered intrusions in the Armorican Massif. Both are characterized by the occurrence of
(1) a basal/peripheral gabbroic unit interlayered with sheets (generally dioritic in composition,
occasionally gabbroic) and crossed by leucocratic diapirs and pipes (from monzodioritic to Q-
monzonitic in composition), (2) peripheral pegmatoids associated with mafic cumulates and
(3) coeval granitoids. Beside these main similaﬁties, some contrasted features lead us to
propose two distinct models of formation. The Variscan SJIC includes tholeiitic mafic rocks
(monzogabbro) that locally mingle and mix with leucocratic components (monzonite or Q-
monzonite). The Cadomian NGIC is calc-alkaline. The SJIC sheet-bearing gabbro is
homogeneous from a petrologic point of view, whereas the NGIC exhibits gabbroic
macrorhythmic sequences with mineral layering. The Sr-Nd isotopic compositions of the SJIC
gabbros are significantly different from those of the associated dioritic layers. This is not the
case in the NGIC where the magmas could be cogenetic. We argue that the SJIC gabbro was a
liquid that crystallized in sifu without significant crystal settling. By contrast, the rhythmic
sequences of the NGIC are consistent with crystal accumulation. Subsequently, both can be
seen as mafic reservoirs which were repeatedly invaded by magmas of intermediate
composition, We interpret the sheets in the SJIC as the result of horizontal spreading of
dioritic metastable magmas into a gabbroic reservoir crystallizing from below, at levels of
neutral buoyancy. Injections and convection in the central part of the reservoir possibly
resulted in spectacular mixing/mingling structures. In the NGIC, the emplacement of the
dioritic sheets was rather controlied by pre-exisfing rhythmic cumulative structures. In both

intrusions, late differentiated diapirs were extracted from the dioritic sheets. Associated
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peripheral pegmatoids are thought to result from the crystallization of liquids issued from a
mafic intercumulus melt in the presence of a fluid phase. This extraction might have been
enhanced by the disruption of the peripheral cumulate stack, perhaps following pressure

drops.
Keywords: Gabbro; Diorite; Granite; Layered intrusion; Replenishment; Armorican Massif
1. Introduction

The term MASLI (MAfic-Silicic Layered Intrusion), as first proposed by Wiebe
(1993a and b), refers to plutonic complexes with interlayered mafic (gabbroic) and
intermediate/felsic (dioritic to granitic) rocks (Wiebe, 1996; Franceschelli et al., 2005).
MASLIs can be recognized by distinctive field relationships which always include (i) lobate
contacts between the main gabbro-dioritic intrusions and surrounding or underlying
granitic/granodioritic plutons and (ii) layers, sheets, diapirs, and/or veins of dioritic/silicic
material into gabbroic units (Wiebe, 1996). Other features commonly (but not always)
described in such complexes are:. (iii) macrorhythmic gabbro-dioritic units, from less than one
to several tens of meters thick, with chilled bases (Wiebe, 1993b, 1994, 1996; Waight et al.,
2007), (iv) modal layering and feldspar lamination in the dioritic/silicic layers (Wiebé, 1996),
(v) mafic/intermediate enclaves in the granites (Wiebe, 1994; Wiebe et al., 1997), and (vi)
basaltic pillow-like chilled bodies within felsic units (Wiebe, 1974, 1993b; Wiebe et al,,
2001). Although differences exist between the examples, Wiebe and others first proposed a
comprehensive model to account for these features: repeated mafic injections into a felsic
chamber, from dioritic to granitic composition, followed by fractional crystallization and

complex liquid-liquid (and/or partially crystallized magma-magmay) interactions including
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small scale diapirism and hybridization. More recently, MASLIs were recognized to result
from multiple replenishments of mafic and felsic magmas, mingling and limited mixing, and
rejuvenation of granite (Wiebe et al., 2007).

If the Cadomian layered gabbro-diorite complex of North-Guernsey (Channel Islands)
was suspected by Wiebe (1996) to be a MASLI, the Variscan intrusion of Saint-Jean-du-Doigt
(France) was never considered as such. However, both Armorican plutonic bodies display
many of the features characteristic of mafic-silicic layered intrusions. Additionaily, both
complexes show spectacular pegmatoid (gabbroic pegmatite) occurrences systematically
associated with coarse-grained mafic cumulates. Such a lithologic association has already
been described in various gabbroic intrusions (Smartville intrusive complex, California:
Beard and Day, 1986; Kracmer macrodyke, Greenland: Momme and Wilson, 2002; Mount
Sheridan gabbro, Oklahoma: McEllen, 2006), but not specifically in MASLIs. In spite of their
similarities, each Armorican intrusion shows distinctive petrological and geochemical
(isotopic) characters.

The aim of this study is to reexamine the published models of MASLI formation
through these two new examples from the Armorican Massif, which display both shared and
conirasted features. This leads us to propose distinct processes of construction emphasizing
the possibility that replenishment of mafic chambers by intermediate partially crystallized

magmas explains some features of MASLIs.

2. Analytical techniques

Compositions of mineral phases were obtained with a Cameca SX50 automated

electron microprobe (Microsonde Ouest, Brest). Analytical conditions were 15 kV, 15 nA,
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counting time 6 s, correction by the ZAF method. Concentrations <0.3% are considered
qualitative.

Major and trace element compositions (Table 1) were measured at the University of
Brest on whole rock powders by inductively coupled plasma atomic emission spectrometry
(ICP-AES). Analytical methods are described in Cotten et al. (1995). Relative standard
deviations are <2% for major elements and <5% for trace elements. For the coarsest-grained
samples, a large quantity of rock was crushed in a steel jaw-crusher (e.g., 20 kg for the
pegmatoid SJ16). After the crushed rock was quartered, a representative split was pulverized
in an agate mill.

The Sr-Nd isofopic compositions were obtained from whole rock powders with a
Cameca TSN 206 mass spectrometer (Guernsey) and with a Finnigan MAT 262 mass
spectrometer (Saint-Jean-du Doigt) at Géosciences Rennes. Sr, Rb, Sm and Nd contents wete
measured by isotope dilution except for the SJIC samples in which Rb was determined by
ICP-AES. Errors on Rb/%Sr and 7S/ *Nd ratios are 2% and 1%, respectively, Details of
analytical procedures are described in Peucat et al. (1999). 8781/*5Sr ratios were normalized to

the NBS 987 standard (¥’Sr/%Sr = 0.71025) and '*Nd/***Nd ratios to the AMES standard

(“PNA/™*Nd = 0.511963). Enq values, in Table 2, were calculated using "*Nd/**Ndcpur =
0.51264 and '"'Sm/"*Ndciur = 0.1967. They correspond to: Egy = 10*((**Nd/"* Ndgampte /

051264) -1) and € = €y -(25.1((Sm/™**Nd sample 1) 70.1967)A¢y), following De Paolo

(1988).

3. Saint-Jean-du-Doigt Intrusive Complex (SJIC)

3.1, Geology
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The Saint-Jean-du-Doigt Intrusion (SJIC) is located between the Trégor Cadomian
domain, mainly composed of volcanoclastic formations overlying a Palacoproterozoic
(Icartian) gneissic basement (c. 2.0 Ga, Auvray et al., 1980), and the Léon Hercynian
metamorphic domain (Fig. 1a). The SJIC is composite and includes four main units: the
Primel cumulate-pegmatoid association, the Saint-Jean-du-Doigt monzogabbro-(Q-
ymonzonite mingled/mixed rocks, the Poul Rodou layered gabbro-diorites and several granitic
bodies (Fig. 1b). Some doleritic dykes cross cut the units, but were not found in the granitic
rocks. Most rocks have isotropic textures and exhibit no significant regional deformation
subsequent to their emplacement, with the exception of local brittle faulting. However, they
have undergone late- to post-magmatic alterations, resulting in the transformation of some
primary minerals, without significant change in bulk rock chemistry (Coint et al., 2008). The
SJIC was emplaced under a lithostatic pressure of about 0.5 GPa, i.e. at ¢. 15 km depth
(amphibole geobarometry: Johnson and Rutherford, 1989 and Schmidt, 1992 ir Coint et al.,
2008), within Proterozoic rocks and Devonian-Carboniferous sediments. Chantraine et al.
(1986) have reported a carboniferous U-Pb zircon age of ¢. 350 Ma for the gabbros (Deutsch,
unpublished) confirmed by Barboni et al. (2008, 2010), who obtained U-Pb zircon ages at 347
+ 4 Ma for ‘the mafic units and the granitic bodies from Poul Rodou. The SJIC was later
intruded by red granites at ¢. 300 Ma (Fig. 1b). The SJIC mafic rocks have a tholetitic affinity
(Chantraine et al., 1986; Coint et al., 2008, 2009; see also section 5.2). Geochemical features
of intermediate/felsic rocks are rather typical of calc-alkaline suites (Barboni et al., 2010;

Capdevila, 2010).

3.2. Coastal SJIC from East to West
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The Saint-Jean-du-Doigt Intrusive Complex is best exposed along the northern
shoreline. Field observations have been made from Poul Rodou to Primel through the bay of

Saint-Jean-du-Doigt (Fig. 1b).

3.2.1, Poul Rodou: gabbro-diorite layering

From southeast to northwest, the Poul Rodou cross-section begins with a small
granitic body in sharp intrusive contact with a Proterozoic formation (Fig. 1b and 2a). The
granite is equigranular and intrudes an intergranular/oikocrystic gabbro. Lobate contacts
between the granite and the adjacent gabbro and gabbroic enclaves within the granite are
interpreted as evidence for the contemporancous crystallization of both magmas. Other
granitic intrusions crop out along the shoreline, such as the Beg ar Fri granite (sample SJ22,
Fig 1b and 2a), Several sub-parallel leucocratic sheets form layers within the gabbro. They are
oriented SE-NW and dip slightly (10° to 30°) toward the northeast. They are cut
southeastward by the granitic intrusion (Fig, 2a). This demonstrates the lack of apparent direct
link between leucocratic sheets and granitic bodies. Leucocratic sheets are thin (a few
decimeters thick) and sparse near the edge of the complex. They become thicker (up to
several decimeters) and more abundant to the northwest. The spacing from one sheet to
another varies from several decameters to a few meters. The upper contact with the overlying
gabbro is systematically undulated, sometimes connected to felsic masses, a few decimeters in
size, within the overlying gabbro (Fig, 3a, b). When elongated, these structures are orientated
sub-perpendicularly to the sheet layers. They are interpreted as gravity-driven felsic diapirs
extracted from the sheets. In the present orientation, these instabilities are not sub-vertical and
the sheets are not sub-horizontal. The variable dipping angles of the structures along the Poul
Rodou shoreline are consistent with post-emplacement brittle deformation and denotes

northeastward tilting of blocks limited by NE-SW faults (Fig. 2a). The composition of the
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leucocratic sheets is dioritic, with the exception of their upper part, sometimes Q-monzonitic
(Table 1). All are moderately cumulative in plagioclase (cumulus from 20% at the base to
50% at the top of the sheets) and generally exhibit an intergranular texture. Felspar-rich
(plagioclase and orthoclase) diapirs, more differentiated than their related sheets, have
textures ranging from intergranular to pegmatitic. Contrasting with the upper contacts, bases
of the leucocratic sheets form relatively regular surfaces with the underlying gabbro. Some
sheets are connected from below to sub-perpendicular pipe-like feeding structures (Fig. 3b
and ¢). In addition, when diapirs came near an overlying sheet, they could merge with it.
Alternatively, some diapirs did not intersect the overlying sheet but formed concave-down
structures (Fig. 3d). Except near Beg ar Fri, where an amphibole-rich cumulate has been
sampled (SJ44b, Fig, 2a), the gabbro is structurally and texturally homogeneous throughout
the Poul Rodou shoreline: no chilled margins, macrorhythmic units, or upward petrographic

gradation were observed.

3.2.2, Saint-Jean’s bay: monzogabbro-monzonite interactions

The coast north of Saint-Jean-du-Doigt exposes spectacular and various monzogabbro-
(Q-)monzonite (see section 3.3 for rock nomenclature) interaction structures resulting from
brittle brecciation to mixing (producing hybrid rocks) through mingling (during which the
magmatic end-members retain their identity). At Saint-Jean’s bay, angular breccias are
present only east of the dextral fault F (Fig. 1b) whereas mingling/mixing predominates
westward. Lobate structures are also visible in the transition zone to the Poul Rodou layered
gabbro-diorite unit.

Structures that result from ductile interactions between coexisting magmas inciude
pillowed mafic enclaves with chilled margins enclosed in a heterogeneous monzogabbro

(mingling, Fig. 4a), hybrid magmas (pure mixing), and banded rocks in the process of
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hybridization (mingling/mixing, Fig. 4b). In partly hybridized rocks, several mafic enclaves
show diffuse margins. These interactions can be observed from microscopic (less than one
millimeter) to outcrop scales (several tens of meters). Locally, mafic enclaves present a
N40°E preferred orientation, suggesting ductile deformation in protoshear zones.

The angular facies consist of jigsaw-type breccias where polyhedral mafic enclaves are
enclosed in intermediate rocks forming a vein network (Fig. 4¢). The veins are texturally
homogeneous intergranular (Q-)monzonites whereas a few blocky clasts exhibit

mixing/mingling features.

3.2.3. Primel: cumulate-pegmatoid association

Pegmatoids (gabbroic pegmatites), generally associated with plagioclase-phyric
cumulates, are distributed from Roc’h Louet to Primel (Fig. 1b). Cumulates are well exposed
at Roc*h Louet (Fig. 2b), whereas the coarsest-grained pegmatoid, containing large amphibole
crystals (up to 15 centimeters in length) and smaller plagioclase crystals, occurs westward
near the Primel red granite (Fig. 2¢). There, pegmatoids occur as pods or veins within mafic
heteradcumulates with variable plagioclase contents, They are sometimes zoned, with an
amphibole-richer core. Pegmatoids are often more altered than the host gabbro. The cumulate-
pegmatoid association is bordered southward and southeastward by the monzogabbro-(Q-
Ymonzonite unit of Saint-Jean, In this area, monzogabbros are locally rich in feldspar
megacrysts, similar to those described by Wiebe and Coltins (1998) and Collins et al. (2006)
in the Devonian Kameruka Granodiorite (Bega batholith, southeastern Australia). Fine-
grained pegmatoids are found as patches or thin veins in mingled monzogabbro-(Q-
)monzonite at Saint-Jean’s bay western edge (Fig. 2b). In this zone, mottled pegmatoids have
also been observed. They are characterized by recrystallized amphibole-bearing fiecks from 2

to 5 cm in diameter (see section 3.3),
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Gabbroic aplites are often intimately associated with pegmatoids as patches or
irregular veinlets (Fig. 4d). They are distinct from the doleritic dykes, which display sharp
intrusive contacts with host rocks and have chilled margins.

In sample PM2 (Fig. 4d), an aplitic vein separates the pegmatoid from the cumulate,

the latter being edged by a dark reaction zone,

3.3. Petrology

According to the recommendations of the IUGS, the nomenclature of plutonic rocks is
based on modal compositions. As not all the primary phases are preserved, we have chosen to
use the R1-R2 chemical discrimination diagrams of La Roche et al. (1980), as utilized by
many authors (e.g., Lopez-Moro and Lopez-Plaza, 2004; Hellstrom et al., 2004).

At Poul Rodou, the SJIC rocks plot within the following fields of a R1-R2 diagram:
olivine gabbro; diorite, monzodiorite and (Q-)monzonite (sheets and diapirs); and granite
(intrusions). The Saint-Jean’s bay samples plot as follow: olivine gabbro (doleritic dykes);
monzogabbro, monzonite, and Q-monzonite (mixing/mingling facies). At Primel, pegmatoids
are olivine gabbros. Associated cumulates plot as pyroxenite, a term not used here, given the
lack of modal pyroxene in the rocks, Following a similar line of argument (lack of olivine),
we prefer the term “gabbro” to “olivine gabbro™,

The Primel cumulates mainly enclose labradorite, secondarily albitized, as a cumulus
phase (from 30 to 65 vol. %), with interstitial actinolite (which replaces oikocrysts, probably
of pyroxene), Fe-Ti oxides and apatite.

Pegmatoids are mainly composed of skeletal green homblende and elongated albitized
plagioclase. Relics of diopside have been identified in a few samples. Small comb-shaped Fe-

Ti oxides, biotite and acicular apatite fill the spaces between the large crystals. The flecks of

10
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the mottled pegmatoids on the western edge of Saint-Jean’s bay contain Fe-Ti oxides,
amphibole and phyllosilicates. They might result from recrystallization of ancient oikocrystic
pyroxenes.

Gabbros and monzogabbros from the SJIC contain saussuritized plagioclase laths,
green hornblende, acicular actinolite, Fe-Ti oxides, apatite, biotite and sparse titanite and
zircon. Large oikocrysts of brown hornblende have been identified in several monzogabbro
samples. The dolerites are fine-grained and have a typical greenschist facies mineral
assembilage (albite, actinolite, epidote, chlorite).

The SJIC (Q-)monzonites are especially rich in andesine (up to 75 vol. %). The main
ferro-magnesian mineral is actinolite. The Q-monzonites, which are mainly located east of
Saint-Jean’s bay, have more than 10 vol. % of quartz. Sheets and diapirs from the SJIC range
from diorite to Q-monzonite in composition. Sheets are rich in albitic plagioclase but also
contain amphibole (green hornblende and actinolite) with variable amounts of interstitial
quartz. Diapirs contain quartz, plagioclase, K-felspar and epidote.

Granites contain orthoclase, quartz, plagioclase, biotite, apatite and rare zircons.

Symplectitic quartz~feldspar associations are present in many SJIC granitic samples

(myrmekite),

4. North-Guernsey Intrusive Complex (NGIC)

4.1. Geology

Guernsey (Channel Islands), about 50 km off the French coast, is part of the

Armorican Massif (Fig. 1a). The island is divided into two main geological domains. The

Southern Metamorphic Complex mainly consists of Palacoproterozoic gneisses (including the

11
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Icart orthogneiss, with a magmatic U-Pb/zircon age of 2061 + 2 Ma, Samson and D’Lemos,
1998), which were later intruded by the deformed Neoproterozoic Perelle Q-diorite (Samson
and D’Lemos, 1999). The Northern Neoproterozoic Intrusive Complex — hereafter referred to
as the North-Guernsey Intrusive Complex (NGIC) — is undeformed and partly composed of
layered rocks (Elwell et al., 1960, 1962; Bremond d’Ars, 1990; Bremond d’Ars et al., 1992).
The composite NGIC consists of four distinct units: the Saint Peter Port gabbro, the gabbro-
dioritic Bordeaux Group, the 1.’ Ancresse granodiorite and the Cobo granite (Topley et al.,
1990; Fig. 1¢). All these plutonic units were emplaced at the end of the Cadomian orogeny, at
about 560-550 Ma (Bremond d’Ars et al., 1992), The present study mainly deals with gabbro-
diorite layering in the Bordeaux Group (the Beaucette type in Bremond d’Ars et al., 1992) and
with the Spur Point cumulate-pegmatoid association (Saint Peter Port Gabbro). Alteration of
the NGIC rocks is generally moderate. Petrologic studies indicate that the Saint Peter Port
gabbro was emplaced under a lithostatic pressure of about 0.4 GPa (c. 12 ki depth),
amphibole and plagioclase crystallized at about 940°C under relatively high oxygen fugacity
conditions, and magma water content ranged from 2 to 6 wt% (Bremond d’Ars et al., 1992).
The complex has a calc-alkaline affinity (Bremond d’Ars et al., 1992; see also section 5.2)

and belongs to the M-type Cadomian Granitoid Belt of Graviou and Auvray (1985).

4.2. NGIC layering

4.2.1. Beaucette Marina: veined gabbroic macrorhythms

The outcrops of the Beaucette Marina (gabbro-dioritic Bordeaux Group) show
partially cumulative macrorhythmic sequences, which are less than one to several meters
thick, and dip 20° westward (Fig. 2d, e and 5a, b, ¢ ). They are locally intruded by doleritic or

dioritic dykes, Each macrorhythm is composed of a gabbroic unit overlying a melagabbroic

12
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unit. The base of a melagabbroic unit is generally fine-grained, as also observed by Elwell et
al, (1960). The transition from a melagabbroic unit to an overlying gabbroic one is
gradational, with amounts of phyric amphiboles decreasing upwards (see Fig. 9 insets in
section 5.1). Both units have an orthocumulate texture. While melagabbroic units are
petrologically homogeneous, the main gabbroic unit is formed by alternating dark and
mesocratic layers of a few centimeters thick (Fig. 5¢) and is veined by leucocratic material,
forming an inter- and cross-connected network of centimeter-thick sheets, broadly parallel to
the layering (Fig. 5d).

Immediately below some melagabbroic units, thick evolved-gabbroic sheets are
observed, from which leucocratic pipes protrude upwards into the overlying melagabbros
(Fig. 5a, b), Such pipe-producing sheets also occur, more rarely, in the interior of the
melagabbroic units (Fig. 5a). They have a texture ranging from intergranular to
orthocumulative. The upper limit of the evolved-gabbroic sheets is irregular, sometimes
diffuse., Elwell et al. (1960) has described fine-grained margins in the upper part of some
gabbroic units at the contact with the pipe-producing sheets. All the leucocratic pipes are
inclined on average at about 30° from the main layering (Fig. 5¢). They plunge toward the S-
SE. North of the area shown in Fig. 2e, two generations of neighboring pipes have distinct
pitches (c. 10° and 40° from the layering). Pipe compositions range from monzodiorite (this
study) to granodiorite (Elwell et al., 1960). In cross-section, the pipes are zoned, the core
being less differentiated than the rim (Fig, 5f; Elwell et al,, 1960). The upper part of the pipes
is pegmatitic and the host rocks are systematically altered near the pegmatitic zones (Fig. 51).
Elwell et al. (1960) have described two spots where pipes join with the overlying cross-

connected dioritic vein system.

4.2.2. Spur Point: cumulate-pegmatoid association

13
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The Saint Peter Port gabbro is a 0.8 km-thick layered slab, gently dipping westward
(Briden et al., 1982). It is composed of three main rock types (Bremond d’Ars et al., 1992),
The most spectacular of which is the mottled orthocumulate of Spur Point, characterized by

layers of poikilitic amphibole crystal flecks (Roach, 1971; Bremond d’Ars, 1990; Bremond

d’Ars et al, 1992; Fig. 6a, b). This facies has been interpreted as a boundary layer cumulate

(Bremond d’Ars et al, 1992).
Pegmatoidic rocks crop out at Spur Point (Fig. 6¢). Their mineralogy and texture are
similar to those in the SJIC. However, here in the NGIC, cumulates associated with

pegmatoids are mottied.

4.3, Petrology

In a R1-R2 diagram (La Roche et al., 1980), Beaucette’s rocks are gabbronorite
(melagabbroic units), olivine gabbro (gabbroic units and pipe-producing sheets), diorite
(dykes and cross-connected veins), and monzodiorite (pipes). As for Primel (SJIC), the Spur
Point cumulates plot as pyroxenite, a term not used here.

The Spur Point mottled orthocumulates contain cumulus calcic plagioclase (An 80)
and clinopyroxene (Fig. 6b). The intercumulus phases are clino- and orthopyroxene,
amphibole (hastingsite), Fe-Ti oxides and apatite. The flecks correspond to large oikocrystic
amphiboles.

The NGIC pegmatoids are composed of large skeletal green hornblende, elongate
albitized plagioclase, comb-shaped Fe-Ti oxides, biotite and acicular apatite.

Gabbroic and granitic rocks have also mineralogies comparable to those of the SJHIC

gabbros and granites. The melagabbros (gabbronorites) show green hornblende as cumulus
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phase (< 50 vol. %), as well as plagioclase, Fe-Ti oxides, apatite and biotite. We have also
noted the presence of clots of small amphibole grains in these rocks.

In Beaucette, the dioritic veins, sheets and dykes are mainly composed of plagioclase,
hornblende and biotite, whereas the monzo/granodioritic pipes are rich in plagioclase, K-
felspar, green hornblende and, occasionally, quartz and clinopyroxene. The sheet sample
GS13a is composed of ¢. 30 % of 2 mm-long zoned plagioclase, as cumulus phase.
Concentrations of acicular hornblende are observed where pipes connect overlying cross-
connected dioritic veins (Elwell et al., 1960).

The pipe-producing evolved gabbroic sheet sample GS13a from Beaucette and the
mottled orthocumulate sample GS1a from Spur Point are both characterized by cumulus An-
rich plagioclase (An 60-90: Fig. 7a). No other analyzed NGIC sample shows such a
characteristic. A chemical profile across such a plagioclase crystal (sample GSla, Fig. 7b)
reveals a calcic mantle (An 60-75) comprised between an An-tich core (An 75-90) and an An-

poor margin (An 40-55). This mineralogical specificity will be discussed in section 6.3.1.
5. Geochemistry
5.1. Geochemical sections through gabbro-diorite units

Vertical variations of MgO, TiO; and AL O; through four gabbro-dioritic sections are
shown in Figs 8 (SJIC) and 9 (NGIC). The chemical composition of the Poul Rodou gabbfo is
relatively constant, above and below the diapir-producing leucocratic sheets, for all the
sections (Fig. 8). Only Ti0; varies significantly, from 1.18 (SJ34g) to 1.91 wt% (SJ43f). This
relative chemical homogeneity of the mafic body is a rather original feature with respect to

many other MASLIs (¢.g., Wiebe, 1996). By contrast, the macrorhythmic sequences of the
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NGIC display variable compositions (Fig. 9). Melagabbros are highly magnesian, with MgO
contents up to 14.35 wt% (GS10d). MgO is slightly higher in the lower part of the
melagabbroic units (GS7a versus GS7d in Fig. 9). Gabbroic units are more heterogeneous and
less magnesian (5 < MgO < 10 wt%, Fig. 9). The leucocratic veins, sheets and diapirs/pipes
display various compositions. In both intrusions, the diapirs/pipes are systematically more
evolved than the sheets from which they are extracted (SJ34b1 versus SI34c¢; GS10c¢ versus
(GGS13a; Table 1 and Figs 8 and 9). However, parts of some sheets are more differentiated than
some diapirs. For example, the upper part of the sheet SJ43¢ is more evolved than the diapir

SJ34b1, which relates to another sheet (Table 1 and Fig. 8).
5.2. Trace elements

Trace elements which are both incompatible and immobile can be used to determine
the magmatic affinity of the mafic rocks. In the La/10-Y/15-Nb/8 diagram (Fig. 10) of
Cabanis and Lecolle (1989), the SJIC gabbros and monzogabbros plot mainly in the E-MORB
field whereas the gabbros and melagabbros from the NGIC cleatly have a calc-alkaline
affinity.

The chondrite-normalized rare earth element (REE) field of the Poul Rodou gabbros
(SJIC) is shown in Fig. 11a, with REE patterns of two leucocratic sheets and related diapirs.
The sheet and diapir SJ34 are model;ateiy differentiated. The diapir SJ34bl1 is slightly
enriched in light REE (LREE) and depleted in heavy REE (HREE) with respect to the
corresponding sheet SJ34c, which plots above the gabbroic field. The sheet sample SJ43c
shows lower REE concentrations than the less differentiated sheet sample Sj34c¢. The diapir
SJ43d is enriched in LREE and depleted in HREE with respect to its parental sheet SJ43c.

Both have positive Eu anomalies.
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The REE patterns of some other rocks representative of the SJIC are exhibited in Fig,
11b. Pattern similarities between the diapir SJ34bl and the monzonite SJ9 (mingling zone at
Saint-Jean’s bay) and between the evolved sheet SJ43¢ and the Q-monzonite SJ17 (vein in
breccia with angular clasts at Saint-Jean’s bay) are noticeable. The pegmatoid SJ16 is less rich
in REE than the gabbros. Of all t_he samples, cumulates have the lowest REE contents. With
respect to the monzonite SJ9, the granite SJ22 is enriched in Ce and HREE, and displays a
large negative Eu anomaly.

In the NGIC, all the samples from the macrorhythmic sequences have parallel patterns
(Fig. 11c). This is also the case for the pipe-producing gabbroic sheet GS13a, located near the
upper limit of the gabbroic REE field. By contrast, the thin dioritic sheet GS7¢ and the
monzodioritic pipe GS10c are highly depleted in HREE with respect to GS13a. Although
contents of La, Eu and Yb are equal in GS10c and GS7¢, GS10c has a concave-up shaped
pattern indicating depletion in Middle REE (with the exception of Eu).

The gabbroic pipe-producing sheet GS13a and the mottled cumulate of Spur Point
GS1a, which contain An-rich plagioclase phenocrysts (An 60-90; Fig. 7), display cross-
cutting REE curves, with comparable Eu contents (Fig. 11d). The Cobo granite GS8 has a

concave-up pattern and a negative Eu anomaly.

5.3. Isotopes

The Sr and Nd isotopic data and analytic details are shown in Table 2. The range of
the NGIC ¥S1/%Sr initial ratios is very restricted (0.7055 to 0.7058), regardless of the rock
type (data from Bremond d’Ars et al., 1992). In the SJIC, mafic rocks (gabbros, pegmatoids,
and dolerites) exhibit the most positive etyg values at 347 Ma (+4.7 to 5.9) and initial Sr ratios

between 0.7039 and 0.7049. These values are similar to those obtained by Barboni et al.
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{(2010) on pscudo-adakites related to the SJIC (+2.9 to + 6.8 and 0.7038 to 0.7047). The
intermediate SJIC rocks (monzogabbros, monzonites, Q-monzonites, and diorite) have less
positive etyg values (+2.4 to +3.2) and initial Sr ratios which range from 0.7043 to 0.70609.
This scattering suggests that the Rb-Sr system was not closed. The granite sample SJ22 also
exhibits a positive etyg value at 347 Ma (+3.0) and a low initial Sr ratio (<0.700) which also
shows open system behavior for Rb-Sr. A noticeable feature is the sharp isotopic contrast
between the Poul Rodou gabbro SJ34a (+5.9) and the dioritic sheet SJ34c (+2.6), two
neighbor samples separated by ¢. 3 m (Fig. 3a and 8).

It follows that the gabbro and the leucocratic sheets from Poul Rodou are not
cogenetic. The source of the former corresponds to that of the doleritic dykes and peripheral
pegmatoids, whereas the Poul Rodou sheets (and diapirs) have an isotopic composition

comparable to that of the other SJIC intermediate rocks.
6. Discussion
6.1. A review

6.1.1. MASLI-type reservoirs: the models

Wiebe and others have defined the concept of MASLI and studied many examples of
such intrusions, especially in Maine. A MASLI petrologically corresponds to a composite
layered sequence of alternating gabbroic and dioritic units situated between or below granitic
bodies (Chapman and Rhodes, 1992; Wiebe, 1996; Wiebe and Collins, 1998). Variants are
intrusions of bimodal gabbro-diorite (e.g., Ingonish, Cape Breton Island: Wiebe, 1974) or
diorite-granite (¢.g., Nord-Forez, Massif Central, France: Barbarin, 1988), which display

some of the characteristic features of MASLIs. These complexes are interpreted to be the
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result of repeated mafic intrusions in a crystallizing dioritic/granitic reservoir (Wiebe, 1974,
1993b, 1996). This group of models is supported, among other things, by the observation of
pillow-like bodies of chilled gabbro in intermediate/felsic rocks (Wiebe, 1993b; Wiebe et al.,
2001). Diorites are generally viewed either as products of fractional crystallization of the
gabbro, or as resident cumulates.

A multistep model for the Isle au Haut Maine igneous complex (Maine), similar to
those of Wiebe and others, was proposed by Chapman and Rhodes (1992). The model
accounts for the formation of a layered sequence of ten alternating (tholeiitic) -gabbroic and
dioritic units of magmas, which were contemporaneous. The bases of the gabbros are chilled
against the underlying diorites. The authors state that mafic liquids were periodically
emplaced into a silicic magma chamber at the rheological transition- from a relatively felsic
cumulate to én overlying felsic magma. Each gabbroic unit is injected below a dioritic liquid,
but above a solidifying dioritic crystal mush, as expected from the magma density contrast.
Once emplaced, crystallization progresses in the underlying dioritic mush and produces Q-
monzodioritic sheets and pipes, which intrude the gabbroic layer. Diapirs are subsequently
produced from the crystallizing sheets.

The development of such gravity-driven instabilities in layered magmas have been
modeled and applied to the NGIC (Bremond d’Ars, 1990; Bremond d’Ars and Davy, 1991).
However, according to these authors, it is not clear whether the sheets in the NGIC result
from intrusions within the gabbros, or the reverse, The opinion of Wiebe (1993b) is that “the
‘veins’ in Guernsey have textures and compositions that are appropriate for feldspar
cumulates, not solidified liquids”, He views the NGIC as a crystallizing intermediate/felsic

resetvoir periodically invaded by mafic liquids.

6.1.2. Cumulates and pegmatoids
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The connection between mafic cumulates, gabbroic pegmatites (pegmatoids) and
aplites has been established by many authors. For instance, Beard and Day (1986) published a
thorough study of such rocks in the Smartville intrusive complex, Sietra Nevada, California.
They pointed out the following features: (i) the pegmatoids occur as pods and segregations in
gabbroic rocks; (ii) they are often found in association with fine-grained aplite of similar
mineral assemblage; and (iii) they have a very mafic composition, as observed by other
authors (e.g., McBimey and Noyes, 1979). Contrary to previous authors who proposed
subsolidus processes (e.g., Bow et al., 1982), Beard and Day (1986) favour that rocks form by
in situ crystallization, They envisage that a mafic intercumulus melt is extracted from a
cumulate stack in the presence of a fluid phase. The process could be enhanced by the
disruption of the cumulate assemblage due to a drop in the confining pressure. This model is
consistent with the one proposed by Momme and Wilson (2002) for the Kraemer Island
macrodyke, Greenland. It is also similar to the model of pegmatoid formation in thick basaltic
lava flows proposed by Caroff et al. (1997). An alternative model suggests that the pegmatoid
crystals grew by reaction between primary mafic mineral grains and a superheated liquid
possibly resulting from a pressure drop (Cawthorn and Boerst, 2006). In a plumbing system
connected to the surface, a pressure drop can easily be achieved subsequent o an eruption. In
an intrusion, confined at depth within deformable host rocks, only a volumetric expansion of a

constant mass plumbing system could also induce a pressure drop.

6.2. Layering and diapirism in the SJIC and NGIC

Both SJIC and NGIC display comparable characteristics, which justifies the present

combined study: (1) both intrusions are triple-component MASLIs (gabbro, diorite and

granite); (2) pegmatoids occur in association with mafic cumulates, especially at the edges of
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both complexes; (3) a lateral or basal part of the intrusions is formed by gabbroic sequences
interlayered with dioritic sheets producing diapirs. Nevertheless, numerous contrasted features
lead us to propose two different models for the construction of the gabbro-dioritic layered

sequences.

6.2.1. Melagabbros and gabbros

Two noticeable features of the NGIC gabbro-dioritic unit not observed in the SJIC are
the presence of macrorhythms and modal layering within the gabbroic sequences. This
petrological heterogeneity induces geochemical variations (Fig. 9 and 11¢) and suggests
crystal accumulation, By contrast, the tholeiitic Poul Rodou gabbro (SJIC) is relatively
homogeneous (Fig. 11a). Therefore, it is probably not a cumulate, but was rather a liquid that
crystallized in situ without significant crystal settling, possibly after a period of convection.
For instance, Philpotts et al. (1996) have shown that tholeiitic magmas, when only one-third
crystallized, can form crystal mushes dominated by thin laths of plagioclase and elongated
pyroxene grains. In such magmas, an interlocking network of crystals can form at low solid
content (possibly only 20%), precluding any further convection and crystal seftling. Such a
model is consistent with both the tholeiitic affinity of the Saint-Jean gabbro (Fig. 10} and the
rock textures, which are intergranular to oikocrystic. On the contrary, the rhythmic sequences
of the calc-alkaline NGIC, and the orthocumulate texture fit with a crystal accumulation
model.

In Fig. 12, we propose two models to explain the formation of the gabbro-dioritic
layered sections of the SJIC and NGIC. The Poul Rodou gabbro is purported to be a simple
network-type crystal mush, crystallizing from the base up (Fig. 12a, b, ¢). In Beaucette, each
melagabbro/gabbro pair is asserted to correspond to a mafic recharge (Fig. 12d, g), having

undergone two successive crystal-settling events. At first, settling involves only mafic crystals
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(olivine, pyroxene + primary hornblende: Fig. 12¢) and next, plagioclase appears on the
liquidus (Fig. 121). In the first step, densities of the mafic crystals are comparable and the
resulting cumulate is highly mafic and texturally homogeneous (melagabbroic unit). With the
appearance of plagioclase, the density difference between feldspar and mafic crystals can
produce alternating dark/mesocratic layers (gabbroic unit), according to the model of Sparks

etal. (1993).

6.2.2. Formation of leucocratic sheets and diapirs

Models of dioritic/monzonitic reservoirs periodically replenished by mafic liquids
hardly apply to all the stages of construction of both intrusions.

In the SJIC, observations supporting the idea that intermediate magmas have invaded
mafic ones include: (1) the several sheets of intermediate composition that we inferpret as
intrusions in the Poul Rodou homogeneous gabbro; (2) the monzonitic dykes throughout most
of Saint-Jean’s bay, especially those including angular mafic breccias (Fig. 4¢); (3) the lack of
evidence for chilling of the Poul Rodou gabbro against the dioritic sheets (Fig. 8); and (4) the
large predominance of the gabbroic rocks over the whole intrusion. We do not exclude that
mafic inputs, at huge rates, possibly inducing intensive thermal rejuvenation of a more felsic
resident magma, were previously involved in the SJIC., We mean here that, as observed today,
(1) and (2) are unlikely the direct, in situ or slightly displaced, remnants of an initial felsic
reservoir that remains rather hypothetical from (3) and (4).

The chilied gabbroic pillow-like enclaves, such as those of Fig. 4a, result from
fragmentation of mafic magmas in more felsic ones. Such a mingling is controlled by
rheological contrasts and/or surface energy and depends on the relative volumes and
temperatures of available magmas (e.g., Sparks and Marshall, 1986; Fernandez and Barbarin,

1991; Hallot et al., 1996; Pons et al., 2006). Thus, it can be achieved during or just after new
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mafic inputs, but may alternatively result from convective motions in the interior of a large
composite reservoir or from injections of an external more felsic magma into a resident mafic
magma. Chilling of the latter just requires significant volumes of colder, but still mobile,
more felsic magmas.

Therefore, we propose a model of a reservoir repeatedly replenished by dioritic
magmas for the SJIC. Those magmas were not genetically related, nor had they to be initially
at the same temperature, In the reservoir, the gabbroic magma density increases downward
with cooling, hence crystallinity. Andesites/diorites and basalts/gabbros may have comparable
densities, especially when they are of tholeiitic affinity (e.g., S;;al'ks et al., 1980; Sparks and
Huppert, 1984; Caroff, 1995). A partly crystallized dioritic magma rising through a tholeiitic
gabbro crystallizing from below is thus expected to be buoyant initially, then at neutral
buoyancy and finally denser than the gabbroic magma. In Fig 12a and b, a 950°C dioritic
magma with 30% plagioclase phenocrysts enters a gabbroic reservoir crystallizing from
below. At the base (1), the gabbroic magma is 70% solid at 1100°C. At upper levels (2) and
(3), it is 30% solid at 1150°C and liquid at 1200°C, respectively (all values are approximates).
Reaction kinetics being much slower than heat transfer, a metastable dioritic melt plus
crystals at thermal equilibrium with the resident magma is considered at these levels.
Densities were estimated given that the density of a liquid, obtained from Bottinga and Weill
(1970), is about 90% of that of its solid equivalent and assuming that this ratio applies to the
solid fraction whatever it is (Fig. 12). The results show that at levels (1) and (2), a gabbroic
magma remains denser than a dioritic magma. At level (3), equidensity is reached allowing a
dioritic magma to spread out, forming sheets. Thus, we interpret each SJIC sheet as the result
of some horizontal emplacement of porphyric magmas of intermediate composition into
poorly crystallized gabbros at levels of neutral buoyancy. Late felsic diapirs formed at the top

of emplaced sheets while the equidensity front moved upward as cooling proceeded (Fig. 12b
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and c). In situ fractionation within the sheets favored the late production of low density
magmatic liquids. The REE patterns of the diapirs are depleted in HREE with respect to the
sheets from which they were extracted (Fig. 11a). This is consistent with fractionation of a
significant amount of amphibole within the sheets. Indeed, amphibole preferentially
incorporates middle to heavy REE relative to LREE (e.g., Caroff et al., 1999).

In the NGIC, dioritic sheet and vein geometries are controlied by the macrorhythms:
the pipe-producing sheets are generally located along the lower boundary of the melagabbroic
units and the cross-connected dioritic vein network forms in the gabbroic units according to
the framework of the dark/mesocratic layers. These features suggest that the gabbroic
structures existed prior to the dioritic veining. The fine-grained margins at the base of
melagabbroic units relate to mafic replenishments before the dioritic invasion.

The main similarity between the SJIC and the NGIC was the late influx of the dioritic
magmas with respect to the main gabbroic magmas. At Beaucette, both magmas were close to
isotopic equilibrium. The emplacement of the dioritic sheets was not directly controlled by
density ratios, but rather by pre-existent rhythmic structures within cumulates (Fig. 12h). Two
groups of sheets have to be distinguished. An initial gabbroic to dioritic magma was emplaced
just beneath the base of the melagabbroic units (Fig. 5a, ¢). The sheet-derived pipes cut across
the melagabbroic unit (Fig. 5b), until the overlying gabbroic unit. The concave-up shape of
the REE pattern of the pipe GS10c¢ (Fig. 11c) is consistent with crystallization and
fractionation of both amphibole and apatite in its parental sheet (Caroff et al., 1999). Relative
motions between the unconsolidated/mushy units possibly caused the vertical pipes to become

inclined (¥Fig. Se, 12i), as previously proposed by Elwell et al. (1960). They might have

. created proto-fissures in the gabbroic unit and thus have favored the emplacement of the

(monzo)dioritic second group of sheets, which are cross-connected and fed by the pipes (Fig.

5d, 12i). The gabbroic layering, seen as controlling the architecture of the cross-connected
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vein/sheet network, supports our interpretation of late dioritic invasion within gabbros.
Cumulative features of the sheets reveal that the invading magmas possibly contained

plagioclase phenocrysts, such as those in the SJIC.

6.3. Variations in the mode of MASLI construction

Our models (Fig. 12) agree with the general physical conditions and the mechanisms
by which layers, pipes, diapirs and other plutonic structures are supposed to form within
crystallizing magmas (e.g., see Barbey, 2009 and Patterson, 2009 and references therein for
recent reviews). In our opinion, the SJIC and the NGIC support the general idea that
intermediate/felsic replenishment of a mafic reservoir is a situation much more common than

previously thought, though not as common as mafic replenishment.

6.3.1. NGIC

Bremond d’Ars et al. (1992) have proposed a sketchy model of the NGIC reservoir.
According to these authors, the layered rocks (Saint-Peter Port cumulate and Beaucette-type
gabbro-diorite) formed near the margin of the chamber, by upwards prograding crystallization
and replenishments. The present dip of the layers is primary. Far from the margins, the centre
of the reservoir was probably convective, which explains the lack of layering in most of the
Bordeaux gabbro-diorite outcrops, with the exception of Beaucette. The peripheral granitic
bodies (Cobo, L’ Ancresse) are proposed to form by mixing and assimilation of crust-derived
melts with the gabbro-diorite magmas. Large volumes of mafic magma are thought to have
induced melting of country rocks at depth within the plumbing system,

We agree with the basic ideas of this model, except for the the hypothesis of crustal

melting, Although interactions between gabbro-dioritic and granitic rocks are undeniable
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(Topley et al., 1982; D’Lemos, 1996), available isotopic data seems hardly consistent with
crustal melting (Table 2). We rather suggest, as D’ Lemos (1996), that at least the Cobo
granite is to a great extent cogenetic with the Bordeaux gabbro-diorite, as it is often observed
in MASLIs (e.g., Wiebe, 1993a, b, 1994, 1996; Wiebe and Collins, 1998).

An-rich plagioclases in both the mottled cumulate GS1a from Spur Point and the
gabbroic sheet sample GS13a from Beaucette support the hypothesis that the invading dioritic
liquid(s) originate(s) from the mottled Saint-Peter-Port/Spur Point cumulate, interpreted as a
boundary layer by Bremond d’Ars et al, (1992). An-rich plagioclase cores (An>75, Fig. 7b)
suggest crystallization under hydrous conditions (Cordier et al., 2007). Derivation of a
GS13a-type composition from a liquid leaving a GS1a-type cumulate is also supported by
trace element compositions. Indeed, cross-cutting REE curves in Fig. 11d possibly reflect

crystal fractionation/accumulation (plagioclase, amphibole and/or apatite).

6.3.2. SJIC

A model of the SJIC is drawn in Fig. 13.

Granitic intrusions (Fig. 2a) have emplaced during or just after the crystallization of
the gabbro-dioritic magmas.

Pegmatoids and associated mafic cumulates are located near the edge of the complex
(Fig. 1b and 2b, ¢). With an isotopic composition close to that of the Poul Rodou gabbro and
the doleritic dykes, but more mafic, pegmatoids likely correspond to liquids issued from a
mafic intercumulus melt in the presence of a fluid phase. Melt exiraction might have been
enhanced by the disruption of the cumulate stack, perhaps in a context of drop of the
confining pressure (Beard and Day, 1986; Momme and Wilson, 2002). Reactions of the liquid
with primary mafic minerals of the cumulate might explain Mg-rich pegmatoid compositions

(Cawthorn and Boerst, 2006).
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Mixing and mingling seem to have preferentially occurred in the central part of the
reservoir. Dioritic liquids (in a broad sense) mix with gabbroic magmas to form variable
hybridized products, the isotopic composition of which tends toward that of the diorites. The
most homogeneous hybridized product, which has a dioritic isotopic signature (Table 2),
corresponds to the Saint-Jean’s bay mbnzogabbro. Such an isotopic homogenization in a
MASLI, by mixing and diffusion (Steward and De Paolo, 1992}, has already been described
by Waight et al, (2007). Angular breccias, also drawn in Fig. 13, can result either from
gabbro/diorite interactions in a more peripheral (i.c. colder) region of the reservoir, or,
alternatively, from late arrivals of dioritic liquids in a solidifying magma. The ductile to brittle
behavior of a magma which can be inferred from the preserved shapes of the enclaves also
depends on the strain rates involved during fragmentation (Fernandez and Gasquet, 1994,
Hallot et al., 1996; Petford, 2009).

At Poul Rodou, the isotopic composition of the felsic sheets differs from that of the
enclosing resident gabbro; The SJIC intermediate and felsic products are therefore issued
from a source which is different from that of the Poul Rodou gabbro / Primel pegmatoid /
Saint-Jean dolerite group. An AFC-type crustal contamination of the felsic liquid in a deep

reservoir possibly accounts for such features.

7. Conclusions

(1) The Saint-Jean-du-Doigt (SJIC) and the North-Guernsey (NGIC) Intrusive
Complexes are two MAfic-Silicic Layered Intrusions (MASLI) of the armorican Massif. Both
are triple component complexes (gabbro, diorite, granite} characterized by the occurrence of

pegmatoids in association with cumulates and of gabbroic units including diapir-producing
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dioritic sheets. The NGIC is Cadomian and calc-alkaline. Mafic rocks of the Hercynian SJIC
are tholeiitic,

(2) Pegmatoids are interpreted as liquids extracted from a mafic intercumulus melt in
the presence of a fluid phase, subsequent to the disruption of a peripheral cumulate stack,
possibly during a drop of the confining pressure.

(3) At least at some stages, the gabbro-dioritic units of the SJIC and the NGIC can
both result from repeated influxes of magmas of intermediate composition within mafic
reservoirs, but they are built differently. The SJIC gabbro could result from in situ
crystallization of a relatively uniform magma in which crystal settling was not significant.
Assuming they were metastable, dioritic magmas could have risen as gravity-driven diapirs in
such a crystallizing gabbro before they spread to form sheets at levels of neutral buoyancy. By
contrast, the NGIC gabbros correspond to cumulates. At Beauceite, they display a thythmic

layering which has guided the subsequent dioritic injections.
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Figure captions

Fig. 1. Geological sketch maps, location of detailed maps (including those of Fig. 2) and of

samples. a. North Armorican domains. b. Saint-Jean-du-Doigt intrusive complex (SJIC), from

36



384

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

Chantraine et al, (1986). Ages from Barboni et al. (2010). c. North-Guernsey intrusive
complex (NGIC), contours and ages from Bremond d’Ars et al. (1992) and Samson and

D’Lemos (1998, 1999).

Fig. 2. Geological sketch map of noteworthy outcrops and sample location. a. Poul Rodou, b.
Roc’h Louet, and ¢. Primel from the SJIC (this work). d. The Beaucette Battery, and e. The

Beaucette pass from the NGIC (this work and Bremond d’Ars et al., 1992).

Fig. 3. Photographs of sheets and diapirs in the STIC sampled sections. a. Section SJ34 and
sample position. Hammer for scale. b, Section SJ43 and sample position. Hammer for scale.
c. A dioritic sheet with feeding roots, under a xenolith. d. A concave-down diapir within the

gabbro, just below a not visible dioritic sheet.

Fig. 4. Mixing, mingling, magmatic brecciation and pegmatoid in the SJIC (Saint-Jean’s bay).
a, Gabbroic pillow-like enclave with a chilled margin, enclosed in a heterogencous
monzogabbro (mingling). b. Ribbon rocks in the process of hybridization (mingling/mixing).
Hammer for scale. ¢. Jigsaw-type breccias with polyhedral mafic enclaves enclosed in a
texturally homogeneous (intergranular) monzonite forming a vein network. A few blocky
clasts present mixing/mingling evidence (not visible). d. Mafic cumulate-aplite-pegmatoid

association. Sample PM2 (three analyses in Table 1).

Fig. 5. Sheets and diapirs in the NGIC. a. Photograph of section GS10 and sample position.
Hammer for scale. b, Detail: gabbroic sheet and inclined pipes. Pencil for scale. c.
Photograph of section GS13 and sample position. d. Sketch of the dioritic veins, e. Sketch of

the inclined pipes. f. Cross-section through a zoned pipe, with a core (dark gray) less
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differentiated than the rim (light gray), a pegmatitic upper part (white), and altered overlying

host rock. d, e and f from Elwell et al. (1960).

Fig. 6. Camulates and pegmatoids from the NGIC (Spur Point, Saint Peter Port gabbro). a.
Mottled orthocumulate showing layers of poikilitic amphibole crystal flecks. Pencil for scale.
b. Photomicrograph (crossed nicols) of the Spur Point mottled orthocumulate (sample GSla,
fleck-free white layer). Cumulus minerals are calcic plagioclase (P1), hornblende (Hb) and
clinopyroxene (Cpx). By decreasing abundance, intercumulus phases are plagioclase,
clinopyroxene, orthopyroxene, Fe-Ti oxides, and apatite. c. Mafic cumulate-pegmatoid

association.

Fig. 7. NGIC plagioclase compositions. a. Anorthite content in plagioclases of samples GS1a
(26 analyses), GS7d, ¢, | (21 analyses), and GS13a (16 analyses). b. Anorthite profile through

a plagioclase from GS13a,

Fig. 8. Chemical sections in the SJIC. MgO, TiO; and ALQO; concentrations through sections
SJ34 and SJ43 (located in Fig. 2a and shown in Fig. 3a and b). Microtextural sketches, shown
for samples SJ34a, d2, and ¢, evidence the lack of chilled margins (white: plagioclase; grey:

amphibole and altered olivine; black: Fe-Ti oxides).

Fig. 9. Chemical sections in the NGIC, MgO, TiO; and Al,O; contents through sections

(GS10-13 and GS7 (located in Fig. 2d and €).

Fig. 10. Magmatic affinities of the mafic rocks from the SJIC and NGIC. Position of the

gabbroic samples in the diagram La/10-Y/15-Nb/8 (Cabanis and Lecolle, 1989),
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Fig. 11. Chondrite C1-normalized rare carth clements (REE) patterns of representative SJIC
and NGIC samples. Normalization values from Sun and McDonough (1989). a. Sheet-diapir
pairs SJ34 and SJ43, together with the corresponding gabbroic field (SJIC). b. Selected SJIC
samples. ¢. Macrorhythms, sheets and a pipe from the NGIC. d. Granite, sheet and cumulate

from the NGIC.

Fig. 12. Models of replenishment and crystallization. Time proceeds along the “#box” line.

a. b. ¢. Model for Poul Rodou in the SJIC. A gabbroic (8) reservoir crystallizes from below:
crystal settling is negligible so that the 1‘esul;ing gabbro is almost homogeneous. A dioritic
magma (6) with about ¥=30% phenocrysts enters the crystallizing gabbro. First buoyant at the
base, while rising it crosses levels of neutral budyancy (assuming negligible crystal
resorption) where it spreads to form sheets from which diapirs are then extracted. p is density
at given temperature (calculated from Bottinga and Weill, 1970) and crysfal content (¥ for §;
grey scale to the right for 0; see text). Insets are detailed zones of a and b.

d. e. f. g. h. i. Model for Beaucette in the NGIC. Mafic recharges (d, g) and crystal settling,
first of mafic minerals alone (¢), second of mafic crystals and plagioclase (f) account for the
layering and the heterogeneities of the gabbros. Then late dioritic recharges (h) and

subsequent evolution (i, see text) explain most of the observed features.

Fig. 13. A comprehensive model for the SJIC reservoir. The straight line locates the observed

Poul Rodou/Saint-Jean’s bay/Primel coastal cross-section. See text for explanations.
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