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ABSTRACT 

We present the result of the first deformation experiments at high-temperatures and high-

pressures on synthetic magmatic suspensions of strongly anisometric particles. The results 

highlight the interplay between the rheological response and the development of 

microstructures and they demonstrate the critical importance of the shape of crystals on the 

mechanical behaviour of magmas. Plagioclase suspensions with two crystal fractions (0.38 

and 0.52) were deformed both in compression and in torsion in a Paterson apparatus. With 

increasing crystal fraction, the rheological behaviour of the magmatic suspension evolves 

from nearly steady-state flow to shear weakening, this change being correlated with a 

microstructural evolution from a pervasive strain to a strain partitioning fabric. Magmatic 

suspensions of plagioclase have viscosities approximately five orders of magnitude higher 

than suspensions of equivalent crystallinities made of isometric particles such as quartz. 

Key-words: plagioclase fabrics, magma rheology, experimental deformation, strain 

partitioning. 

 



 2

INTRODUCTION 

During crystallization, magmas evolve from a viscous suspension, the rheological 

behaviour of which, mainly controlled by the liquid phase, can be modelled using the 

Einstein-Roscoe equation (Roscoe, 1952; Ishibashi and Sato, 2007), to an interconnected 

crystalline framework capable of transmitting deviatoric stresses (Petford, 2003) and which 

exhibits non-Newtonian behaviour (Caricchi et al., 2007; Lavallée et al., 2007; Champallier 

et al., 2008). This rheological evolution is essentially controlled by the crystal fraction and, 

for a given crystal fraction, by the strain rate (Caricchi et al., 2007; Mueller et al., 2010). 

However, the morphological characteristics of particles (length, width and aspect ratio) are 

suspected to have a major influence on the rheology of suspensions (Chong, 1971; Nicolas, 

1992; Petford, 2009). Crystals with different aspect ratios have been considered in analogical 

and numerical modelling of the microstructural evolution of crystal-melt suspensions 

(Ildefonse et al., 1992; Saar et al., 2001). So far, high temperature and high pressure 

experimental deformation studies on magma rheology have focused on suspensions made of 

quasi isometric particles; corundum (Champallier et al., 2008), quartz (Caricchi et al., 2007), 

or natural partially crystallized suspensions (Caricchi et al., 2008; Cordonnier et al., 2009) 

have been investigated. Here, we present the first deformation experiments at high 

temperatures and pressures of synthetic suspensions of plagioclase, a representative strongly 

anisometric crystalline particle. With increasing cristallinity, a fundamental modification of 

the rheological behaviour is demonstrated and correlated with a dramatic evolution of the 

microstructure of the suspension. Our results stress the importance of the shape of crystals 

for natural magmatic flows. 

EXPERIMENTAL AND CHARACTERIZATION METHODS 

Plagioclase-bearing magmatic suspensions with crystal fractions (φs) of 0.38 and 0.52 

have been synthesized in an internally-heated pressure vessel for 7 days at 300 MPa and 900 
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and 800°C, respectively. The resulting suspensions consist of homogeneously distributed 

euhedral plagioclase crystals embedded in a silicic glass containing some gas bubbles, 

indicating H2O-saturated conditions (Fig. 1). Calculated glass H2O concentrations (Papale et 

al., 2006) are 7.1 and 6.7 wt%, respectively for the φs = 0.38 and 0.52 suspensions. Average 

surfacic crystal fractions of 0.38 + 0.01 and 0.52 + 0.01 were obtained on respectively 12 and 

11 scanning electron microscopy (SEM) images. Plagioclases exhibit a tabular morphology 

(shape ratio R~ 4, Table 1) and are chemically homogeneous in the two suspensions. 

The rheological measurements were performed with a Paterson apparatus (Paterson 

and Olgaard, 2000). The length / diameter of the sample deformed in compression (~1) is 

relatively small compared to ratios used in compression tests (≥ 2; Hawkes and Mellor, 

1970). However, the low applied finite strain ensures a homogeneous no-slip deformation of 

the sample. The deformation experiments were performed at a confining pressure of 300 

MPa, temperatures of 900 and 800°C for φs = 0.38 and 0.52 respectively (corresponding to 

the temperatures and pressures of synthesis of each suspension), and strain rates of 1 x 10-5 s-

1 to 1 x 10-3 s-1. Suspensions with φs = 0.52 were deformed in torsion and with φs = 0.38 in 

compression because the viscosity of the latter suspension was too low. To compare the 

apparent viscosities obtained in torsion and compression, compressive strain rates and 

stresses were converted to shear strain rates and stresses by using Eq. 39 and 40 from 

Paterson and Olgaard (2000). Three torsion experiments were performed (PP032, PP038, 

PP043), each at a different strain rate; however, for the no-slip compression experiment 

(PP070), a stepping strain rate procedure was applied (increase of the strain rate in a stepwise 

manner, once flow at constant stress is achieved). 

The resulting microstructures were observed optically and with SEM on thin sections 

cut along the diameter, parallel to the length of the sample ([YZ] plane) in compression and 

normal to the radius of the core of the sample ([XZ] plane) in torsion. The long axis 
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orientation α of the fabric was measured using the intercept method with Intercept2003 

software (Launeau and Robin, 1996). The starting suspensions have a nearly isotropic fabric, 

with no preferred orientation as revealed by the random distribution of the long axis 

orientations on the rose diagram (Fig. 1). The 2D shape fabric obtained by the intercept 

method has been compared with the 3D crystallographic preferred orientation (CPO) in one 

torsion experiment (PP043), measured using electron back-scattered diffraction (EBSD) 

technique (Heidelbach et al., 2000). 

RHEOLOGICAL MESUREMENTS AND MICROSTRUCTURAL OBSERVATIONS 

The chemical composition of the plagioclase does not change appreciably during the 

experiments (Table 1). The normative glass compositions are also constant and H2O 

concentrations are identical within error to those in the starting suspensions. Therefore, 

neither crystallization nor dissolution takes place during the deformation experiments. 

In the compression experiment, for each applied strain rate, a linear increase of the 

stress with increasing strain characterizes the first step of deformation and corresponds to the 

relaxation time of the sample (Fig. 2A). The higher the strain rate, the higher the stress. The 

peak of the stress is reached at ε ≈ 0.5% for all applied strain rates, and it is followed by flow 

at nearly constant stress. Two steps performed at the same high strain rates (ε&  = 1 x 10-3 s-1) 

showed similar rheological behaviour which confirms the reproducibility of the experiments. 

The rheological response in the compression experiment is associated with the development 

of a pervasive fabric oriented at α = -3° (Fig. 2B). No discrete structures, such as shear zones 

or bands, are observed 

In the torsion experiments, a peak of the differential stress is reached at shear strains 

of γ ≈ 0.1 (Fig. 2C). Iit is followed by a nearly steady state to γ ≈ 0.4 and then by a decrease 

of the shear stress with strain, observed up to γ = 1.4 (Fig. 2C), characteristic of strain 

weakening. This behaviour differs from those observed for quasi isometric particles where a 
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stabilisation of stress with respect to strain occurs after the relaxation time (Caricchi et al., 

2007; Champallier et al., 2008). This rheological behaviour is coupled with the development 

of a strong pervasive shape fabric of crystals at α = 43° with respect to the shear direction 

(Fig. 2D, zone 1). This fabric is crosscut by 40-µm-thick shear zones, spaced at 600 µm, 

oriented at α = -20° and flanked by symmetrical shear gradients indicating a dextral sense of 

shear, synthetic to the bulk deformation (Fig. 2D, zone 2). According to Fernandez et al. 

(1983), a fabric orientation of 43° is theoretically reached for γ ~ 0.1-0.15, which 

corresponds to the peak stress of our rheological curves. As this orientation is still observed 

at the final strain, we can assume that the development of the penetrative fabric is stopped at 

γ ~ 0.15 and the development of discrete parallel shear bands begins. The fabric inside the 

shear zone is oriented close to the bulk shear direction (α = -3°) and not to the side of the 

shear band, regardless of the finite strain. This indicates that the fabric inside the shear band 

likely corresponds to a transtensional shear zone geometry in which the extensional flow 

apophyse is always parallel to the bulk simple shear. Plagioclase crystals inside and outside 

the shear zone have the same size, aspect ratio and chemical composition, and are identical to 

those in the starting suspension (Table 1). 

The CPO of the plagioclases in the pervasive fabric (Fig. 2E) shows a maximum 

concentration of {010} poles at ~ 45° counterclockwise with respect to the shear plane, and 

girdles of {001} and {100} at ~ 60° and 50° clockwise. This indicates a dominantly planar 

fabric, with the trace of the {010} plane in the [XZ] plane oriented near 45° clockwise, 

similar to α (43°). In the shear zone, plagioclases {010} poles are oriented perpendicular to 

the bulk shear plane, as observed from the shape fabric. Both the {001} and {100} pole 

figures show a girdle parallel to the shear plane, with a maximum close to the bulk shear 

direction, defining a plano-linear crystallographic fabric. 

DISCUSSION 
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The rheology of our experimental magmatic suspensions can be fitted by an Ostwald 

De Waele power-law equation (Ostwald, 1925) of the form, in compression: 

nσε ∝&  (1) 

and in torsion: 

nτγ ∝&  (2) 

where n is the stress exponent. Values of n close to 3 were measured for the two crystal 

fractions investigated. This suggests a non-Newtonian, shear-thinning rheological behaviour, 

already observed for quasi isometric and anisometric particles (Lavallée et al., 2007; Caricchi 

et al., 2007, 2008; Champallier et al., 2008, Cordonnier et al., 2009). The apparent viscosities 

of each suspension ηapp are calculated using the maximum stress σ and τ, and the strain rate 

ε&  and γ& , using either : 

εση &/=app  (3) 

in compression and 

γτη &/=app  (4) 

in torsion. 

We introduce the relative viscosity ηr defined as the ratio between the apparent 

viscosity appη  (directly measured) and the viscosity of the interstitial melt 0η . Therefore, ηr 

measures the influence of crystallinity parameters (e.g., crystal fraction and shape) on the 

rheology. The relative viscosities obtained in this study at different strain rates and crystal 

fractions are shown in Figure 3. At constant strain rate (1 x 10-4 s-1), the relative viscosity 

increases by about 1 log unit (105.65 to 106.48) when the crystal fraction increases from φs = 

0.38 to 0.52. Furthermore, the strain weakening induces a decrease of the viscosity of about 

0.25 log unit for φs = 0.52. 
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Our relative viscosities can be compared with experimental results on suspensions of 

quasi isometric particles at strain rates similar to those of this study (Caricchi et al. 2007, 

Champallier et al. 2008; Fig. 3). Both types of suspensions are characterized by a stress 

exponent close to 3: increasing the strain rate by 1 log unit leads to a decrease of the relative 

viscosity by about 0.7 + 0.1 log unit (Fig. 3). However, at given crystal fractions and strain 

rates, viscosities in this study are about 5 log units higher than those obtained on suspensions 

of quasi isometric crystals (alumina, quartz). The Einstein-Roscoe equation, which fits quite 

well the rheological data for the quasi isometric suspensions, fails to reproduce our data by 

several orders of magnitude (Fig. 3). We emphasize that the size of crystals differs by about 

one order of magnitude between this and the experimental deformation studies above 

(Caricchi et al., 2007; Champallier et al., 2008). However, the size of crystals, although not 

systematically explored, is generally considered as a second-order parameter on suspension 

rheology (Mueller et al., 2010). Therefore, the critical parameter controlling the relative 

viscosities in the two groups of studies is the shape of crystals. Elongated particles are able to 

generate a crystal network and thus increase the viscosity of the suspension at low crystal 

fractions (Saar et al., 2001). 

Our experimental microstructures are comparable to certain natural magmatic 

textures. At low crystal fractions (φs < 0.4), a pervasive fabric develops by crystal rotation 

and translation (Fernandez et al., 1983) and this leads to the stabilisation of the stress with 

increasing strain, as observed in our experiments (Fig. 2A). This corresponds to alignments 

and tiling of feldspar crystals in igneous rocks (Vernon, 2004). Such crystal fabrics are 

commonly used as kinematic indicators of early magmatic flow (Philpotts and Asher, 1994). 

With increasing the crystal fraction (φs ~ 0.5), strain partitioning occurs, with the 

development of two associated fabrics (Vigneresse and Tikoff, 1999). These discrete 

structures, called “trachytic textures” in feldspar rich lava (Smith, 2002), are geometrically 
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identified to S/C’-like orientations and used in the field as shear sense indicators (Nicolas, 

1992). They have been recently re-interpreted as asymmetric textural domains due to quasi-

viscous flow deformation on the flanks and bases of trachyte lava domes (Závada et al., 

2009) and along conduit walls. 

Our results can be directly applied to the evaluation of viscosity changes associated 

with the crystallization of microlites during ascent of andesitic magmas in volcanic conduits. 

This process yields groundmasses with as much as 50 vol% microlites, essentially 

plagioclase (e.g., Burgisser et al., 2011). The change in relative viscosity associated with 

microlite crystallization can be estimated to be at least 5 orders of magnitude (Fig. 3). 

Assuming simple Poiseuille flow and a system free of gas bubbles, this implies a reduction of 

the magma ascent rate in the same proportions. This would promote the formation of a 

magma plug and the overpressurization of the underlying magma column, eventually leading 

to an explosive eruption. 

CONCLUSION 

Our high temperature high pressure experimental deformation tests provide the first 

documentation of the influence of high fractions of anisometric particles (plagioclase) on the 

rheology of synthetic magmatic suspensions. Upon increasing the crystal fraction, the 

magmatic suspension evolves from a nearly steady-state flow to a strain weakening 

behaviour, this change being correlated with a microstructural evolution from a pervasive to a 

strain-partitioning fabric. These results stress (1) the interplay between rheology and the 

development of microstructures and (2) the importance of the shape of crystals on the 

mechanical behaviour of the suspensions. Magmatic suspensions of plagioclase have 

viscosities approximately five orders of magnitude higher than suspensions of equivalent 

crystallinities made of isometric particles such as quartz. 
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FIGURE CAPTIONS 

 

Figure 1. SEM microphotograph of a plagioclase bearing suspension before deformation with 

φs = 0.52. Plagioclase in light grey, silicic glass in dark grey and gas bubbles in dark. The 

inset shows the local plagioclase fabric long axis orientations (α) displayed together on the 

rose diagram. Long axis orientations α are respectively positive and negative for an 

counterclockwise and a clockwise orientation. 
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Figure 2. Rheology and microstructures of plagioclase-bearing suspensions deformed in 

compression (A, B) and in torsion (C-E). A: Rheological curve (σ vs. ε) for the same 

suspension PP070 (φs = 0.38) deformed in compression at different strain rates (ε& , stepping 

strain experiment). B: SEM microphotograph of PP070 sample. Plagioclase in light grey, 

silicic glass in dark grey and gas bubbles in dark. The long axes of the local (i.e. for each sub-

window) crystal fabric are represented by red lines and displayed together in the rose diagram 

(inset). White arrows indicate the type of deformation. C: Rheological curves (τ vs. γ) for 3 

suspensions (PP032, PP038 and PP043) with φs = 0.52 deformed in torsion, each with a 

different strain rate (γ& ), as indicated. D: SEM microphotograph of PP043 sample. The rose 

diagrams of the local plagioclase fabric in the penetrative zone (zone 1) and in the shear zone 

(zone 2) are respectively shown in the upper and lower insets. E: Pole figures of the 3 

plagioclase main crystallographic axes ({001}, {010} and {100}) are shown for the pervasive 

fabric (zone 1) and the shear zone (2) for sample PP043. 
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Figure 3. Relative viscosities of magmatic suspensions plotted as a function of the crystal 

fraction above φs = 0.3. Data for anisometric crystals (plagioclase) from this study 

(rectangles) and for nearly isometric crystals (quartz, alumina) from Caricchi et al. (2007) 

and Champallier et al. (2008). Color coding relates experimental data points to applied strain 

rates. The errors are smaller than symbol sizes. The continuous line gives the relative 

viscosities calculated using the Einstein-Roscoe equation using η0 = 104 Pa.s, an exponent (n) 

of 2.5 and φmax = 0.62. The three insets are interpretative sketches of the microstructures of 

the suspensions in three cases. A: anisometric crystals steady-state flow. B: anisometric 

crystals, strain weakening. C: quasi isometric crystals, steady-state flow. 

 

 

 

 


