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ABSTRACT. Temporal trends related to recent climatic fluctuations are extracted from the longest
glacier-wide winter and summer mass-balance series recorded in the Alps, at Glacier de Sarennes,
France. For this, all point balances measured at the glacier surface are used, and different statistical
models are developed and tested. First, Lliboutry’s linear variance analysis model is extended to the two
seasonal components of the balance. The explicit modelling of variability sources and correlations is
proved useful for appropriately quantifying uncertainties in the different components of the balance and
estimating missing data. Next, a non-exchangeable structure is added to model the winter and summer
balance time series. Two change points separating different underlying trends are thus detected. The first
change was in 1976, with a shift of +23% in the winter balance. The second was in 1982 for the summer
balance series. These systematic changes explain 20–30% of the variability of the different components
of the balance, the rest being made up of random interannual fluctuations. Simplified and/or less
physically based models are less efficient in capturing data variability. As a result, the cumulative
glacier-wide balance shows systematic parabolic trends, which result in an accelerated mass loss for
Glacier de Sarennes over the last 25 years.

1. INTRODUCTION
In the European Alps, glacier mass balance results mainly
from accumulation (mass input) of snow in winter and
ablation (mass loss) due to the melting of snow and ice in
summer. Fluctuations of mass-balance seasonal components
are therefore strongly related to climate fluctuations. More
generally, glacier mass balances are well-known useful
indicators of climate change over the last few centuries
(Oerlemans and Fortuin, 1992; Haeberli, 1995; Vincent,
2002; Vincent and others, 2004; Kaser and others, 2006;
Solomon and others, 2007).

However, inferring the climatic signal from a glacier
mass-balance series is not an easy task. For example, the
glacier-wide balance obtained from spatial averaging of
point mass balances (measured at individual locations) is a
function of glacier geometry (Ohmura and others, 2007). To
overcome this problem, Elsberg and others (2001) have
proposed a method that corrects surface and elevation
changes in the integrated glacier-wide balance. An alter-
native is to directly use surface point mass balances
(Rasmussen, 2004; Vincent and others, 2004; Huss and
Bauder, 2009; Thibert and Vincent, 2009), but this implies
separating the overall annual effect from the spatial vari-
ability at the glacier surface. This can be done using variance
decompositions (analysis of variance: ANOVA).

The suitability of annual point mass-balance time series
for linear variance decomposition was first proposed by
Meier and Tangborn (1965) and Hoinkes (1970). Lliboutry
(1974) generalized the approach by proposing what is
formally an incomplete two-way ANOVA model:

ba
it � N1 �a

i þ �a
t ,�

2
a

� �
, ð1Þ

where N1 denotes the normal distribution and ba
it the annual

(superscript a) point mass balance observed at spatial
coordinates (xi, yi) during the glaciological year,
t 2 t0, t0 þ T � 1½ �, where t0 is the first year considered and
T is the total number of years with observations.
�a
i =�a xi, yið Þ is the spatial term. The notation indicates that

the measurements are made using stakes i 2 1,N½ �, for
which the number and positions are chosen to provide a
good vision of the spatial variability at the glacier surface.
The constraint

Pt0þT�1
t¼t0 �a

t ¼ 0 is used to ensure model
identifiability, so that �a

t is the annual deviation. The
residuals of standard deviation, �2

a, are assumed to be
independent and Gaussian. The model is referred to as
incomplete because the interaction terms between space
and time are not distinguished from the residuals.

Evaluating the glacier-wide balance involves integration
over the glacier surface. Under an assumption of equally
weighted measurement points, the glacier-wide mean
balance over the studied period is Bah i ¼ 1

N

PN
i¼1 �

a
i . Note

that the way spatial averaging is performed has little
influence on the annual deviations, and that implemen-
tation of other choices (e.g. area–altitude distribution
weighting coefficients) than the direct arithmetic mean
used here is straightforward. Furthermore, the annual
glacier-wide balance is then simply Ba

t = Bah i+�a
t , upper-

case letters denoting glacier-wide variables. This highlights
that the mean annual deviation of the balance �a

t at all
measurement sites equals the glacier-wide annual devi-
ation. Therefore, the �a

t time series extracted by the model
from point balances also apply to the wide balance, and
can be used to characterize the response of the glacier to
climate fluctuations.

Because of its simplicity and ability to fit various point
mass-balance series, this model has met with great success in
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the glaciological community (Vallon and Leiva, 1981; Kuhn,
1984; Rasmussen, 2004; Thibert and others, 2008; Thibert
and Vincent, 2009). However, some studies have reported
discrepancies between model results and real datasets,
caused by unsteady spatial terms or temporal terms decreas-
ing at high elevations (Oerlemans and Hoogendoorn, 1989;
Funk and others 1997; Vallon and others, 1998; Dyurgerov
and Dwyer, 2001; Soruco and others, 2009).

From a more methodological point of view, a first
limitation of the model proposed by Lliboutry (1974) is that
it does not explicitly consider the two specific contributions
of summer and winter balance components to the annual
balance. Rasmussen and Andreassen (2005) therefore ap-
plied their variance analysis separately to both winter and
summer components of the balance, with good agreement
between model results and data for studies concerning
Norway. Although it represents a big step forward from a
physical point of view, such an approach remains question-
able. Indeed, by modelling the different components of the
balance separately, it neglects the fact that they are correl-
ated. Their correlations must therefore be estimated empiric-
ally from the obtained annual terms. In statistics, empirical
estimation denotes a procedure that does not explicitly rely
on a model fitted on data using a procedure such as mean
square error minimization. This leads to different estimates,
with generally higher estimation errors. Furthermore, among
winter, summer and annual balance, only two contributions
are usually measured (the third being calculated from), so
that neglecting the correlation between the two measured
variables may imply underestimating the uncertainty around
the third unobserved variable.

A second limitation of Lliboutry’s model is that it
implicitly considers stationary conditions over the period
of record, with random annual fluctuations around a mean
balance, which is inappropriate in the context of a marked
climate change. Standard time series can be used to extract
structured patterns (e.g. memory effects, systematic trends,
break points) from the �t series, with the ultimate goal of
relating them to similar behaviours in more direct climatic
data series. However, this poses an even greater statistical
problem. Indeed the �t’s are unobserved, so that the
uncertainty related to their estimation must be taken into
account when estimating the investigated temporal patterns.
Not doing so may lead to an overestimation of the
significance levels of the temporal patterns because the
studied series are only a few decades long.

The objective of this paper is therefore to reconsider the
problem of extracting a climatic trend from a glacier mass
balance recorded by a sampling site network using a variance
decomposition. To do so, we first propose an expansion of
Lliboutry’s model adapted to correlated pairs. Second, we
show how hierarchy (Wikle, 2003; Clark and Gelfand, 2006)
can be used to isolate the annual terms and explicitly model
their temporal structure within the same statistical framework
(Carlin and others, 1992; Banerjee and others, 2004), so as to
relax in a consistent manner the underlying assumption of
stationary conditions. Inspired by work in other fields (Clark,
2005; Eckert and others, 2007, 2010c), implementation is
performed using Bayesian schemes thanks to the availability
of simulation-based methods for parameter estimation
(Tanner, 1992; Gaucherel and others, 2008). The proposed
approach and for instance the effectiveness of the different
model components are illustrated using the six-decade
Sarennes mass-balance series.

2. DATA AND SITE
The mass-balance series of Glacier de Sarennes (458070N,
68070 E), Massif des Grandes Rousses, France, has been
measured since t0 = 1949 (Valla, 1989; Thibert and others,
2008). Sarennes is a small south-facing glacier whose
surface decreased from 0.85 km2 in 1952 to 0.41 km2 in
2003. Over the period of record, the elevation ranges from
2800 to 3100ma.s.l. (Fig. 1). On this glacier, the winter
balance, bw

it , is measured from cores drilled at the end of the
winter. The annual balance, ba

it , is measured in late summer
from emergence variations of stakes inserted in the ice of the
ablation zone and cores drilled in the accumulation zone.
The summer balance term at each location, bs

it , is then
estimated from bs

it = ba
it –b

w
it . Point balances (ba

it , bw
it ) are

measured at five sites for which the mean elevation over the
period of record is respectively 2860, 2920, 2945, 2995 and
3020ma.s.l. Mean altitude change over the period of record
is –36m, ranging from –61m in the lower part, to –15m in
high-elevation areas. From 1949 to 1957, only two to four
sites were sampled, and only four since 2003 because of the
retreat of the tongue. The 1949–2008 experimental table is
therefore a partially complete dataset for the three terms of
the balance (27 missing values). These annual data are
expressed in mw.e. a–1 and are published on http://www-
lgge.ujf-grenoble.fr/ServiceObs/.

Measurements are not performed at fixed dates: the
investigated annual mass changes refer to the so-called
floating date system. Durations of mass-balance year are
therefore variable, and account for both the effects of
changes in accumulation and ablation rates, and of their
duration. Note that, as field visits do not coincide in general
with the glacier minimum or maximum mass, data differ
somewhat from the theoretical stratigraphic system in which
annual balance is defined between one year’s minimum and
the next year’s, and winter balance between one year’s
maximum and the previous year’s. However, we assume that
these differences are small, and do not apply a correction.

A routinely calculated glacier-wide balance (published in
World Glacier Monitoring Service (WGMS) glacier mass-
balance bulletins) uses an integration relationship based on
area–altitude distribution weighting coefficients (Valla,
1989; Thibert and others, 2008). Over the 1949–2007
period, this calculation gives a mean annual glacier-wide

Fig. 1. Location of stakes where balances are measured on Glacier
de Sarennes. Contours on the glacier are at 25m intervals.
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balance of –0.92mw.e. a–1, while mean annual glacier-wide
winter and summer balances are 1.68 and –2.60mw.e. a–1,
respectively. Additional annual mass-balance data estimated
by photogrammetry (geodetic balance) are available in 1981
(Valla and Piedallu, 1997), 1952 and 2003 (Thibert and
others, 2008) for comparison and control.

3. METHODS
3.1. Bivariate formulation of Lliboutry’s model
To generalize Lliboutry’s model to the actually observed pair
(ba

it , b
w
it ), we introduce spatial terms �w

i and temporal terms
�w
t for winter balance under the additional constraintPt0þT�1
t¼t0 �w

t ¼ 0:

ba
it

bw
it

� �
� N2

�a
i þ �a

t
�w
i þ �w

t

� �
,

�11 �12

�21 �22

� �� �
, ð2Þ

where superscript w denotes the winter period. The overall
mean Bwh i ¼ 1

N

PN
i¼1 �

w
i

is the mean glacier-wide winter
balance over the studied period, whereas the �w

t series
represents the annual deviations to the mean. N2 denotes the
two-dimensional (2-D) Gaussian vector of variance–covari-
ance matrix � which includes the marginal variances
�11 ¼ Varðba

itÞ ¼ �2a and �22 ¼ Varðbw
it Þ ¼ �2

w. The residual
pair ð"ait , "wit Þ reflects the discrepancy between the obser-
vations and the linear model which is expected to be low if
the model fits the data properly. It is simply given by:

"ait ¼ ba
it � ð�a

i þ �a
t Þ

"wit ¼ bw
it � ð�w

i þ �w
t Þ

�
: ð3Þ

The main advantage of the joint formulation is that the
covariance �12 ¼ �21 ¼ Covðba

it , b
w
it Þ is also available,

providing easy access to the correlation coefficient �babw

between the residual pair ð"ait , "wit Þ:

�babw ¼ Covðba
it , b

w
it Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Varðba
itÞ

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Varðbw

it Þ
p ¼ �12

�a�w
: ð4Þ

This makes recourse to an empirical estimation procedure
such as that used by Rasmussen and Andreassen (2005)
unnecessary.

The pair of annual deviations ð�a
t ,�

w
t Þ is assumed to be

sampled from a 2-D Gaussian vector of variance–covariance
matrix ��. Its mean is set to zero for consistency with the
imposed constraints:

�a
t

�w
t

� �
� N2

0
0

� �
,��

� �
: ð5Þ

The hidden quantities ð�a
t ,�

w
t Þ have a hybrid status, i.e.

they behave as observations with regard to the overall
parameters, but they are parameters with regard to the
observations. Such a multilayer construction characterizes a
hierarchical structure. Its advantage over a non-hierarchical
approach is to explicitly model the similarity of the different
annual terms through the different terms of the �� covariance
matrix. The marginal variances ��11 ¼ Varð�a

t Þ ¼ �2
�a and

��22 ¼ Varð�w
t Þ ¼ �2

�w quantify the magnitude of interannual
fluctuations of respectively annual and winter deviations. As
for the residuals, the covariance between annual and winter
balance is given by ��21 ¼ ��12 ¼ Covð�a

t ,�
w
t Þ, which

provides easy access to their correlation coefficient ��a�w . It
is definitely non-negligible, since mass balance physically

depends on winter balance:

��a�w ¼ Covð�a
t ,�

w
t Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Varð�a
t Þ

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Varð�w

t Þ
p ¼ ��12

��a��w
: ð6Þ

The summer balance is obtained by subtracting winter
balance from mass balance:

bs
it ¼ ba

it � bw
it , ð7Þ

where superscript s denotes summer balance terms. Because
of the properties of Gaussian linear models, it is also
normally distributed:

bs
it � N1 �s

i þ �s
t ,�

2
s

� �
, ð8Þ

and its variance decomposition into a spatial term �s
i , an

annual term �s
t verifying

Pt0þT�1
t¼t0 �s

t ¼ 0 and a residual "sit is
readily available:

�s
i ¼ �a

i � �w
i

�s
t ¼ �a

t � �w
t

"sit ¼ bs
it � ð�s

i � �s
t Þ ¼ "ait � "wit

8<
: ð9Þ

Keeping an arithmetic averaging over the glacier surface,
the mean summer balance over the studied period is then
simply Bsh i ¼ 1

N

PN
i¼1 �

s
i
¼ Bah i � Bwh i. Moreover, marginal

variances for the summer balance residual "sit and for the
annual deviation to the mean summer balance � s

t can be
computed from the covariance matrixes � and ��,
respectively. This implies that the error made while esti-
mating the summer balance using Equation (9) is higher than
if mass balance and winter balance were independent, but
remains smaller than �a þ �w for �s, and smaller than
��a þ ��w for ��s :

�2
s ¼ �11 þ �22 þ 2�12, ð10Þ

�2
�s ¼ ��11 þ ��22 þ 2��12, ð11Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2
a þ �2

w

q
� �s � �a þ �w, ð12Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2
�a þ �2

�w

q
� ��s � ��a þ ��w : ð13Þ

Finally, the correlation coefficients between summer
balance and the two other terms are not explicitly available
in the model and must therefore be estimated empirically.
Since all residuals and annual deviations are, by definition,
centred random numbers, the correlation coefficients �babs

and �bwbs between the residuals pairs ð"ait , "sitÞ and ð"wit , "sitÞ
are given by:

�babs ¼ Covðba
it , b

s
itÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Varðba
itÞ

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Varðbs

itÞ
p ¼

1
NT

PN
i¼1

Pt0þT�1
t¼t0 "ait"

s
it

�a�s
, ð14Þ

�bwbs ¼
1
NT

PN
i¼1

Pt0þT�1
t¼t0 "wit "

s
it

�w�s
, ð15Þ

whereas the correlation coefficients ��a�s and ��w�s between
the annual deviations are given by:

��a�s ¼ Covð�a
t ,�

s
t Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Varð�a
t Þ

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Varð�s

t Þ
p ¼

1
T

Pt0þT�1
t¼t0 �a

t �
s
t

��a��s
, ð16Þ

��w�s ¼
1
T

Pt0þT�1
t¼t0 �w

t �
s
t

��w��s
: ð17Þ

Equation (2) separates different independent effects using
variance decomposition. We introduce the ratios �a, �w and
�s (Equations (18–20)) to quantify the specific contribution
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(% of variance) to the total variability of the annual terms for
annual, winter and summer balances respectively. Note that
the denominator is an approximation of the total variability
neglecting the spatial variability of the �i terms. This is
reasonable for a small glacier such as Sarennes (Thibert and
Vincent, 2009), but would not be appropriate for a wider
glacier covering a large elevation range:

�a ¼
�2�a

�2�a þ �2
a
, ð18Þ

�w ¼
�2
�w

�2
�w þ �2w

, ð19Þ

�s ¼
�2
�s

�2�s þ �2
s
: ð20Þ

Figure 2a summarizes this first model, noted M1, using a
direct acyclic graph (Lauritzen, 1996). On the one hand, the
parameters �,��,�a

i ,�
w
i

� �
, i 2 1,N½ � and hidden variables

ð�a
t ,�

w
t Þ, t 2 t0, t0 þ T � 1½ � have to be estimated using the

data. On the other hand, all the other unknown quantities
such as the summer terms, correlation coefficients and ratios
are explicit combinations of �,��,�a

i ,�
w
i

� �
and ð�a

t ,�
w
t Þ,

which somewhat restricts the dimension of the estimation
problem. With regard to Rasmussen and Andreassen’s (2005)
approach, our model offers a fair quantification of the
uncertainty levels thanks to the explicit modelling of the
covariances � and ��. With respect to Lliboutry’s model, it
is also characterized by its fully bivariate nature. Figure 2b
indicates how point variables are related to glacier-wide
variables.

3.2. Extracting structured temporal trends
With model M1, the annual terms ð�a

t ,�
w
t Þ are modelled as if

they were exchangeable, which means that they are
assumed to be sampled from the same distribution whatever
the considered year. This makes it possible to quantify the
interannual variability, for instance thanks to the temporal
ratios of Equations (18–20). On the other hand, a possible
structured time trend that affects the whole glacier in a
similar way and may therefore be related to climate change
cannot be inferred. To overcome this limitation, we relax in

this subsection the assumption of exchangeability of the �t’s.
Moreover, for better consistency with the physical processes
involved, we prefer working with the seasonal pair ð�w

t ,�
s
t Þ

rather than with the pair ð�a
t ,�

w
t Þ.

A time-series analysis of the ð�w
t ,�

s
t Þ’s can theoretically be

achieved using various time-series models developed in
other fields, such as econometrics (Booth and Smith, 1982),
hydrology (Rao and Titrojondro, 1996), meteorology
(Bloomfield, 1992) or climatology (von Storch and Zwiers,
2002). The choice of the time-series model must be made
with regard to the investigated temporal pattern, for
example, memory effects, monotonic trends or change
points for the mean (Mearns and others, 1997), variance
(Diaz, 1982) or extreme values (Nogaj and others, 2007).

However, the balance between the available information
and the number of model unknowns must also be con-
sidered to make it possible to extract the temporal structure
from the hidden variables without producing an uncertainty
level that is too high for any practical conclusions. We
therefore restrict our purpose to a relatively simple change-
point model with limited parameters. This model is relevant
to Glacier de Sarennes data (see section 4) and has already
been applied to similar problems in hydrology (Perreault and
others, 2000a,b).

We designate ð�w, �sÞ as the years of possible change
points separating two periods of different conditions for
winter and summer balances respectively. Before and after
the change points, both the �w

t ’s (Equations (21) and (22))
and the �s

t ’s (Equations (23) and (24)) are broken down into
random noises and structured linear trends. The random
noises, with respective variances �2w: and �2

s:, model the
unstructured interannual fluctuations. The notation �2

s:, for
example, indicates that the parameter �2

s can take different
values before and after the change point, so as to allow �s
and/or �w to also reflect a change point in variance. The
linear trends, expressed as w�ðtÞ ¼ aw: þ bw:t and
s�ðtÞ ¼ as: þ bs:t, are designed to capture gradual changes
affecting summer and/or winter mass-balance terms. Sea-
sonal components of the balance being expressed in
mw.e. a–1, the trend slopes (bw., bs.) are expressed in
mw.e. a–2. Depending on the continuity of w�ðtÞ and s�ðtÞ
around �w and �s, the change points can be brutal, with a
clear separation of two budget regimes, or just a distinction

Fig. 2. (a) Direct acyclic graph of model M1. Arrows express conditional dependence, circled nodes represent stochastic hidden variables,
diamonds represent the overall parameters and rectangles indicate observed values. (b) Links between point and glacier-wide variables
illustrated for the annual term. The alternative to estimate the mean annual glacier-wide balance from a geodetic balance (photogrammetry),
�, instead of the �a

i ’s spatial mean Bah i is also indicated.

Eckert and others: Temporal signal from a winter and summer mass-balance series 137

Downloaded from https://www.cambridge.org/core. 25 Mar 2021 at 07:23:53, subject to the Cambridge Core terms of use.

https://www.cambridge.org/core


between two different trends (bw1, bw2) and/or (bs1, bs2). This
model, noted M2, is therefore flexible enough to capture
monotonic trends and various types of changes in mean and
variance for both summer and winter balances:

�w
t � N1ðaw1 þ bw1t,�2

�w1Þ, t 2 t0, �w½ �, ð21Þ

�w
t � N1ðaw2 þ bw2t,�2�w2Þ, t 2 �w þ 1, t0 þ T � 1½ �, ð22Þ

�s
t � N1ðas1 þ bs1t,�2

�s1Þ, t 2 t0, �s½ �, ð23Þ

�s
t � N1ðas2 þ bs2t ,�2�s2Þ, t 2 �s þ 1, t0 þ T � 1½ �: ð24Þ

The trend for annual mass balance, a�ðtÞ, is easily
accessible due to the linearity of the model:

a�ðtÞ ¼ w�ðtÞ þ s�ðtÞ ¼ ðaw: þ as:Þ þ ðbw: þ bs:Þt : ð25Þ
If �s ¼ �w, there are two linear trends ba: ¼ bw: þ bs: and

intercepts aa: ¼ aw: þ as: in mass balance. However, as soon
as �s 6¼ �w, three possibly different linear trends and
intercepts are obtained for respectively t � min ð�s, �wÞ,
t 2 min ð�s, �wÞ þ 1, max ð�s, �wÞ½ � and t � max ð�s, �wÞ þ 1.
This makes it possible to model different combinations of
changes in winter and summer budgets, leading to three
possible regimes of change in mass balance.

A major difference between models M1 and M2 is that,
with model M2, the variance of the annual deviations is no
longer constant, depending on the existence of change points
in the data. Nevertheless, it is possible to use Equations (26–
28), where E denotes the mathematical expectation, to
globally evaluate the dispersion of the annual terms in a way
similar to that used in model M1:

�2�a ¼ Eð�a
t
2Þ ¼ 1

T

Xt0þT�1
t¼t0

ð�a
t Þ2, ð26Þ

�2�w ¼ E �w
t
2� � ¼ 1

T

Xt0þT�1
t¼t0

ð�w
t Þ2, ð27Þ

�2
�s ¼ Eð�s

t
2Þ ¼ 1

T

Xt0þT�1
t¼t0

ð�s
t Þ2: ð28Þ

These global variances can be used to compute global
temporal ratios quantifying the specific contribution to the
total variability of the annual terms all over the studied
period using Equations (18–20). Similarly, the global co-
efficient correlations ��a�s and ��w�s can be evaluated using
Equations (16) and (17) respectively. For ��a�w, however,
Equation (6) is no longer valid, and empirical estimation
must be used. This shows that, with regard to model M1, the
bivariate formulation at the annual level is lost with model
M2:

��a�w ¼
1
T

Pt0þT�1
t¼t0 �a

t �
w
t

��a��w
: ð29Þ

Finally, to compare the respective contributions to the
annual variability of the temporal structure and the random
fluctuations, we define the global ratios �a, �w and �s
(Equations (30–32)). They are able to indicate whether the
hypothesized structured linear trends with change points
explain a large part of the annual variability of annual,
winter and summer balances respectively, in a way similar
to that of the classical determination coefficient R2 in a

non-hierarchical linear regression:

�a ¼ Varða�ðtÞÞ
Varða�ðtÞÞ þ �2

�a

, ð30Þ

�w ¼ Varðw�ðtÞÞ
Varðw�ðtÞÞ þ �2

�w

, ð31Þ

�s ¼ Varðs�ðtÞÞ
Varðs�ðtÞÞ þ �2

�s

: ð32Þ

Obviously, the different proposed ratios as well as the
correlation coefficients between the �t ’s can also be
computed separately before and after the change points �w
and �s instead of globally over the entire observation period.
This is, for instance, straightforward for �s, since it only
implies computing the ratio with the two values ��s1 and
��s2. However, for mass balance, the three possible periods
must be considered, which multiplies the number of
indicators to be interpreted without necessarily adding
much information to the analysis. This is the main reason
why we mainly consider the global quantities over the T
years of study.

Summing up, by comparison with the first model, model
M2 involves the additional parameters (aw., as., bw., bs., ��w:,
��s:, �w, �s) and hidden variables w�ðtÞ, s�ðtÞ that have to be
estimated from the data. All of them are related to the
quantification of the temporal structure, which is assumed to
be well modelled by two linear trends possibly separated by
change points. The rest of the model is not modified, except
for the correlation structure at the annual level, which is no
longer constrained by ��12.

3.3. Bayesian inference and associated MCMC
sampling
The different models proposed in this paper have been
inferred within a Bayesian framework (Berger, 1985; Parent
and Bernier, 2007). The principle is to compute the joint
posterior probability distribution function (PDF) of all
parameters, hidden variables and missing values. Poorly
informative marginal priors were used to ‘let the data speak
for themselves’. For instance, pseudo-uniform priors were
chosen for the spatial terms, poorly informative inverse
gamma and inverse Wishart priors for the variances and
variance–covariance matrixes, and poorly informative nor-
mal priors for the trend parameters.

Markov chain Monte Carlo (MCMC) schemes have been
used to sample the joint posterior PDF. These powerful
simulation methods are detailed, for example, by Gilks and
others (1996) and Brooks (1998). Examples of applications
in a related field are given by Eckert and others (2008,
2010b). In our case, the efficient Gibbs sampler (Geman and
Geman, 1984) could be run easily because of the Gaussian
nature of a variance analysis that makes the full conditional
distributions of the different parameters and hidden variables
accessible.

Convergence of the MCMC sequence was checked by
graphical comparison and various tests on the distributions
obtained with different chains starting at different points of
the parameter space (Brooks and Gelman, 1998). When the
ergodic state was clearly reached, a sample of the joint
posterior distribution was stored. For each quantity of
interest, a point estimate and the related uncertainty was
obtained by considering the marginal posterior mean and
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the related 95% credibility interval (i.e. the Bayesian
counterpart of the classical confidence interval). Figure 3
shows an example of the marginal posterior distributions
obtained for six quantities of interest. All are nicely shaped
and unimodal, which indicates that information contained
in the prior has been updated with the data and that the
point estimates are meaningful. Among the distributions
presented, those corresponding to �a and ��a are direct
results of the MCMC procedure. The others were obtained
by computing their values at each step of the sampling
procedure.

4. RESULTS

4.1. Lliboutry’s bivariate model
Table 1 summarizes the estimates obtained by applying
model M1 to the Sarennes series. It appears that Bah i, the
glacier-wide mean annual balance computed over the
whole period under the assumption of equally weighted
sites, is strongly negative. The glacier has lost �1mw.e. a–1

because, in mean, summer balance has been much larger in
absolute value (–2.66mw.e. a–1) than winter balance
(1.69mw.e. a–1). These results do not differ significantly
from those obtained with the altitude–area integration
relationship ( Ba

AAD


 �
, Bw

AAD


 �
, Bs

AAD


 �
; Table 1). They are

also clearly consistent with previous studies of the same
glacier (Valla, 1989; Vincent and Vallon, 1997; Thibert and

others, 2008; Thibert and Vincent, 2009) and other glaciers
in the French and Swiss Alps (Müller and Kappenberger,
1991; Vincent, 2002; Vincent and others, 2004; Huss and
Bauder, 2009).

Marginal variances (�a, �w, �s) of the residuals are equal
to 0.3, 0.21 and 0.43mw.e. a–1 for annual, winter and
summer balance respectively, which is consistent with the
inequalities of Equation (12). Marginal variances of the
annual terms ��a , ��w , ��s are more than three times higher.
Moreover, spatial variability is relatively small (the values
obtained on the five stakes are not very different from each
other for all three variables; Table 2), which is consistent
with the small size of the glacier. Note also that estimation
error is small for the three �i series, i.e. not more than
0.044mw.e. a–1. All this indicates that the interannual
variability between the �t ’s is the major source of variability
at the glacier scale, constraining the three ratios �a, �w and
�s to be above 90%. It also a posteriori justifies neglecting
the spatial variability while computing the ratios of Equa-
tions (18–20).

Residuals account for nonlinear effects that are not
systematic in space and/or time and cannot therefore be
captured in the � and � terms. Their correlations are all
significantly nonzero at the 95% credibility level, which
indicates that when the linear model performs poorly for one
of the three terms of the balance, it is also biased for the two
others. The positive values for �babw and �babs are easily
understandable since when a local excess of winter mass

Fig. 3. Marginal PDFs for a few parameters, model M1. (a) Standard deviation for the annual balance residuals. (b) Correlation coefficient
between annual and winter balance residuals. (c) Standard deviations for annual balance deviations. (d) Correlation coefficient between
annual and winter balance deviations. (e) Glacier-wide mean balance over the period of record. (f) Ratio between variance of annual
deviations and total annual variance.
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input or summer mass loss occurs at a given stake in a given
year, it influences accordingly the annual mass balance at
this location. A nonzero value for �bwbs is less intuitive. A
physical explanation for a nonzero correlation between
winter and summer balance residuals could be local
excesses due to avalanches or local excesses/deficits due
to snowdrift. In case of an excess, the corresponding albedo
feedback in the summer balance would then result in a
positive correlation. Indeed, an expanded snow ablation
period would decrease ablation due to higher albedo at the
glacier surface and reduced shortwave radiation absorption.
Therefore, an enhanced (less negative) summer balance
would be expected. In our case, �bwbs is negative, and harder
to interpret, but anyway the correlation remains low (–0.23).

At the level of annual terms, things are simpler: a very
strong positive correlation ��a�s exists between annual and
summer balance. Identically, annual and winter balances
are well correlated (��a�w being significantly positive).
Finally, winter and summer balances are uncorrelated with
��s�w � 0. This suggests that the albedo feedback mentioned
above is not effective at the overall glacier scale.

In the Bayesian framework, the joint posterior distribution
of the annual deviations (�a

t , �w
t , �s

t ) is obtained. It is
summarized in Figure 4 using box plots. The glacier-wide
annual terms are obtained by adding the interannual mean,
i.e. Bah i, Bwh i and Bsh i respectively, to each value (Fig. 2b).
For all three series, the interannual fluctuations are very
strong, so that the different annual terms are largely
significantly different from each other at the 95% credibility
level. This reflects the variability under unsteady climatic
forcing conditions of the accumulation and ablation
processes governing the two seasonal components of the
balance. Even if apparently random fluctuations are strong,

glacier-wide balance (i.e. �a
t þ Bah i), although remaining

almost always negative, seems to increase during slightly
more than the first half of the studied period, and then to
decrease again, reaching strongly negative values at the end
of the study period. On the other hand, the winter mass
input decreases over the entire study period, but with a
strong shift in the middle. Glacier-wide summer balance is
nothing more than the difference between the two other
terms, with values much lower after 1985 than before.

Even if the behaviour of the different annual terms is not
identical, there is evidence in the three time series that
changes separating different structured trends have occurred
around the middle of the study period. This confirms the
results of Vincent and Vallon (1997), reporting a strong
positive accumulation change (+17%) on Sarennes since
1977 and a large increase in summer ablation and ablation
rates (50%) since 1981. The latter has been thoroughly
analysed by Vincent and others (2004). However, in these
approaches, a single stake was used, and the significance of
these changes was not assessed using specific statistical
tests. Furthermore, annual terms were considered as
observed, without taking into account the uncertainty
related to their estimation. This justifies testing the hier-
archical and non-exchangeable model M2 on the same
dataset in section 4.2 to identify temporal break points in
means/trends/variances of the three annual terms.

For the three �t series, estimation error measured as the
width of the 95% credible interval for each estimate remains
nearly constant over the whole period. The only exceptions
correspond to the years for which one or several measure-
ments are missing (e.g. 1951, three missing values out of
five, or 1956, four missing values out of five), and for which
estimation error is then logically higher. This ability to fairly
reflect the level of available information is for us an
important advantage of our modelling approach with regard
to empirical estimation procedures. Furthermore, the
uncertainty around the annual estimates remains tenable
even with two or three missing measurements out of five.
This is another clear benefit of a bivariate hierarchical
model. Indeed, correlations between the different variables
(Equation (2)) and from one year to another (Equation (5)) are
explicitly modelled, so that information is transferred from

Table 1. Posterior characteristics of model M1 applied on Glacier de
Sarennes point mass-balance series for the 1949–2007 period. SD
denotes standard deviation, 2.5% and 97.5% denote the lower and
upper bound of the 95% credible interval. For comparison, mean
annual glacier-wide balances obtained with the glaciological
method using the area–altitude distribution averaging (AAD sub-
scripts) are also indicated for the annual, winter and summer terms

Mean SD 2.5% 97.5%

Bah i (mw.e. a–1) –0.97 0.019 –1.01 –0.93
Bwh i (mw.e. a–1) 1.69 0.014 1.67 1.72
Bsh i (mw.e. a–1) –2.66 0.019 –2.70 –2.62
Ba
AAD


 �
(mw.e. a–1) –0.92

Bw
AAD


 �
(mw.e. a–1) 1.68

Bs
AAD


 �
(mw.e. a–1) –2.60

�a (mw.e. a–1) 0.299 0.015 0.272 0.33
�w (mw.e. a–1) 0.214 0.011 0.194 0.236
�s (mw.e. a–1) 0.43 0.021 0.391 0.474
�babw 0.39 0.06 0.27 0.50
�babs 0.51 0.05 0.42 0.60
�bwbs –0.23 0.03 –0.30 –0.17
��a (mw.e. a–1) 1.123 0.108 0.938 1.357
��w (mw.e. a–1) 0.648 0.062 0.539 0.784
��s (mw.e. a–1) 1.487 0.143 1.24 1.797
��a�w 0.36 0.11 0.12 0.57
��a�s 0.51 0.09 0.35 0.70
��w�s 0.03 0.02 0.00 0.07
�a 0.93 0.01 0.90 0.96
�w 0.90 0.02 0.86 0.93
�s 0.92 0.02 0.89 0.95

Table 2. Spatial �i terms, model M1 applied on Glacier de Sarennes
point mass-balance series for the 1949–2007 period. Indices 1–5
correspond to the five stakes located in Figure 1. Units are mw.e. a–1

Mean SD 2.5% 97.5%

�a
1 –1.07 0.043 –1.15 –0.98

�a
2 –1.28 0.04 –1.36 –1.20

�a
3 –1.01 0.044 –1.10 –0.93

�a
4 –0.91 0.04 –0.98 –0.83

�a
5 –0.57 0.043 –0.65 –0.49

�w
1 1.87 0.031 1.81 1.93

�w
2 1.62 0.029 1.56 1.67

�w
3 1.54 0.031 1.48 1.60

�w
4 1.64 0.028 1.58 1.70

�w
5 1.80 0.031 1.74 1.86

�s
1 –2.94 0.042 –3.03 –2.86

�s
2 –2.90 0.039 –2.97 –2.82

�s
3 –2.55 0.043 –2.63 –2.47

�s
4 –2.54 0.039 –2.62 –2.47

�s
5 –2.37 0.042 –2.46 –2.29
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one variable/year to another, thus reducing all credible
intervals, and especially those corresponding to years with
one or several missing values.

Similarly, missing data are estimated with credibility
levels depending on the number of measurements for the
considered stake/year. Figure 5a thus presents the annual
balance at stake 3. Measurements exist between 1958 and
2007. Between 1949 and 1957, missing values are estimated
on the basis of correlations between variables, sites and
years. Variance of the estimated missing value is lower for
1957 than for 1956, since one more measurement is
available (Fig. 5b and c).

Finally, model adequacy with respect to data can be
checked by comparing the residuals ("ait , "

w
it ) with the centred

linear model with variance covariance �. Figure 6 shows
that, for the point mass-balance series, model fit is relatively
good, with no bias and a nearly Gaussian distribution of the
residuals, which is not surprising since the two-way ANOVA
model has been known since Lliboutry’s work to be well
suited to mass-balance series. Model fit is also not that bad
for the winter point balances, which has been less often
reported. However, with a statistical test such as the
Kolmogorov–Smirnov test, the null hypothesis that both

residuals are sampled from centred normal distributions of
respective marginal variances �2

a and �2
w is questionable: it is

accepted at the 95% significance level for annual balance,
but only with a p value of 0.2, and rejected at the same
significance level for winter balance with a p value of 0.02,
just below the rejection threshold.

These results indicate a small but significant discrepancy
between the model and reality, especially for winter
balance. In the latter case, it is probably related to the
lower stability from year to year of the spatial structure of
winter balance because of processes such as avalanches or
snowdrifts whose influence has already been mentioned
while discussing �babw . The development of a ski resort on a
part of the glacier and snow grooming may also have
affected nonlinearly the spatial distribution of winter snow
deposition. Another reason for the relatively low p values
obtained is related to the normality test which is somewhat
severe here as the quantity of available data is relatively
large. This is not the case in other glaciological studies
applying Lliboutry’s model which generally rely on much
shorter measurement series. Note in any case that we are
primarily interested in the annual terms that capture the
main part of data variability rather than in the residuals,

Fig. 4. Box plots of �t terms (annual deviations), model M1. (a) Annual balance, (b) winter balance, (c) summer balance. The posterior mean
is shown in black, the interquartile range in grey and the 95% credibility interval by dashed lines. Extremely similar plots are obtained with
models M1–M5. As shown in Figure 2b, the glacier-wide terms can be obtained by adding to each �t term the interannual mean given in
Table 1, i.e. Bah i, Bwh i and Bsh i, respectively.
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making the obtained low p values sufficient with regard to
the scope of the study.

4.2. Change-point model
Model M2 shares many common features with model M1, so
that some of the results are identical when both models are
applied to the Sarennes dataset. For instance, this is the case
for most of the quantities related to the observation layer:
overall means, residual variances and correlation coeffi-
cients, as well as spatial terms. Their values (Table 3)
therefore do not need to be discussed again.

However, as soon as the temporal aspect is considered,
differences appear between models M1 and M2. The
introduction in model M2 of a non-exchangeable structure
and the related absence of an explicit specification of the
correlation structure between the triplets (�a

t , �w
t , �s

t )
explains why the overall variances (��a , ��w , ��s ) and
correlation coefficients (��a�w , ��a�s , ��s�w ) differ slightly with
model M2 (Table 3) from their previous values (Table 1).

More precisely, all marginal variances (��a , ��w, ��s ) are
reduced, and ��s no longer satisfies Equation (11). This is
logical, since the means of the �t’s are, with model M2,
functions of time rather than set to zero, allowing better
fitting to the data. As a consequence, the temporal ratios �w
and �s are lowered by �10% compared to their values with
model M1, but the interannual variability remains largely
predominant, still representing >80% of the total variability.
For the correlation coefficients, the main features are slightly
enhanced with regard to model M1: ��a�w and ��a�s are more
strongly positive, whereas there is still no correlation
between winter and summer balance components. All these
differences are, however, insufficient to make the (�a

t , �
w
t , �

s
t )

time series from model M2 graphically distinguishable from
those of model M1 displayed in Figure 4.

The values obtained for �a, �w and �s show that the
assumed linear time trends represent �20% of the inter-
annual variability of annual and winter balances, and 27%
of the interannual variability of summer balance (Table 3).

Fig. 5. Estimation of missing data in the annual mass-balance series at stake 3 (missing values from 1949 to 1957). (a) Completion of the
record at stake 3, ba

3t , and associated uncertainty for the missing values. (b, c) Posterior distribution of mass balance at stake 3 estimated in
(b) 1956 and (c) 1957.

Fig. 6. PDF of residuals for linear model M1 in annual (a) and winter (b) point mass-balance series.
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The years of change found for winter and summer balances
are significantly different. The posterior distribution of �w
shows a well-marked main mode in 1976, indicating strong
evidence that a change actually occurred around that year
for winter balance. For summer mass balance, the main
mode is less marked in 1982, and other plausible years
range between 1981 and 1984 (Fig. 7). This suggests that, for
Glacier de Sarennes, the winter mass-balance regime
changed �6 years before the summer balance regime.

��w1 is only slightly lower than ��w2, so �w cannot be
considered as a change point in variance for the winter
balance. On the other hand, for summer balance, variance
around the interannual trend ��s2 is much higher than ��s1.
� s is therefore also a change point in variance separating two
periods with interannual variabilities differing from the
overall variance ��s of Equation (28).

The mean trends and the related uncertainties are shown
in Figure 8. The box plots may look quite wide, but this is
because the linear fits are made on hidden variables, thus
taking into account the uncertainty related to the �t’s for the
estimation of the time trends. This may prevent firm
conclusions, but once again properly reflects the amount
of information present in the data. Logically, the uncertainty
level is higher at the beginning and at the end of the study
period where information density is lower, as well as around
the change points. This is especially true for a*(t) which is
influenced by both change points (�w, � s).

Looking closer, the two trend parameters (bs1, bs2) are
significantly nonzero at the 95% credibility level, positive
before the change point and negative after. On the other
hand, the two bw. trend parameters and the four intercepts
are not significantly nonzero at the 95% credibility level
(Table 3). However, even if checking that zero belongs to a
credible interval is in some ways the Bayesian counterpart of
a classical significance test, it is not a test in the strict sense
of the term, and the shape of the posterior distribution must
be taken into account to properly interpret the results. For
instance, the marginal posterior distributions of the (bw1,
bw2) trend parameters are far from centred around zero,
indicating that there is a high probability that they may be
nonzero. The decreasing trend before and after the strong
shift �w must therefore be noted, even if it is definitely less
marked than the two trends in the summer mass-balance
series. Hence, the high uncertainty around the most
probable values must be linked to the difficulty of extracting
information from hidden layers rather than to the absence in
the �w

t series of any temporal structure.
For winter balance, the structured trend is strongly

discontinuous around �w =1976, indicating that the change
is sudden. Between 1949 and 1976, the mean glacier-wide
winter budget 1

�w�t0þ1
P�w

t0 �w
t þ Bwh i� �

is 1.48mw.e. a–1, but
is not uniformly distributed since there is a decrease of
–0.37mw.e. a–1 over this period (bw1 = –0.013mw.e. a–2). In
1977, winter mass input increases strongly and its mean

1
t0þT��w�1

Pt0þT�1
�wþ1 �w

t þ Bwh i� �
between 1977 and 2007 is

1.88mw.e. a–1. Note though that, as observed before 1976,
winter mass balance slowly decreases in this second period
by 0.20mw.e. a–1 until 2007 (bw2 = –0.007mw.e. a–2). Mean
glacier-wide winter balance was therefore lower than the
long-term mean Bwh i=1.69mw.e. a–1 before the change
point, and higher than the long-term mean after the change
point, with the years of lowest values being just before the
change point in 1976, and the years with the highest values
just after.

Regarding summer balance, the transition lasts �4–
5 years around �s = 1982. During these 4–5 years, it is shifted
down by about 1.11mw.e. a–1. Before 1982, mean glacier-
wide summer balance is 1

�s�t0þ1
P�s

t0 �s
t þ Bsh i� �

=–2.26m
w.e. a–1, that is 0.4mw.e. a–1 more than the long-term mean
Bsh i. Furthermore, during this first period, summer glacier-
wide balance increases by 0.62mw.e. a–1 (bs1 = +0.024m
w.e. a–2). After 1982, summer balances are significantly
lower, 1

t0þT��s�1
Pt0þT�1

�sþ1 �s
t þ Bsh i� �

= –3.22mw.e. a–1, i.e.
nearly 0.6mw.e. a–1 below the long-term mean. During
this second period, there is also a decreasing trend from
year to year (bs2 = –0.015mw.e. a–2), with summer glacier-
wide balance more in deficit by 0.30mw.e. a–1 between �s
and 2007.

For glacier-wide annual balance, three regimes are
separated by the two change points, �w and �s:

1. Before �w =1976, Glacier de Sarennes loses mass with a
mean annual wide balance of –0.80mw.e. a–1, but the
trend goes from strongly negative balances to less
negative balances from year to year (ba = +0.011mw.e.
a–2), mainly due to less negative summer balances.

2. Between 1976 and 1982, glacier-wide winter balances
increase strongly while the summer regime has not yet

Table 3. Posterior characteristics, model M2 applied on Glacier de
Sarennes point mass-balance series for the 1949–2007 period.

Mean SD 2.5% 97.5%

Bah i (mw.e. a–1) –0.97 0.020 –1.01 –0.93
Bwh i (mw.e. a–1) 1.69 0.014 1.67 1.72
Bsh i (mw.e. a–1) –2.66 0.019 –2.70 –2.62
�a (mw.e. a–1) 0.30 0.015 0.273 0.331
�w (mw.e. a–1) 0.214 0.011 0.195 0.236
�s (mw.e. a–1) 0.431 0.021 0.391 0.476
�babw 0.39 0.06 0.27 0.50
�babs 0.50 0.05 0.42 0.60
�bwbs –0.23 0.03 –0.30 –0.16
��w1 (mw.e. a–1) 0.464 0.076 0.339 0.636
��w2 (mw.e. a–1) 0.403 0.069 0.296 0.565
��s1 (mw.e. a–1) 0.608 0.085 0.466 0.796
��s2 (mw.e. a–1) 0.906 0.145 0.673 1.241
��a (mw.e. a–1) 1.044 0.020 1.006 1.083
��w (mw.e. a–1) 0.485 0.015 0.456 0.513
��s (mw.e. a–1) 0.893 0.019 0.856 0.929
��a�w 0.52 0.03 0.47 0.57
��a�s 0.89 0.01 0.87 0.90
��w�s 0.07 0.04 0.00 0.14
�a 0.92 0.01 0.91 0.94
�w 0.84 0.02 0.80 0.87
�s 0.81 0.02 0.78 0.84
�a 0.17 0.06 0.06 0.30
�w 0.19 0.08 0.05 0.35
�s 0.27 0.08 0.12 0.42
�w (year) 1976 2.0 1974 1983
� s (year) 1982 2.2 1977 1985
aw1 (mw.e. a–1) –0.032 0.169 –0.372 0.293
aw2 (mw.e. a–1) 0.494 0.284 –0.100 1.015
as1 (mw.e. a–1) 0.014 0.185 –0.355 0.377
as2 (mw.e. a–1) 0.107 0.311 –0.501 0.719
bw1 (mw.e. a–2) –0.013 0.012 –0.034 0.013
bw2 (mw.e. a–2) –0.007 0.006 –0.019 0.006
bs1 (mw.e. a–2) 0.024 0.011 0.004 0.046
bs2 (mw.e. a–2) –0.015 0.008 –0.030 0.000
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changed. As a result, the mean mass balance is slightly
above 0mw.e. a–1 and the glacier, very close to equi-
librium, maintains its mass. The trend is to higher mass
gain from year to year in this short period with
ba = +0.017mw.e. a–2, because the increase in the
winter balance comes over the summer budget.

3. After the summer balance shift down in �s = 1982, the
glacier loses mass, with a mean balance of –1.36mw.e.
a–1. Furthermore, due to the concordance of unfavour-
able trends in winter and summer balances, there is a
well-marked trend towards higher mass loss from year to
year, with ba = –0.022mw.e. a–2.

These results are in good agreement with the available mean
annual geodetic balances mentioned in section 2. Indeed,
these independent data indicate that the mean annual
balances over the periods 1952–81 and 1981–2003 are
–0.36 and –0.99ma–1, respectively, thus confirming the
large increase in mass loss between the two periods.

5. DISCUSSION

5.1. Model efficiency and usefulness of its different
components
The change-point model M2 previously discussed introduces
two different ruptures for winter and summer balances,
which have been shown to be acceptable for the Sarennes
series. We have tested a simpler model, M3, with a single
change point, � , in the two series. The main mode in the
distribution of � is then in 1982 (Fig. 7c), i.e. the year
obtained for �s with model M2 (Fig. 7a). This year is identified
since it is the most significant of the (�w, �s) pair. The change-
point selection is, however, less clear than with model M2

because � ¼ 1982 does not correspond at all to the winter
balance series. As a result, the winter trend,w*(t), is then very
close to zero whatever t (not shown). A single change point
must therefore be rejected on the basis of Sarennes data.

We have also analysed the effect of setting a change point
�a in the annual balance instead of the change point �s in the
summer balance. This results in a well-marked main mode
in 1984 in �a’s posterior PDF, thus slightly later than �s
(Fig. 7d). However, the main difference between this model
M4 and model M2 is in the trends s*(t) and a*(t) around the
change points (not shown). The mass-balance trend is
positive (ba1 = +0.027mw.e. a–2) until 1984, then becomes
slightly negative (ba2 = –0.013mw.e. a–2). On the other
hand, for summer balance, since �w 6¼ �a, three subperiods
appear. Having two change points in summer balance and
only one in annual balance is highly unlikely and justifies
preferring model M2.

Finally, nonlinear effects have been neglected until here.
Removing this assumption requires adding, with suitable
constraints to ensure model identifiability, interaction terms
	ai 


a
t , for the annual balance and 	wi 


w
t for the winter balance

in model M2, leading to the full bivariate ANOVA model M5:

ba
it

bw
it

� �
� N2

�a
i þ �a

t þ 	ai 

a
t

�w
i þ �w

t þ 	wi 

w
t

� �
,�

� �
: ð33Þ

Among all 	i’s, only 	w1 is significantly nonzero at the 95%
credibility level for Sarennes. This indicates that only stake 1
behaves differently from the glacier’s mean in some specific
years, and only for winter balance. This can be explained by
enhanced winter accumulation due to snowdrifts/
avalanches in the area of stake 1. As discussed in section
4, these effects were part of the residuals with models
M1–M4 and are, with this model, captured in the interaction
term.

Second-order temporal terms (
t ’s) are all very small,
indicating no year with excess or deficits in mass balance
and/or winter balance that are not captured by the �t ’s
(Fig. 9). This confirms that most of the temporal structure is
actually captured by the linear temporal terms. Note that the

t ’s are somewhat more significant for winter than for annual
balance, which makes sense since it has been established
with model M1 that the decomposition between space and

Fig. 7. (a, b) Posterior distributions of the year of change for model M2 for summer (a) and winter (b) balances. (c, d) Posterior distributions for
change points in additional models M3 (c) and M4 (d).
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time is more adapted to the data for annual balance than for
winter balance.

Adequacy between model and data measured in terms of
variance of residuals or using a model selection tool such as
the deviance information criterion (DIC; Spiegelhalter and
others, 2002) is better with model M5 than with model M2

(and than with any other model) because model M5 is much
more flexible due to the new parameters introduced.
However, standard deviations for the three interaction terms

(estimated, e.g., as �2
across ¼ 1

NT

PN
i¼1

Pt0þT�1
t¼t0 	ai 


a
i

� �2 for an-
nual balance) range from 0.122 to 0.185mw.e. a–1 only for
the three components of the balance. This is not negligible,
but not high enough to represent a large part of data
variability, so that the normality of the residuals is still
rejected with model M5 for winter balance (Kolmogorov–
Smirnov test). Furthermore, as a consequence of model
structure, the three obtained �t series and underlying trends
are fully identical with model M5 to those provided by
model M2. Model M5 cannot therefore be considered as
really superior to model M2, being much more complex in
terms of specification and inference without providing much
valuable additional information.

5.2. Interpretation of temporal patterns
In this work, fluctuations of different seasonal components in
mass balance have been related to time taken as an explicit
covariate rather than to seasonal climatic descriptors such as
cumulated winter snow depth or summer mean temperature.
The main justification of such a time-explicit framework is its
flexibility: it does not impose a forced link with climate, and
therefore allows the extraction of refined temporal patterns as

close as those present in the data. On the other hand, their
climatic relevance is then not granted, and one must be
extremely cautious when considering trends, change points,
and their interpretation in term of climatic drivers.

For instance, Sarennes has a cumulative wide balance of
–48mw.e. over the period of record, and there is an average
elevation decrease of 53m over the entire glacier surface.
We would therefore expect an enhanced surface energy
exchange due to the elevation gradient of mass balance.
Assuming a value of –0.66mw.e. a–1 (100m)–1 for the mass-
balance gradient, a mean annual elevation decrease of
–0.89ma–1 over six decades results in a negative trend in
mass balance of –0.0059mw.e. a–2 due to the lowering of
the glacier surface. This represents nearly 27% of the trend
detected by model M2 in the annual balance time series,
which is not a direct consequence of changes in climatic
forcing but rather a feedback from the glacier. Another
potential source of glacier topography retroaction is the
decrease in area at low elevations which removes negative
contributions to the glacier-total balance (Elsberg and others,
2001). However, this effect has no impact here because the
�a
t terms are not spatial integrated balances, but uniform

annual deviations from the mean surface balance at all
individual measurement locations.

Nevertheless, other observations support the assumption
that the major explanation of our results is recent climate
change. For example, the same trends in summer balances
have been reported for other French and Swiss glaciers with
analogous temporal break points (Vincent, 2002; Huss and
others, 2008). The rise in winter precipitation since 1977
that has been found has a more regional signification.

Fig. 8. Box plots of the structured trends, model M2: (a) annual balance, (b) winter balance and (c) summer balance. The posterior mean is
shown in black, the interquartile range in grey and the 95% credibility interval by dashed lines.
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Indeed, no specific trend is reported in glacier winter
balances in the eastern Swiss Alps, for instance on Silvretta
and Clariden glaciers (Müller and Kappenberger, 1991; Huss
and Bauder, 2009). Nevertheless, closer to Sarennes,
Aletschgletscher, Valais, Switzerland, displays a synchro-
nous change point in winter balance around 1974–76,
though less significant in magnitude than for Sarennes (Huss
and Bauder, 2009). Furthermore, this change point is present
in various snow and weather series in the French Alps
(Durand and others, 2009a,b) and avalanche runout eleva-
tion series (Eckert and others, 2010c), which supports its
climatic relevance, at least at the scale of the French Alps
and their close surroundings.

These preliminary interpretations have now to be
expanded by analysing in detail the correlations between
the different mass-balance series obtained, their underlying
trends, and seasonal climatic data. This was not done in this
study because its scope was mainly methodological. The
different models’ components have therefore been used
much more to discuss the advantages of our approach
compared to previous ones than to evaluate the contribution
of Glacier de Sarennes as a proxy indicator of climate
change around the French Alps. Hence, this will be the
scope of further work which will involve cross-comparison
of the refined indicators provided by our analysis of
Sarennes’ exceptionally long and complete series with
systematic variations of the constraining climatic factors at
large and local scales.

5.3. Implication for the overall and cumulative
balances
In a previous paper (Thibert and Vincent, 2009), a com-
bination of the variance decomposition of the annual

mass-balance series using Lliboutry’s classical linear model
with aerial photogrammetry was proposed. By minimizing
systematic errors, this gives the best possible estimate of the
glacier-wide balance. The same goal can be achieved with
model M2 instead of Lliboutry’s model over the periods
1952–81 and 1981–2003 on which, as mentioned in section
2, the mean geodetic balances are available. Note that even if
the period of record is only divided into two periods, before
and after 1981, instead of the three periods identified by
model M2 (before �w=1976, between �w and � s = 1982, and
after � f), 1981 is approximately the middle of the
6–7 year long 1977–84 period of high mass-balance regime.

As indicated by Thibert and Vincent (2009), because of
the linearity of the variance decomposition, the glacier-wide
balance, Ba

t , can be evaluated from the annual deviation, �a
t ,

and the mean annual balance, �, obtained from photo-
grammetry according to Figure 2b:

Ba
t ¼ �þ �a

t : ð34Þ
The upper-case letters (Ba

t , �) designate spatially integrated
values as opposed to point measurements such as in
Equation (2), for example. In our case, � takes two different
values, before and after 1981. Furthermore, since no
photogrammetry measurement is available for the initial
and final years of record, the glacier total balance is
calculated from the �a

i terms. The cumulative balance, �Ba
t ,

for glaciological year t is then given by:

�Ba
t ¼

Xt

q¼t0
Ba

q
¼ t � t0 þ 1ð Þ�þ

Xt

q¼t0
�a

q
: ð35Þ

Under model M2, �a
t is centred on a linear time trend with

slope ba: which is homogeneous to a rate. The sum of the �a
t

Fig. 9. Box plots of the additional nonlinear temporal terms in the annual (a) and winter (b) balances, model M5. The posterior mean is
shown in black, the interquartile range in grey and the 95% credibility interval by dashed lines. Temporal cross terms 
at and 
wt are
displayed in physical units, whereas spatial terms, 	, are arbitrarily normalized to unity.
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terms then has a second-order time dependence such as:

Xt

q

aa: þ ba:qð Þ ¼ aa:t þ 1
2
ba:t2 þ C , ð36Þ

where C is a constant which can be determined for each of
the two considered periods using the control mass balances
from photogrammetry and by imposing continuity around
the change points. Over each period, the cumulative glacier-
wide balance is therefore a parabolic function of time, with
curvature given by the sum in winter and summer balance
trends:

@2�Ba
t

@t2
¼ @Ba

t

@t
¼ @a�ðtÞ

@t
¼ ba: ¼ bw: þ bs:: ð37Þ

Considering the two periods given by photogrammetry
instead of the three given by the variance analysis is thus
equivalent to neglecting the slight increase in the mass-
balance trend between 1977 and 1982 (from +0.011 to
+0.017mw.e. a–2).

The obtained cumulative glacier-wide balance perfectly
matches the parabolic trend in 1952, 1981 and 2003 as a
result of the fitting of the mean annual balance to
photogrammetry measurements performed on these dates
(Fig. 10) . For all other years, the obtained parabolic curve
also fits the data well, which is remarkable since it results
from integrating the mean trend provided by model M2

rather than from direct fitting to cumulated data at each
stake. This provides another argument in favour of the
assumption of robust underlying linear trends for the
changes in mean winter and summer balances.

For instance, the curvature of the cumulative balance is
positive before 1981 (+0.011mw.e. a–2) and negative since
(–0.022mw.e. a–2). In mean, i.e. when the predominant
temporal pattern is separated from interannual variability
modelled as random, mass loss decelerated before 1981
while Sarennes was approaching an equilibrium state,
which was reached in the early 1980s. On the other hand,
in the last 25 years, the predominant pattern is an
accelerated glacier mass loss clearly indicated by the
negative curvature of the cumulative balance. This shows
that Sarennes is rapidly moving away from the last
equilibrium state of the 1980s. Even considering that a part
of this acceleration in mass loss (27%) is retroactive due to
glacier topography, this confirms that the glacier is now still

far from its equilibrium state under the current climate and/
or that climate change is still in progress.

6. CONCLUSION AND OUTLOOKS
In this paper, a hierarchical modelling framework has been
developed to study the spatio-temporal variability of the
three components of a glacier mass-balance series, so as to
take into account the different seasonal processes. Bayesian
estimation was used because of its convenience for hier-
archical modelling, but without recourse to informative
priors, so as to extract an unperturbed temporal signal from
the data. With regard to previous more empirical modelling
procedures, this constitutes an important step forward in the
study of mass-balance series since it allows an appropriate
extraction of refined temporal patterns.

Another important feature of our approach is that it uses a
complete bivariate dataset of measured surface balances as
input, so as to capture the mean effect at the glacier scale.
The extracted temporal signal is therefore free of any effect
related to the geometry (surface) and the dynamics of the
glacier that affect surface integrated balances, except the
retroaction due to elevation changes discussed in section
5.2. It therefore offers an advantageous alternative to the
arbitrary selection of a single site, which may discard a part
of the climatic information present in the overall data and
also lead to misleading conclusions because of local effects.

In detail, a fully multivariate extension was first proposed
for Lliboutry’s well-known linear ANOVA model. Even if the
assumption of Gaussian residuals remains questionable for
winter balance, application to the exceptional Sarennes data
series has shown that a linear variance decomposition
satisfactorily represents the different components of a glacier
mass balance. Furthermore, the explicit quantification of all
variability sources and correlations was found useful to
properly represent the uncertainty around each estimate,
and to quantify missing values based on information
transferred between sites/years/variables.

Next, different non-exchangeable structures capable of
capturing change points and various types of systematic
trends were considered. Hierarchy was shown to take into
account the uncertainty related to the �t ’s for their esti-
mation. Different change points in 1976 (highly discontin-
uous) and 1982 (much more transitional) separating different

Fig. 10. Cumulative glacier-wide balance, �Ba
t , obtained by combining photogrammetry performed in 1952, 1981 and 2003, and annual �a

t
terms centred on a linear time trend given by model M2. As a result of the two linear trends in annual balances, trends in cumulative
balance, �Ba

t , are parabolic over the 1949–81 and 1981–2007 periods.
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mean trends for respectively winter balance and summer
balance as well as different variances for summer balance
were highlighted. They explain the complex patterns
existing in the corresponding annual mass-balance series.

This hierarchical model is able to identify predominant
structured patterns, in our case linear trends with break
points, among other interannual fluctuations modelled as
Gaussian white noises. Thus, �20% of the interannual
variability of Sarennes winter balance series is related to two
linear time trends separated by the change point in 1976,
while the rest of the temporal variability is captured by a
constant white noise before and after the change point. A
relatively analogous feature is identified for summer bal-
ance, with 27% of variance related to two linear trends
separated by the 1982 change point, but with a white noise
which is significantly higher over more recent years. The
fraction of the signal captured by the linear trends is not that
high, but neither is it negligible. It is presumably of the
correct order of magnitude for a marked linear drift due to
climate change (including the retroaction due to elevation
change) with regard to the truly random interannual
fluctuations and to other systematic effects such as periodic
fluctuations, long memory effects, multiple change points,
etc., which cannot be captured with our model. Further-
more, it is sufficient to well represent the predominant quasi-
parabolic pattern in the cumulative balance, for instance the
accelerated mass loss over the last 25 years.

As a final illustration of the value of our hierarchical
model for decomposing the data in two steps, Figure 11
compares, for the glacier-wide balance, the annual empir-
ical estimates 1

N

PN
i¼1 b

a
it , to the two components provided by

model M2: the annual estimates �a
t + Bah i, and the mean

trend, a*(t) + Bah i, as well as their 95% credibility intervals.
The interannual variability of empirical estimates is clearly
very well captured by the annual estimates provided by the
model, with a low smoothing effect due to the capacity of
the hierarchical model to transfer information from one year
to another. The extraction of the mean trend can be
considered as a second smoothing that distinguishes the

predominant pattern from the interannual variability, i.e. the
distinct behaviours before �w and after � s separated by
�6 years of high mass-balance regime.

Although primarily methodological, our model construc-
tion approach was guided by the structure of the studied
data. For instance, two change points in the seasonal
components of the balance were found to be much better
than only one in fitting the data variability, and parameter-
ization in terms of winter and summer balance for the time
trends gave much more realistic results than a direct analysis
of the actually observed couple, winter and annual
balances. Finally, even if the interaction terms were able
to capture a small part of the data variability, they were
shown to be relatively unnecessary, especially for the study
of the �t series which is the primary purpose of this paper.
Nevertheless, things could be different for other case studies
for which the different proposed model structures M1–M5

could be compared and tested.
Further work could test different modelling extensions.

For the temporal trend, more advanced time-series models
including nonlinear trends and/or multiple change points
instead of only one could be employed, so as to be able to
distinguish other types of systematic changes from the ‘true’
random fluctuations. However, it must be kept in mind that a
compromise between model complexity and robustness
must be found. Indeed, application to the Sarennes data has
shown that, even with our relatively simple model, we are
close to the significance limit for several parameters because
of the difficulty of extracting information from hidden
variables. It would therefore appear to be difficult to expand
the model much without losing confidence in the obtained
patterns, thus making their climatic relevance questionable.

Other modelling improvements could involve explicit
modelling of the spatial structure between the �i’s using
geostatistical methods and/or specific elevation effects. An
additional hierarchical level could also be considered in the
variance decomposition, so as to simultaneously process
data from several glaciers instead of only one as previously
investigated by Letréguilly and Reynaud (1990) with

Fig. 11. Summary of glacier-wide annual balance Ba
t = Bah i+�a

t decomposition using hierarchy. Empirical estimates are plotted against
annual estimates and mean trend from model M2, and respective 95% credibility intervals.
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Lliboutry’s model. These latter points could lead to a more
accurate distinction between true spatial gradients and
orographic effects, as well as between inter- and intra-
glacier spatial variabilities.

However, starting from the proposed basis, the priority is
now to bridge the gap with the analysis of direct climatic
data as mentioned in section 5.2 in order to reinforce the
interpretation of our results in terms of links with climate
change. Indeed, since our approach is purely statistical and
time-explicit, it has, when used alone, nearly no predictive
power. Evaluating the chances of persistence of the high-
lighted trends beyond 2007 so as to extrapolate the
evolution of the different seasonal components of the
balance beyond the last studied data therefore involves
introducing additional information and/or physical con-
straints into the analysis. This could be done by using
seasonal climatic covariates in the proposed statistical
model and/or using its results to constrain and calibrate a
physical model of glacier evolution.
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