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Abstract 4 

We present a new flow computation method in 2D Discrete Fracture Networks (DFN) intermediary 5 

between the classical DFN flow simulation method and the projection onto continuous grids. The 6 

method divides the simulation complexity by solving for flows successively at a local mesh scale and 7 

at the global domain scale. At the mesh scale, flows are determined by classical DFN flow 8 

simulations and approximated by an Equivalent Hydraulic Matrix (EHM) relating heads and flow 9 

rates discretized on the mesh borders. Assembling the Equivalent Hydraulic Matrices provides for a 10 

domain-scale discretization of the flow equation. The Equivalent Hydraulic Matrices transfer the 11 

connectivity and flow structure complexities from the mesh scale to the domain scale. Compared to 12 

existing geometrical mapping or equivalent tensor methods, the EHM method broadens the 13 

simulation range of flow to all types of 2D fracture networks both below and above the 14 

Representative Elementary Volume (REV). Additional computation linked to the derivation of the 15 

mesh-scale Equivalent Hydraulic Matrices increases the accuracy and reliability of the method. 16 

Compared to DFN methods, the EHM method first provides a simpler domain-scale alternative 17 

permeability model. Second, it enhances the simulation capacities to larger fracture networks where 18 

flow discretization on the DFN structure yields system sizes too large to be solved using the most 19 

advanced multigrid and multifrontal methods. We show that the EHM method continuously moves 20 

from the DFN method to the tensor representation as a function of the mesh-scale discretization. The 21 

balance between accuracy and model simplification can be optimally controlled by adjusting the 22 

domain-scale and mesh-scale discretizations. 23 
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 24 

1. Introduction 25 

Fractured media has been classically modeled using either Discrete Fracture Network (DFN) or 26 

Stochastic Continuum (SC) approaches [Neuman, 2005]. Both approaches have their own advantages 27 

and drawbacks [Hsieh, 1998]. First, they differ by their underlying permeability structure and their 28 

capacity of being specified by existing field data [Hsieh, 1998]. The DFN approach easily accounts 29 

for extensive fracture characterization [Cvetkovic et al., 2004; Davy et al., 2006] while the SC 30 

approach copes more consistently with hydraulic data [Ando et al., 2003]. Second, the simulation of 31 

hydraulic processes requires the development of specific methods using the DFN approach whereas  32 

only standard discretization schemes are required with the SC approach. Third, because the SC 33 

approach simplifies the fracture network structure, it is generally less computationally demanding 34 

than the DFN method. Hybrid approaches have been developed to combine the advantages of the 35 

DFN and SC approaches. Most of them use a DFN approach at the onset for building equivalent 36 

heterogeneous continuous models mapping either the smallest fractures [Lee et al., 2001] or all 37 

fractures in the case of the Fracture Continuum Model (FCM) [Botros et al., 2008; Bourbiaux et al., 38 

1998; Jackson et al., 2002; Reeves et al., 2008; Svensson, 2001]. Fracture Continuum Models aim at 39 

benefiting both from the structure complexity of DFNs and from the simulation and computational 40 

simplicities of continuous media. The objective is often to use the FCM approximation as a basis for 41 

simulating more computationally demanding transient or multiphase flows [Bourbiaux et al., 1998; 42 

Karimi-Fard et al., 2006].  43 

The quality of the FCM models critically depends on the derivation of the block-scale permeabilities 44 

from the DFNs, i.e. on the mapping of the fracture network onto the continuum grid. The block is 45 

considered here as the elementary cell of the continuum grid. Block-scale permeabilities are obtained 46 

either from geometrical characteristics [Botros et al., 2008; Svensson, 2001] or through block-scale 47 
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numerical simulations of flow [Jackson et al., 2002]. Potential errors stem from differences between 48 

the derived scalar or tensor permeabilities and the effective flows within the block. They arise from 49 

the difficulty to account for complex fracture connectivity on a broad range of scales. For mapping 50 

based on geometrical rules, errors decrease with finer discretization whereas for mapping based on 51 

hydraulic computation of the equivalent permeability tensor, errors increase below the 52 

Representative Elementary Volume [Long et al., 1982]. Jackson et al. [2002] corrected part of the 53 

latter error by using a larger simulation zone, namely  the “guard zone”, designed to remove dummy 54 

additional fracture connectivity with the sides of the block. FCMs keep the general connectivity 55 

structure above the scale of the block but remove most of the connectivity effects at lower scales. 56 

This results in less flow localization at the block scale and in difficulties in defining an equivalent 57 

block permeability tensor. A simple assessment criterion of the relevance of the tensor representation 58 

is the difference between flows on opposite block faces. They are equal in the tensor representation. 59 

Their difference is expected to increase steeply for complex networks below the REV scale as shown 60 

in the example of Figure 1. To avoid handling complex connectivity at the block scale, existing FCM 61 

methods are applied either at scales close to the smallest fractures modeled [Botros et al., 2008; 62 

Reeves et al., 2008] or at scales larger than the Representative Elementary Volume (REV) 63 

[Durlofsky, 1991; Jackson et al., 2002]. The first methods, i.e. the methods applicable to scales close 64 

to the smallest fracture modeled, represent permeability by a scalar or a diagonal tensor. They 65 

require fine grids for fractured medium representation but can be highly accurate for not too dense 66 

fracture networks [Botros et al., 2008]. The second methods, i.e. the methods applicable to scales 67 

larger than the REV, represent permeability by an anisotropic full tensor defined by three 2D 68 

parameters Kxx, Kyy and Kxy=Kyx. They require the a priori knowledge of the REV and are hence more 69 

suited to dense fracture networks. Their drawbacks are the strong homogenization of flow, their 70 

applicability to a restricted scale range and the increase of the numerical error with the refinement of 71 

discretization. 72 
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None of these methods applies between the scale of the smallest fractures modeled and the REV, a 73 

scale range that spans orders of magnitude for multiscale fracture networks (i.e. fracture networks for 74 

which the fracture-length distribution is a power law) [Bonnet et al., 2001; de Dreuzy et al., 2001b]. 75 

In fact, this scale range extends at least from the connectivity scale to the REV scale. The 76 

connectivity scale is the scale at which networks are just connected. It ranges from meters to 77 

kilometers [Berkowitz et al., 2000; Davy et al., 2009]. Because of the fracture transmissivity 78 

variability, the REV scale can be one to three orders of magnitude larger than the connectivity scale 79 

[Baghbanan and Jing, 2007; de Dreuzy et al., 2001a; 2002]. Extending at least from the scales 80 

contributing to connectivity to the REV scale, the scale range of fractures contributing to flow covers 81 

several orders of magnitude from the meter to the kilometer scale. For this scale range, the only 82 

available flow simulation method is the DFN method. The DFN flow simulation method, however, is 83 

limited in terms of fracture number and domain size. The limiting step arises when solving the linear 84 

system issued from the flow discretization on the network structure. With traditional system-solving 85 

methods like the conjugate gradient, limitations stemmed from computation time. However, the new 86 

numerical methods like the multifrontal or algebraic multigrid method, as implemented in 87 

UMFPACK [Davis, 2004] and HYPRE [Falgout et al., 2005], are orders of magnitude faster but 88 

require additional memory [de Dreuzy and Erhel, 2002]. Their sole limitation is the computer 89 

memory. As a rule of thumb, they can solve at most a linear system of rank one million in a couple 90 

of minutes on a personal workstation (Pentium Xeon, 3 GHz, 8 Go). Consequently, improving 91 

simulation capacities is not about speeding up the method but about enabling simulations otherwise 92 

impossible because of memory requirements. We will thus look in this paper at the numerical 93 

memory complexity rather than at the numerical time complexity. Our longer-term strategy is to use 94 

parallel computing for performing Monte-Carlo simulations while sequential individual simulations 95 

remain sequential [Erhel et al., 2009]. This ensures scalability and a minimum of parallel computing 96 

implementation.  97 
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We propose a new FCM method for the scale range where no existing FCM method is applicable. 98 

Like with the previously-cited FCM methods, the objective is to simplify the domain-scale numerical 99 

scheme and computations while keeping the complexity of the DFN structure. The new method 100 

divides the simulation complexity by solving for flows successively at the local block scale and at 101 

the global domain scale. At the block scale, flows are determined by classical DFN flow simulations 102 

and approximated by an Equivalent Hydraulic Matrix (EHM) relating heads and flow rates 103 

discretized on the mesh borders. Assembling the Equivalent Hydraulic Matrices allows for a domain-104 

scale discretization of the flow equation. The Equivalent Hydraulic Matrices transfer the connectivity 105 

and flow structure complexities from the block scale to the domain scale. The method is similar to 106 

Boundary Element Methods [Dershowitz and Fidelibus, 1999] as it relates heads and flow rates on 107 

the block borders. As the Equivalent Hydraulic Matrices are determined at the block scale by DFN 108 

simulations, we show that the method is systematically applicable regardless of the scale, fracture 109 

density and fracture-length and transmissivity distributions. The method accuracy and complexity are 110 

given by the level of discretization of the block borders and of the domain. We call this method the 111 

Equivalent Hydraulic Matrices (EHM) method as heads and flow rates on the block borders are 112 

linearly linked by a matrix representing the block-scale hydraulic properties rather than by a scalar or 113 

a tensor permeability. This article describes the EHM method (section 2), shows its results compared 114 

to existing methods (section 3) and discusses its performance (section 4). 115 

2. The Equivalent Hydraulic Matrices method  116 

This section defines the EHM method. Once the domain meshed into elementary blocks, the 117 

principle of the EHM method is to express the block-scale hydraulic properties by a linear 118 

relationship between discretized flow rates and heads on the block borders. This expression will 119 

replace the scalar or tensor models used in classical FCM models. With 𝒑𝒌 as the discretization 120 

points (also called poles) of the block numbered k, the vector of flow rates 𝝓𝒌 and heads 𝑯𝒌 on these 121 
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points are related by the following linear relationship: 122 

 𝝓𝒌 = 𝑨𝒌 ∙ 𝑯𝒌. (1) 123 

The block matrix 𝑨𝒌 contains sub-block scale connectivity information and can be considered as the 124 

block-scale constitutive relationship. It is obtained by performing block-scale flow simulations on 125 

the DFN. Once obtained, the block-scale matrices 𝑨𝒌 are used for simulating flow rates at the system 126 

scale by imposing the continuity of heads and flow rates across the block borders. Relationship (1) 127 

differs a priori from Darcy’s law by its relating flow rates to heads and not to head gradients. This is 128 

only a surface difference since the construction method (section 2.2) and the resulting properties of 129 

matrices 𝑨𝒌 (Appendix A) ensure a dependence of the flow rates on head gradients. 130 

2.1. Discretization 131 

Discretization is made up of two parts consisting in discretization of the domain into elementary 132 

blocks (classical meshes) and discretization of block borders into poles. The first discretization 133 

consists in defining the mesh of the Fracture Continuum Model. We use hereafter a regular grid even 134 

though the EHM method can cope with irregular meshes. Each mesh cell will be called a block. The 135 

block contains a subset of the fracture network, i.e. a sub-network, the intersections of which with 136 

the block limits are denoted 𝒎𝒌. 𝒎𝒌(𝑖) is the i
th

 intersection of block k. The second discretization 137 

consists in splitting up the block borders into segments of constant length dblock, the discretization of 138 

each border starting at the border corner. Each segment contains either zero, one or more than one 139 

fracture border intersection 𝒎𝒌(𝑖). We define poles 𝒑𝒌 as the centers of those segments containing at 140 

least one intersection (Figure 2). Segments containing no intersection with the subnetwork are 141 

disregarded. The fundamental principle of the EHM method is that all intersections contained in the 142 

same segment are set to the same hydraulic head corresponding to the head of the pole. These 143 

additional equalities reduce the number of unknowns at the cost of the approximation that close 144 
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intersections have the same hydraulic head. The accuracy of the approximation is function of the 145 

block discretization ratio rblock defined as the block-border discretization scale dblock normalized by 146 

the block face length. The coarsest discretization corresponds to rblock=100% and gives a single pole 147 

by block face. It leads to a representation close to the tensor representation (Figure 2a). It is, 148 

however, not equal to a tensor. First, opposite fluxes may not be equal. Second, some faces may not 149 

be intersected by the network and thus may not have led to a pole. Finer discretizations, obtained for 150 

decreasing rblock values, lead to more accurate representations converging to the DFN method when 151 

all poles correspond exactly to one intersetion (Figure 2b). Like in classical numerical methods, we 152 

will show in section 3 that the numerical error of the EHM method decreases monotonously with the 153 

block-border discretization ratio rblock, i.e. when shifting from tensor-like to DFN methods. 154 

2.2. Construction of the block-scale Equivalent Hydraulic Matrices 155 

Equivalent Hydraulic Matrix 𝑨𝒌 expresses the linear relationship between flows and heads on the 156 

block border discretization. More specifically, by developing relationship (1), coefficient 𝑨𝒌(𝑖, 𝑗) is 157 

the contribution of the head at the j
th

 pole to the flow at the i
th

 pole: 158 

 𝝓𝒌(𝑖) =  𝑨𝒌 𝑖, 𝑗 ∙ 𝑯𝒌(𝑗)
𝑁𝑃

𝑘

𝑗=1 . (2 159 

where 𝑁𝑃
𝑘  is the pole number of block k and 𝝓𝒌(𝑖) and 𝑯𝒌(𝑖) are the flow rate and head, 160 

respectively, at i
th

 pole 𝒑𝒌(𝑖). 𝑨𝒌(𝑖, 𝑗) is also equal to the flow rate computed at pole i by imposing a 161 

fixed head of 1 at pole j and 0 at the other ones, i.e. a fixed head of 1 for the intersections overlapped 162 

by the segment centered on pole j and 0 for the other ones. With these boundary conditions, all 163 

coefficients of column j can be simultaneously determined by a single DFN simulation (Figure 3). 164 

The construction of the full Equivalent Hydraulic Matrix requires 𝑁𝑃
𝑘 − 1 simulations and not 𝑁𝑃

𝑘 , 165 

since the sum of all elements from a column of 𝑨𝒌 is equal to zero because of flow conservation 166 
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(Appendix A). We underline that this method does not require any modification of the fracture 167 

network structure or any realignment of fractures. The approximation lies exclusively in equating 168 

flows and heads at the scale of the segment of the border discretization. 169 

2.3. Domain-scale flow simulation 170 

Solving the flow equation at the domain scale consists in imposing the continuity of heads and flow 171 

rates on poles 𝒑𝒌 positioned on the block faces. External head and flow rate boundary conditions are 172 

simply implemented by imposing the head in the matrix system for the fixed head values and by 173 

adding a source term for the fixed flow rates on the corresponding poles, respectively.  174 

We note P the union of all pole points 𝒑𝒌 with the convention that poles common to two or more 175 

blocks occur only once in P. P is made up of N
i
 poles at the interface between two blocks (P

 i
) and of 176 

N
f
 poles at the physical limits of the domain (P

 f
). The total number of poles at the domain scale N is 177 

equal to the sum of poles of types 𝑃𝑖  and 𝑃𝑓 : 178 

 𝑁 = 𝑁𝑖 + 𝑁𝑓 . (3) 179 

With B(j) as the set of blocks sharing pole 𝑃𝑖(𝑗) and with 𝑞𝑏 ,𝑃𝑖(𝑗 ) as the flow rate at pole 𝑃𝑖(𝑗) from 180 

the b
th

 block of B(j), flow continuity writes:  181 

  𝑞𝑏 ,𝑃𝑖(𝑗 )𝑏  𝜖  𝐵(𝑗 ) = 0 ∀𝑗𝜖  1, 𝑁𝑖 . (4) 182 

For the N
fd

 fixed poles at the domain limit where a Dirichlet boundary condition is applied: 183 

 𝐻𝑓𝑑 =  𝐻𝑓𝑑  0. (5) 184 

For the N
fn

 poles on the Neumann boundary condition, the imposed flow is simply inserted in 185 
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equation (4). Equations (1), (4) and (5) lead to a linear system of N equations of the N unknown 186 

heads at the poles.  187 

The first advantage of the EHM method compared to existing  Fracture Continuum Models (FCMs) 188 

is the conservation of connectivity between blocks. In fact, faces intersected by fractures contain at 189 

least one pole whereas faces without intersecting fractures do not have any pole. This prevents 190 

dummy additional connectivity between blocks [Jackson et al., 2002; Reeves et al., 2008]. The 191 

second advantage of the EHM method is the existence of block-scale discretization parameter rblock, 192 

which can be used to tune the balance between numerical efficiency and accuracy. The third 193 

advantage of the method is the systematic convergence with discretization and its adjustment to all 194 

kinds of 2D synthetic fracture networks as will be shown in section 3. The main drawbacks of the 195 

EHM method are the necessity to perform block-scale DFN flow simulations and the specificity of 196 

the domain-scale flow simulation that precludes the use of standard softwares like MODFLOW. 197 

3. Results 198 

3.1. Fracture network types 199 

The tested networks have been chosen so that they cover a wide range of networks both above and 200 

below the REV scale, with broad and narrow length and transmissivity distributions (Table 1). 201 

Extreme cases of low and high variability are tested in order to assess the method in highly-202 

differentiated conditions. Network types include both lattice structures (Table 2.I1) and stochastic 203 

complex fracture networks (Table 2.I2-4). Stochastic fracture networks are characterized by their 204 

density, orientation, length and transmissivity distributions. The domain size given by the ratio of the 205 

domain length to the minimal fracture length is denoted by L and set to 100. It means that the 206 

fracture length distribution covers two orders of magnitude. Density is fixed by the dimensionless 207 

percolation parameter p, equal to the sum of the square of the fracture lengths normalized by the 208 
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domain area. p is a direct measure of connectivity as it is very close to 5.6 at the percolation 209 

threshold, whatever the other fracture network characteristics [Bour and Davy, 1997]. Three density 210 

values are used for stochastic complex fracture networks and are respectively close to threshold 211 

(p=6) and at around two and three times the density at threshold (p=10 and p=20). For lattice 212 

structures, p is close to the number of fractures within the domain and has been chosen equal to 12 213 

and 192 for testing methods on sparse and dense lattices, respectively. Orientations are set to 0° and 214 

30° relative to the main flow directions for the lattice structures and are uniformly distributed for the 215 

complex stochastic fracture networks. For the complex stochastic fracture networks, fracture lengths 216 

are power-law distributed [Bonnet et al., 2001] according to the following distribution function:  217 

 𝑝 𝑙 ~𝑙−𝑎  (6) 218 

where l is the fracture length, a is the characteristic power-law length exponent and 𝑝 𝑙  the fracture 219 

number of length l. Natural values of a derived from outcrops range in the interval [2.0,3.5]. Fracture 220 

transmissivity values have been chosen to be either the same for all fractures or broadly distributed 221 

according to a lognormal distribution of logarithmic standard deviation equal to 3 [Tsang et al., 222 

1996]. Flow boundary conditions are classical gradient-like boundary conditions with fixed head on 223 

two opposite domain faces and a constant head gradient on the orthogonal faces (Figure 1a). The 224 

bottom line of Table 2 illustrates the flow distribution computed with a broad transmissivity 225 

distribution and shows the strong channeling induced by the transmissivity distribution.  226 

3.2. Comparison criteria 227 

For comparing the performance of the EHM method with other existing methods, we use an accuracy 228 

criterion and a numerical memory complexity criterion. Accuracy is defined as the mean difference 229 

between the inlet and outlet flows and their reference counterparts. The reference is obtained from 230 
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the direct simulation on the domain-scale discrete fracture network. By denoting Φ𝑚
𝑓𝑖  and Φ𝑟𝑒𝑓

𝑓𝑖  the 231 

flow rates obtained respectively by the method “m” and the reference method on face 𝑓𝑖 , the 232 

comparison criterion writes:  233 

 𝑓𝑙𝑜𝑤_𝑒𝑟𝑟𝑜𝑟𝑚 =
1

2
  

Φ𝑚
𝑓𝑙−Φ𝑟𝑒𝑓

𝑓𝑙

Φ𝑟𝑒𝑓

𝑓𝑙
 +  

Φ𝑚
𝑓𝑟 −Φ𝑟𝑒𝑓

𝑓𝑟

Φ
𝑟𝑒𝑓
𝑓𝑟

  × 100 (7) 234 

where 𝑓𝑙  and 𝑓𝑟  stand for the left and right vertical domain faces.  235 

The memory complexity criterion is taken as the number of non-zero elements nnz of matrix B in the 236 

linear system Bx=b issued from the discretization of the flow equation at the domain scale. Even if 237 

the number of non-zero elements is not the ideal criterion, it is still better than the system size in this 238 

case where the limitation lies rather in memory requirements than in computation time. All results 239 

represent averages over 10 simulations. We have checked that for the most complex cases D0 and 240 

D1, 10 and 100 simulations give very close results. Accuracy and numerical memory complexity 241 

results are computed for several discretizations characterized by the number of blocks (domain-scale 242 

discretization) and by rblock (block-scale discretization).  243 

3.3. Results with existing mapping and tensor methods 244 

To assess the Equivalent Hydraulic Matrices method, we compare it with other existing methods: 245 

first with what we call the ANIS_GEO method representing permeability by a diagonal tensor 246 

derived from fracture geometrical mapping onto the blocks and used within a finite volume method 247 

[Botros et al., 2008] and second with what we call the TENSOR_SIM method representing 248 

permeability by a full tensor obtained from block-scale DFN flow simulations and used within a 249 

mixed hybrid finite element framework (Appendix B). For these two methods, the matrix 250 

permeability is fixed to 10
-12 

m/s. We use these two methods only when they are strictly applicable. 251 
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From [Botros et al., 2008], the ANIS_GEO method is applicable only if the ratio of the block length 252 

to the minimal fracture length is lower than 2.5. For the stochastic complex networks (Table 1 B0-253 

D1), the ratio of the domain size to the minimal fracture length is L=100, requiring for the 254 

ANIS_GEO method a domain-scale discretization of at least 40×40 blocks. As the TENSOR_SIM 255 

method  relies on the full permeability tensor at the block scale, we have determined this parameter 256 

for all studied networks from the block-scale directional permeability plots (Table 3). The method is 257 

applicable only when the directional permeability is close to an ellipse [Long et al., 1982]. It is the 258 

case for networks A0, A2 and D0 (Table 3). For the other networks, transmissivity and fracture 259 

length distributions display heterogeneities that cannot be represented by a tensor at the scale of the 260 

block.  261 

Table 4 shows the flow error as measured by (7) using the ANIS_GEO, TENSOR_SIM and EHM 262 

methods for several domain discretizations. With the ANIS_GEO method, the flow error decreases 263 

systematically from a 50×50 to a 200×200 domain discretization. ANIS_GEO is particularly accurate 264 

for sparse flow structures (networks with a small fracture density or with a broad transmissivity 265 

distribution). In fact, the simple summation of the fracture contributions induced by the mapping 266 

increases sub-block-scale connectivity and hence increases flow errors. Results also show that 267 

ANIS_GEO is not applicable to networks with connectivity driven by small fractures (3<a<3.5), 268 

yielding errors systematically larger than 41%. To be applied systematically, the geometrical 269 

projection method ANIS_GEO requires high levels of discretization involving large linear systems 270 

(Table 5). Such discretization levels can be achieved in 2D but likely not in 3D.  271 

The TENSOR_SIM method is accurate for regular and dense structures with an error lower than 1% 272 

for network A0 (Table 4). As opposed to the ANIS_GEO method, the error decreases when the block 273 

scale increases since the block becomes closer and eventually larger than the REV [Li et al., 2009]. 274 

The main drawback of this method is its highly limited range of application. Most of the tested 275 
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networks of Table 1 did not fulfill its conditions of application. 276 

3.4. Assessment of the EHM method 277 

We have tested two levels of block-scale discretization of the EHM method: rblock=10% (called the 278 

most accurate method) and rblock=25% (called the least accurate method). The EHM method gives 279 

much smaller errors than those given by the geometrical and tensor methods ANIS_GEO and 280 

TENSOR_SIM (Table 4) except for A0 (dense lattice structure with uniform fracture transmissivity) 281 

and D0 (dense fracture network with uniform fracture transmissivity) with a domain discretized by 282 

10×10 blocks and rblock=25%. For these two cases, the tensor method gives smaller errors than the 283 

least accurate EHM method. In fact, the tensor method is very accurate because the REV is smaller 284 

than the block. The large errors of the least accurate EHM method are linked to the large number of 285 

fracture intersection points with the block border set to the same head, i.e. the head of the 286 

corresponding pole. The merged points are quantified by the border merging percentage pborder equal 287 

to the difference in percentage between the intersection point and pole numbers. pborder is 0% in the 288 

absence of any approximation of the block-scale discretization and increases as larger 289 

approximations are induced by the use of a smaller number of poles for the block-scale 290 

discretization. For A0 and D0 with the 10×10 domain discretization and rblock=25%, pborder is larger 291 

than 90% and 70%, respectively (Table 6). This explains the cases where the EHM method is less 292 

accurate than the TENSOR_SIM method. For the same networks with finer domain discretizations 293 

(30×30 and 50×50 blocks), trends are reversed and the EHM method becomes more accurate than 294 

the tensor method. For lattice cases, the flow error with the EHM method is smaller than 5% for a 295 

domain discretization of 50×50 blocks.  296 

For stochastic complex fracture networks, flow errors range from 0.11% to 180% with a majority of 297 

errors below 10% (Table 4). Errors larger than 10% affect cases B2 and C2 characterized by a coarse 298 
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discretization of 10×10 blocks and by networks with the narrowest length distribution corresponding 299 

to a=3.5. The latter fracture networks have the largest number of fractures and fracture border 300 

intersections inducing first a stronger decrease in the numerical memory complexity (Table 5), and 301 

then larger values of point merging percentages pborder (Table 6). In all other cases, the flow error is 302 

smaller than 5% for a domain discretization of 50×50 blocks. With the most accurate method 303 

corresponding to rblock=10% and a domain discretization of 50×50 blocks, errors range between 304 

0.11% and 2.1%. For 9 out of the 12 test cases for which 𝜎𝑙𝑛𝑇 = 3 corresponds to a fracture 305 

transmissivity distribution spanning at least 3 orders of magnitude, errors remain as low as a few 306 

percents showing the very good performance of the EHM method for complex flow structures. 307 

Results of Table 4 show two interesting properties of the EHM method. First, errors are not sensitive 308 

to the fracture transmissivity distribution as shown by the comparison of the D0 and D1 cases. 309 

Second, errors systematically decrease both with the domain discretization at constant rblock and with 310 

rblock at constant domain discretization for all complex stochastic fracture networks. These properties 311 

offer possibilities to control the error by decreasing either the domain-scale discretization in blocks 312 

or the block-scale discretization ratio rblock. We note that all the above simulations have been 313 

performed on the backbone. However the applicability of the EHM method is not restricted to the 314 

backbone as shown by its good performance on infinite clusters (Table 7). Even if errors increase by 315 

a factor of 5 from the backbone to the infinite cluster, they still remain lower than 10% with the least 316 

accurate method (rblock=10%) and a domain discretization of 50×50.  317 

3.5. Flow error versus numerical memory complexity 318 

Numerical memory complexity is taken as the number of non-zero elements in the domain-scale 319 

linear system issued from the discretization of the flow equation (nnz) (Table 5). nnz determines the 320 

memory required to solve the linear system. It does not, however, take into account the computation 321 
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of the Equivalent Hydraulic Matrices at the block scale as they are not critical in terms of system size 322 

and memory requirements. With the classical ANIS_GEO and TENSOR_SIM methods, the 323 

numerical memory complexity increases quadratically with the discretization ratio. With the EHM 324 

method, the numerical memory complexity is more variable and increases more slowly. Whatever 325 

the domain discretization and the value of rblock for complex stochastic fracture networks, EHM 326 

methods yield smaller numerical memory complexity than the DFN method except for the B0 case. 327 

In the latter case, the proportion of blocks crossed by a single fracture increases the numerical 328 

memory complexity without improving the accuracy.  329 

A more advanced evaluation of the methods is proposed by comparing their error according to their 330 

numerical memory complexity (Figures 4-6). For lattice structures (Figure 4 except magenta 331 

symbols), the EHM method is orders of magnitude more accurate than the classical methods at 332 

comparable complexities except for the A0 case already discussed in section 3.4. Figure 4 also shows 333 

that the accuracy of the TENSOR_SIM method increases with the numerical memory complexity as 334 

discussed in section 3.3. For the dense complex stochastic fracture network of case D0 (Figure 4, 335 

magenta symbols), the error with the TENSOR_SIM method is smaller than the error with all other 336 

methods at very low complexity (11%) but cannot be made smaller by refining the discretization. By 337 

contrast, with the EHM method, the error is larger at small complexity but decreases to less than 1% 338 

for the highest complexities. For the stochastic complex fracture networks (Figures 5-6), errors with 339 

the EHM method decrease with the numerical memory complexity (nnz), with a systematic trend 340 

close to nnz
-1

. Figures 4-6 show that the errors using the EHM method with rblock=10% and rblock 341 

=25% are roughly parallel in log-log plots. For the same level of error corresponding to horizontal 342 

lines in Figures 4-6, the rblock =10% method yields smaller numerical memory complexities than the 343 

method with rblock =25%.  344 

3.6. Parameter optimization 345 
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The choice of the optimal method parameters depends on the targeted accuracy, available 346 

computation time and memory and on the fracture network structure. We illustrate the methodology 347 

to determine the appropriate parameter values on the most complex fracture network presented 348 

before D1. Basically, we show in this section that the accuracy is controlled by the discretization 349 

ratio rblock times the length of the block edge while computation time and memory requirements are 350 

controlled by the inverse of the discretization ratio (1/rblock). The approximation of the method is 351 

performed on the block-border discretization by equating the head of points belonging to the same 352 

discretization segment. The sole parameter influencing accuracy is thus the normalized segment 353 

length dblock equal to the discretization ratio rblock times the length of the block edge divided by the 354 

minimal fracture length. The error error_flow defined in (7) increases monotonously with dblock 355 

(Figure 7). Flow errors smaller than 20% are obtained for dblock values smaller than 2. Once the 356 

segment length has been fixed by the targeted accuracy, the computation time and memory 357 

requirements are adjusted by choosing the discretization of the system in blocks controlled by the 358 

parameter 1/rblock (Figure 8). Here the computation time refers to the full time of the flow simulation 359 

including the determination of the Equivalent Hydraulic Matrices and the solution of the large 360 

system issued by the domain-scale flow discretization. Memory requirements are still taken as the 361 

number of non-zero elements in the domain-scale matrix (nnz). As previously said, nnz decreases for 362 

coarser domain discretizations. The computation is mainly controlled by the determination of the 363 

Equivalent Hydraulic Matrices. It first sharply decreases with 1/rblock and then increases slightly. The 364 

minimum expresses an optimal distribution of computations between the domain scale and the block 365 

scale. Smaller 1/rblock values yield more numerous smaller blocks and more Equivalent Hydraulic 366 

Matrices to determine and in turn an increase of the full computation time by more than order of 367 

magnitude. Large 1/rblock values yield less numerous larger blocks which Equivalent Hydraulic 368 

Matrices take a much larger time to determine, increasing the full computation time by at least 50%. 369 
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Similar results showing the existence of the minimum have been obtained for greater number of 370 

Monte-Carlo simulations and for different fracture network structures. 371 

4. Discussion  372 

The principle of the Equivalent Hydraulic Matrices method is to distribute the numerical complexity 373 

among two scales, the block-scale and the domain-scale. This method introduces a reduction of the 374 

domain-scale numerical memory complexity by coarsening the block-border discretization. The 375 

approximation consists in equating heads on nearby network points. It remains local and adjusts 376 

automatically to the specific network configuration. Like the tensor and geometrical mapping 377 

methods, the EHM method increases connectivity along block interfaces but only through the 378 

introduction of shortcuts between existing paths and not through the connection of otherwise 379 

disconnected faces. Moreover, the connectivity increase is limited to the block borders and does not 380 

affect the connectivity within the block.  381 

The EHM method is structured around the block-scale Equivalent Hydraulic Matrices, which transfer 382 

the local connectivity information from the block scale to the domain scale. The Equivalent 383 

Hydraulic Matrices are determined by the configurations of the fracture network within the blocks 384 

but do not depend on the boundary conditions. In other words, the matrices are not intrinsic medium 385 

properties like a tensor but can be used instead of the discrete fracture network in all flow contexts 386 

both above and below the Representative Elementary Volume (REV). The Equivalent Hydraulic 387 

Matrices method is still applicable below the REV due to the adjustment of the block-scale matrices 388 

to the specificity of the connectivity structures.   389 

Because the Equivalent Hydraulic Matrices are derived from DFN computations, it is not surprising 390 

that they contain more information than the geometrical projection methods and lead to better 391 

performance at equivalent domain-scale numerical memory complexity. We express the domain-392 
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scale numerical memory complexity by the number of non-zero elements (nnz) of the linear system 393 

issued from the discretization of the flow equation. nnz is two to four orders magnitude smaller with 394 

the EHM method than with geometrical projection methods. The EHM method also displays 395 

systematically decreasing flow errors with the domain discretization and block-scale discretization 396 

parameter rblock. This offers possibilities to find the best optimal complexity for a given error 397 

requirement. As seen in section 3.3, this is not possible with the tensor method TENSOR_SIM and it 398 

requires too fine a domain discretization with the geometrical method ANIS_GEO. 399 

The EHM method is intermediary between the full DFN flow simulation and the tensor method. Like 400 

in the classical tensor methods [Jackson et al., 2002], the method relies on block-scale DFN 401 

simulations. It is also similar to classical numerical methods from several respects. First, it expresses 402 

the relationship between flows and heads on the block borders like many numerical methods such as 403 

finite element or boundary element methods. Second, it converges to the full DFN solution when the 404 

domain discretization or the block-scale discretization increases. As a two-scale method, it shares 405 

similarities with multiscale methods like multigrid methods. It is, however, a pure bottom-up 406 

approach in the sense that the block-scale information is used at domain scale but not the other way 407 

around. From this respect, it is closer to the principle of the multiscale finite element methods 408 

[Efendiev and Hou, 2007] than to the principle of multigrid methods [Wesseling, 2004]. Finally, it 409 

remains opposed to homogenization methods since the Equivalent Hydraulic Matrices strongly 410 

depend on the block-scale fracture network structure and cannot be extrapolated to other blocks or 411 

other scales.  412 

However, EHM methods have  two drawbacks, the first one being the specificity of the domain-scale 413 

simulation method that precludes the use of commonly available continuous flow simulation 414 

softwares like MODFLOW. The second drawback is the additional numerical time complexity 415 

arising from the computation of the block-scale equivalent matrices. The total numerical complexity 416 



19 

 

includes the solution of the domain-scale linear system and the computation of the Equivalent 417 

Hydraulic Matrices at the block scale. The first contribution is evaluated by the number of non-zero 418 

elements in the domain-scale linear system nnz used in the previous section. The second contribution 419 

is a function of the number of block-scale simulations multiplied by the complexity of the block-420 

scale simulations. We have chosen to retain only the first contribution to the numerical complexity 421 

for the two following reasons. First, the complexity of the domain-scale linear system is a critical 422 

constraint. Very large systems corresponding to nnz>10
7
 require parallel computation. While this 423 

constraint is met only for very large systems in 2D, it is current for 3D fracture networks at much 424 

smaller domain scales. Second, the EHM methods will likely be interesting for transient simulations. 425 

In fact, the computation of the EHMs will be performed only once and the complexity of the 426 

transient simulations will depend only on the domain-scale linear system complexity. The choice of 427 

both the domain discretization and the block-scale discretization parameter will be dictated by the 428 

numerical optimization, the performance of simulations through block-scale and domain-scale 429 

computations restricted to manageable sizes, and last but not least by the required accuracy.  430 

5. Conclusion 431 

We have presented a new mapping method for solving the flow equation in 2D discrete fracture 432 

networks. The method consists in superposing a mesh onto the fracture network and finding the 433 

relationship between heads and flows on the borders of each block of the mesh. The relationship is 434 

linear and can be expressed in matrix form, hence the name the “Equivalent Hydraulic Matrices” 435 

(EHM) method. We have shown that this linear relationship is fundamentally analog to Darcy’s law 436 

as it is equivalent to relating flows to well-chosen head gradients on block borders. The matrix 437 

coefficients can be determined by block-scale numerical simulations and express equivalent block-438 

scale permeability between block border zones. The zones are chosen independently for each block 439 

interface and correspond to the discretization of intersection points between the fracture network and 440 
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the block border. The method is parameterized both by the block-scale discretization parameter 441 

(block-scale discretization distance divided by the characteristic block scale) and the domain 442 

discretization (the domain scale divided by characteristic block scale in each direction). The flow 443 

simulation at the domain scale is performed simply by assembling the block-scale Equivalent 444 

Hydraulic Matrices through head and flow continuity conditions.  445 

The interest of the EHM method is to keep good approximations of both the internal block and inter-446 

block connectivities. Discretization is performed at a local scale and adjusts automatically to local 447 

fracture network configurations. We show on a broad range of 2D fracture networks with different 448 

density, fracture length and transmissivity distributions that the relative error of the method decreases 449 

systematically with the domain discretization and the block-scale discretization parameter, allowing 450 

for a possible automatic control of the method accuracy. We also show that the relative error of the 451 

EHM method remains restricted to a few percents for a coarse domain discretization (30×30 to 452 

50×50), whatever the network geometrical structure and the fracture transmissivity distribution. The 453 

main advantage is its applicability to all kind of network structures, whereas the tensor method can 454 

only be used for blocks larger than the Representative Elementary Volume, a too restrictive 455 

condition for general DFN simulations. Geometrical methods give results of comparable accuracy 456 

for a much larger domain discretization leading to domain-scale numerical memory complexities 457 

orders of magnitude larger than the numerical memory complexity of the EHM method. The EHM 458 

method enables large-scale 2D flow simulation networks. We intend to test its performance on 3D 459 

fracture network simulations and in transient flow contexts.  460 
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Appendices 461 

Appendix A: Property of the Equivalent Hydraulic Matrix 462 

With the construction method described in section 2.2, 𝑨𝒌 has several properties. First, by imposing 463 

a fixed head of 1 at pole j and 0 at the other ones as boundary conditions, the flow goes into the 464 

block by 𝒑𝒌(𝑗) and outward through the other poles 𝒑𝒌(𝑖) (𝑖 ≠ 𝑗). Considering the flow going into 465 

the block as positive and the flow going outward as negative leads to:  466 

  
𝑨𝒌 𝑗, 𝑗 ≥ 0 

𝑨𝒌 𝑖, 𝑗 ≤ 0, 𝑖 ≠ 𝑗
 .  (8) 467 

Second, for a given column j, all elements 𝑨𝒌(𝑖, 𝑗) are determined simultaneously by solving the 468 

flow equation; mass conservation implies that  469 

  𝑨𝒌 𝑖, 𝑗 
𝑁𝑃

𝑘

𝑖=1 = 0. (9) 470 

Or similarly:  471 

 𝑨𝒌 𝑖, 𝑖 = − 𝑨𝒌 𝑗, 𝑖 
𝑁𝑃

𝑘

𝑗 =1,𝑗≠𝑖 . (10) 472 

Third, because the reciprocity principle is applicable in the case of Darcian flow [Barker, 1991], 𝑨𝒌 473 

is symmetric:  474 

 𝑨𝒌 𝑖, 𝑗 = 𝑨𝒌 𝑗, 𝑖 . (11) 475 

Fourth, we show that the linear relationship (1) between flows and heads with property (10) leads to 476 

a relationship between flows and head gradients. In fact:  477 
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𝝓𝒌 𝑖 =  𝑨𝒌 𝑖, 𝑗 × 𝑯𝒌 𝑗 

𝑁𝑃
𝑘

𝑗 =1

 

𝝓𝒌 𝑖 =  𝑨𝒌 𝑖, 𝑗 × 𝑯𝒌 𝑗 + 𝑨𝒌 𝑖, 𝑖 × 𝑯𝒌 𝑖 

𝑁𝑃
𝑘

𝑗=1,𝑗≠𝑖

 

and using (10): 478 

𝝓𝒌 𝑖 =  𝑨𝒌 𝑖, 𝑗 × (𝑯𝒌 𝑗 − 𝑯𝒌(𝑖))

𝑁𝑃
𝑘

𝑗=1,𝑗≠𝑖

 

 𝝓𝒌 𝑖 =  𝑨𝒌 𝑖, 𝑗 × 𝑥𝑘 ,𝑖𝑗 ×
(𝑯𝒌 𝑗  −𝑯𝒌(𝑖))

𝑥𝑘 ,𝑖𝑗

𝑁𝑃
𝑘

𝑗=1   (12) 479 

where 𝑥𝑘 ,𝑖𝑗  is the distance between poles 𝒑𝒌(𝑖) and 𝒑𝒌(𝑗). Equation (12) shows that flow 𝝓𝒌 𝑖  at 480 

𝒑𝒌(𝑖) is the sum of the head gradients from 𝒑𝒌(𝑖) to the other poles. Equation (12) gives a simple 481 

interpretation of 𝑨𝒌 𝑖, 𝑗 × 𝑥𝑘 ,𝑖𝑗 . 𝑨𝒌 𝑖, 𝑗 ×  𝑥𝑘 ,𝑖𝑗  is the proportionality coefficient between flow 482 

𝝓𝒌 𝑖  and the head gradient  (𝑯𝒌 𝑗 − 𝑯𝒌(𝑖))/𝑥𝑘 ,𝑖𝑗  between 𝒑𝒌(𝑖) and 𝒑𝒌(𝑗). 𝑨𝒌 𝑖, 𝑗 ×  𝑥𝑘 ,𝑖𝑗  can 483 

thus be interpreted as an “equivalent transmissivity” between the i
th

 and j
th

 poles. 484 

  485 
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Appendix B: Tensor permeability and finite elements (TENSOR_SIM method) 486 

The Equivalent Hydraulic Matrices method consists in dividing the domain into blocks and 487 

describing block-scale hydraulic properties using Equivalent Hydraulic Matrices. The discretization 488 

of the block borders by poles 𝒑𝒌 is determined by the block-scale discretization parameter rblock, 489 

which is the ratio of the block-scale distance discretization to the block length. This parameter rblock 490 

drives the discretization of intersections 𝒎𝒌 between block borders and fractures. Coefficients of the 491 

EHMs are determined by simulations at the block scale as described in section 2.2. The EHMs are 492 

equivalent to tensors in that they impose the following discretization and construction rules: (1) 493 

rblock=100%, i.e. each block border is discretized by at most one pole, (2) each block border is 494 

represented by one pole (even if there is no intersection point), (3) matrix coefficients are determined 495 

by applying head gradient boundary conditions in the vertical and horizontal directions [Renard et 496 

al., 2001], (4) the computed flow rates used for the determination of the coefficients are the 497 

directional flow rates, i.e. the mean of the flow rates going out of the domain through borders 498 

perpendicular to the studied direction, and (5) coefficients are corrected to obtain symmetric positive 499 

definite tensors [Long et al., 1982]. Adding these rules of determination, the Equivalent Hydraulic 500 

Matrices become tensors that describe block-scale permeability. Computed block-scale tensors are 501 

used within a classical mixed hybrid method adapted for quadrangles to simulate flow at the domain 502 

scale [Chavent and Roberts, 1991]. We denote this method the TENSOR_SIM method. 503 

  504 
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Notations 505 

Kxx   permeability in the x-direction due to a head gradient in the x-direction, m/s. 506 

Kyy   permeability in the y-direction due to a head gradient in the y-direction, m/s. 507 

Kxy   permeability in the x-direction due to a head gradient in the y-direction, m/s. 508 

Kyx   permeability in the y-direction due to a head gradient in the x-direction, m/s. 509 

𝒑𝒌  vector of poles. 510 

𝜱𝒌  vector of flow rates at the poles for block k, m
2
/s. 511 

𝑯𝒌  vector of heads at the poles for block k, m. 512 

𝑨𝒌  Equivalent Hydraulic Matrix of block k, m/s. 513 

𝒎𝒌  vector of intersections between the fractures and the faces of block k. 514 

dblock  discretization distance of block borders, m. 515 

rblock  discretization ratio of block borders. 516 

𝑁𝑃
𝑘   number of poles of block k. 517 

𝑥𝑘 ,𝑖𝑗   distance between the i
th

 and j
th

 poles, m. 518 

P  union of all poles. 519 
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P
i
  union of poles on block interfaces. 520 

P
f
  union of poles on domain faces. 521 

N  total number of poles. 522 

N
i
  number of poles of type P

 i
. 523 

N
f
  number of poles of type P

 f
. 524 

B(j)  set of blocks sharing pole 𝑃𝑖(𝑗) 525 

𝑞𝑏 ,𝑃𝑖(𝑗 )  flow rate at poles 𝑃𝑖(𝑗) from the b
th

 block, m
2
/s. 526 

N
fd

  number of poles on the Dirichlet boundary condition. 527 

N
fn

   number of poles on the Neumann boundary condition. 528 

𝐻𝑓𝑑   head of poles on the Neumann boundary condition, m 529 

 𝐻𝑓𝑑  0 fixed head on the Neumann boundary condition, m 530 

p  percolation parameter. 531 

l  fracture length, m. 532 

p(l)  fracture length distribution. 533 

a  power law exponent. 534 
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Φ𝑚
𝑓𝑖   flow rate computed by the method “m” on the face 𝑓𝑖 , m

2
/s. 535 

Φ𝑟𝑒𝑓
𝑓𝑖   flow rate computed by the reference method on the face 𝑓𝑖 , m

2
/s.  536 

nnz  number of non-zero elements of the domain-scale linear system. 537 

pborder   border discretization percentage  538 
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 621 

Figure captions 622 

Figure 1 – Fracture network at the block scale (a) and corresponding flows (b) for the gradient head 623 

boundary conditions illustrated in (a). Fracture network parameters are the system size L normalized 624 

by the smallest fracture length (L =100), the fracture density number twice larger as its value at 625 

percolation threshold, the power-law fracture length exponent of 2.5 and the lognormal 626 

transmissivity distribution of logarithmic standard deviation 3.0. Boundary flows integrated on the 627 

domain sides and normalized by the mean fracture transmissivity are given in (b). They display large 628 

differences between opposite sides and illustrate the non-tensor nature of the flows. 629 

Figure 2 – Principle of the block-border discretization with two different discretization scales dblock 630 

corresponding to the side length (a) and to half of it (b). The backbone of the sub-network contained 631 

in the block is represented by the grey segments. Intersections mk between the backbone and the 632 

block borders are the black dots. Discretization segments and poles pk are respectively the color 633 

dashed segments and crosses. In (a), the four discretization segments intersect the backbone in one or 634 

two points. The four poles corresponding to the four crosses are thus defined and the Equivalent 635 

Hydraulic Matrix (EHM) is of rank 4. In (b), only six of the eight discretization segments intersect 636 

the backbone leading to the definition of 6 poles and to an EHM of rank 6. 637 

Figure 3 – Principle of the determination of one of the columns of the Equivalent Hydraulic Matrix 638 

Ak. In this example, block k is made up of fives intersections between the sub-network and the block 639 

borders (black points) and four poles (blue crosses). The boundary conditions applied to poles 640 

illustrated in (a) are a fixed head of 1 for the 2
nd

  pole and 0 for the other ones. They condition the 641 

boundary conditions applied to the intersections illustrated in (b), which are a fixed head of 1 for the 642 
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intersections represented by the 2
nd

 pole and 0 for the other ones. Flow rates in poles (d) are deduced 643 

from flow rates at the intersections (c). The flow rate at the i
th

 pole is the sum of the flow rates at the 644 

intersections represented by this pole. The elements of the second column of the matrix Ak are 645 

deduced from flow rates computed at the poles (e). 646 

Figure 4 – flow_error versus numerical memory complexity (nnz) for lattice structures and dense 647 

fracture networks with constant fracture transmissivity (magenta symbols). The grey area underlines 648 

a lower part of the graph where errors range between 5×10
-6

% and 10
-4

%. The dashed horizontal line 649 

pictures the 10% error value. The dashed diagonal lines are power-law functions of exponent -1 and 650 

are meant as a guide for the eye for the decrease tendency of the EHM method. Note that errors 651 

larger than 10
3
 are not represented. 652 

Figure 5 – flow_error versus numerical memory complexity (nnz) for stochastic complex fracture 653 

networks at threshold with distributed fracture transmissivities. The dashed horizontal line pictures 654 

the 10% error value. The dashed diagonal lines are power-law functions of exponent -1 and are 655 

meant as a guide for the eye for the decrease tendency of the EHM method. Note that errors larger 656 

than 10
3
 are not represented. 657 

Figure 6 – flow_error versus numerical memory complexity (nnz) for stochastic complex fracture 658 

networks with distributed fracture transmissivities. The dashed horizontal line pictures the 10% error 659 

value. The dashed diagonal lines are power-law functions of exponent -1 and are meant as a guide 660 

for the eye for the decrease tendency of the EHM method. Note that errors larger than 10
3
 are not 661 

represented. 662 

Figure 7 –flow_error versus dblock the discretization ratio rblock times the length of the block edge for 663 

the network D1 (domain size L=100). 664 
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Figure 8 – Computation time (red dashed line) and numerical memory complexity taken as the 665 

number of non-zero elements in the largest matrix (black line) as a function of block size divided by 666 

the segment discretization length 1/rblock for D1 with dblock equal to 1. 667 

  668 
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Tables 669 

Network type Parameters Table 2 

 p a θ 𝝈𝒍𝒏𝑻  

A0 192 1 0°, 30° 0  

A1 192 1 0°, 30° 3  

A2 12 1 0°, 30° 0  

A3 12 1 0°, 30° 3 I1 

B0 6 2.5 Uniform 3  

B1 6 3 Uniform 3 I2 

B2 6 3.5 Uniform 3  

C0 10 2.5 Uniform 3  

C1 10 3 Uniform 3  

C2 10 3.5 Uniform 3 I3 

D0 20 2.5 Uniform  0  

D1 20 2.5 Uniform 3 I4 

Table 1 – Characteristics of the tested fracture networks. The first four networks are on-lattice structures whereas the other ones are off-lattice 670 

structures. The ratio of the domain size L to the length of the smallest fracture lmin is set to 100. The fracture density is characterized by the 671 

percolation parameter p [Bour and Davy, 1998]. Fractures either cross the whole domain (a=1) or are distributed according to a power-law 672 

distribution (a>1). Fracture orientations () are either specified to a set of fixed angles (first four cases) or uniformly distributed. Fracture 673 

transmissivity is constant (𝜎𝑙𝑛𝑇 = 0) or lognormally distributed with a lognormal standard deviation (𝜎𝑙𝑛𝑇 = 3). The last column indicates the 674 

figure numbers displaying an example of the network type in Table 2. Fracture network types are classified in family of networks: “A” is for 675 

lattice structures, “B” for networks at percolation threshold, “C” for networks with an intermediary fracture density and “D” for dense networks.  676 

  677 
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(I1) 

 
(I2) 

 
(I3) 

 
(I4) 

 
 (I4’) 

 
(II1) 

 
 (II2) 

 
(II3) 

 
(II4) 

Table 2 – Illustration of the tested fracture networks with examples of backbones (I1-I4), infinite clusters (I4’) and flows (II1-II4) obtained with 678 

the gradient boundary conditions illustrated by Figure 1a and computed with a broadly distributed fracture transmissivity 𝜎𝑙𝑛𝑇 = 3 (see Table 1). 679 

Flow magnitude is represented by grey intensity and segment width. I1, I2, I3 and I4-4’ correspond to network types A3, B1, C2 and D1 (Table 680 

1). Red squares stand for an elementary block corresponding to a domain discretization of 10×10 blocks.  681 
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A0 

 
A1 

 
A2 

 
A3 

 
B0 

 
B1 

 
B2 

 
C0 

 
C1 

 
C2 

 
D0 

 
D1 

Table 3 – Polar plots of permeability for the networks of Table 1, representing the permeability versus the polar angle . Each point represents 682 

for a given  the permeability computed in a square of side length L/3 (where L is the domain size), of axis rotated by  and centered on the 683 

initial system center.   684 
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 685 

 ANIS_GEO TENSOR_SIM EHM (10%) EHM (25%) 

Domain discretization 10×10 30×30 50×50 200×200 10×10 30×30 50×50 10×10 30×30 50×50 10×10 30×30 50×50 

A0 33 33 31 20 0.14 0.04 0.92 5.5×10
-5

 2.0×10
-5

 2.7×10
-5

 33 2.3×10
-5

 2.8×10
-5

 

A1 44 49 47 2.3    4.9×10
-5

 1.5×10
-5

 3.2×10
-5

 25 1.6×10
-5

 3.3×10
-5

 

A2 49 2.3 2.0 0.3 7.5 35 37 3.4×10
-5

 3.1×10
-5

 1.4×10
-5

 3.4×10
-5

 3.2×10
-5

 1.4×10
-5

 

A3 23 6.0 5.6 1.2    2.1×10
-4

 6.3×10
-5

 4.4×10
-5

 2.1×10
-4

 6.3×10
-5

 4.4×10
-5

 

B0   22 4.7    0.42 0.25 0.11 3.1 1.2 0.59 

B1   1.2×10
3
 41    3.6 0.73 0.29 10 4.2 2.6 

B2   3.4×10
4
 2.2×10

2
    45 1.6 1.5 81 45 4.8 

C0   78 49    1.0 0.5 0.2 6.1 1.3 0.87 

C1   2.1×10
3
 93    5.9 1.3 1.5 33 5.7 5.1 

C2   1.2×10
4
 4.4×10

2
    23 4.5 2.1 1.8×10

2
 29 13 

D0   1.7×10
2
 28 11 21 50 2.8 0.89 0.51 21 5.1 2.9 

D1   4×10
2
 19    3.8 0.75 0.45 23 5.7 2.8 

Table 4 – flow_error as defined by equation (7) for the backbone of the fracture network types defined in Table 1 and for the three 686 

computational methods ANIS_GEO, TENSOR_SIM and EHM at different discretization levels. Domain discretization refers to the ratio of the 687 

domain size to the block size in each direction. EHM methods are characterized in brackets by their block-scale discretization parameter rblock 688 

equal to the ratio expressed in % between the block-scale discretization distance dblock and the block scale. Empty cells mean that the conditions 689 

of application of the method are not fulfilled in the corresponding case. 690 

 691 
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 DFN ANIS_GEO TENSOR_SIM EHM (10%) EHM (25%) 

Domain discretization  10×10 30×30 50×50 200×200 10×10 30×30 50×50 10×10 30×30 50×50 10×10 30×30 50×50 

A0 26 0.46 4.4 12 200 1.2 12 34 14 110 140 1.2 42 75 

A1 26 0.46 4.4 12 200    15 101 140 1.2 41 87 

A2 0.16 0.46 4.4 12 200 1.2 12 34 0.7 1.6 2.4 0.6 1.5 2.4 

A3 0.16 0.46 4.4 12 200    0.7 1.6 2.4 0.6 1.5 2.4 

B0 0.87   12 200    0.45 1.4 2.5 0.3 1.2 2.2 

B1 13   12 200    1.1 4.2 6.7 0.6 2.6 4.5 

B2 33   12 200    1.5 6.6 12 0.7 3.5 7.1 

C0 6.1   12 200    1.6 4.0 6.0 0.9 3.0 5.0 

C1 53   12 200    4.5 16 26 1.8 8.6 16 

C2 240   12 200    11 56 96 2.8 22 46 

D0 52   12 200 1.2 12 34 8.7 27 41 2.9 15 26 

D1 51   12 200    8.7 27 41 2.9 15 26 

Table 5 – Numerical memory complexity expressed as the number of non-zero elements (nnz) of the domain-scale linear systems issued from the 692 

flow discretization for the network cases of Table 1. Parameters are identical to those of Table 4. All numbers are expressed in thousands of non-693 

zero elements. 694 
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 695 

 EHM (10%) EHM (25%) 

Domain discretization 10×10 30×30 50×50 10×10 30×30 50×50 

A0 70 21 14 91 53 36 

A1 69 23 14 91 53 32 

A2 4.7 1.7 2.6 13 4.3 2.6 

A3 4.7 1.7 2.6 13 4.3 2.6 

B0 14 7 5.3 26 14 10 

B1 44 23 15 59 37 28 

B2 54 32 23 70 49 39 

C0 25 12 8.3 41 22 15 

C1 53 29 21 70 46 35 

C2 72 44 33 86 65 53 

D0 50 26 18 70 44 32 

D1 50 26 18 70 44 32 

 696 

Table 6 – Block-scale border merging percentage pborder for the fracture network types of Table 1. 697 
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 ANIS_GEO TENSOR_SIM EHM (10%) EHM (25%) Table 2 

Domain discretization 10×10 30×30 50×50 200×200 10×10 30×30 50×50 10×10 30×30 50×50 10×10 30×30 50×50  

D0   5.5×10
2
 1.5×10

2
 37 38 14 11 4.9 3.0 76 23 14  

D1   1.7×10
3
 1.5×10

2
    12 4.3 2.4 70 20 11 I4’ 

 698 

Table 7 – flow_error as defined by equation (7) for the infinite cluster of fracture networks D0 and D1 (see Table 1 for description). EHM 699 

methods are characterized in brackets by their block-scale discretization parameter rblock equal to the ratio expressed in % of the block-scale 700 

discretization distance dblock to the block scale. 701 
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Figures 702 

 703 

Figure 1 – Fracture network at the block scale (a) and corresponding flows (b) for the gradient head 704 

boundary conditions illustrated in (a). Fracture network parameters are the system size L normalized 705 

by the smallest fracture length (L =100), the fracture density number twice larger as its value at 706 

percolation threshold, the power-law fracture length exponent of 2.5 and the lognormal 707 

transmissivity distribution of logarithmic standard deviation 3.0. Boundary flows integrated on the 708 

domain sides and normalized by the mean fracture transmissivity are given in (b). They display large 709 

differences between opposite sides and illustrate the non-tensor nature of the flows. 710 

  711 
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(a) (b) 

Figure 2 – Principle of the block-border discretization with two different discretization scales dblock 712 

corresponding to the side length (a) and to half of it (b). The backbone of the sub-network contained 713 

in the block is represented by the grey segments. Intersections mk between the backbone and the 714 

block borders are the black dots. Discretization segments and poles pk are respectively the color 715 

dashed segments and crosses. In (a), the four discretization segments intersect the backbone in one or 716 

two points. The four poles corresponding to the four crosses are thus defined and the Equivalent 717 

Hydraulic Matrix (EHM) is of rank 4. In (b), only six of the eight discretization segments intersect 718 

the backbone leading to the definition of 6 poles and to an EHM of rank 6.  719 
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(a) (b) 

  

(c) (d) 

 
 
 

 
 
𝐴𝑘 2,1 = 𝜙𝑘(1)

𝐴𝑘 2,2 = 𝜙𝑘(2)

𝐴𝑘 2,3 = 𝜙𝑘(3)

𝐴𝑘 2,4 = 𝜙𝑘(4)

  

(e) 

 

       

Figure 3 – Principle of the determination of one of the columns of the Equivalent Hydraulic Matrix 720 

Ak. In this example, block k is made up of fives intersections between the sub-network and the block 721 

borders (black points) and four poles (blue crosses). The boundary conditions applied to poles 722 

illustrated in (a) are a fixed head of 1 for the 2
nd

  pole and 0 for the other ones. They condition the 723 

boundary conditions applied to the intersections illustrated in (b), which are a fixed head of 1 for the 724 

intersections represented by the 2
nd

 pole and 0 for the other ones. Flow rates in poles (d) are deduced 725 

from flow rates at the intersections (c). The flow rate at the i
th

 pole is the sum of the flow rates at the 726 

intersections represented by this pole. The elements of the second column of the matrix Ak are 727 

deduced from flow rates computed at the poles (e). 728 
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 730 

Figure 4 – flow_error versus numerical memory complexity (nnz) for lattice structures and dense 731 

fracture networks with constant fracture transmissivity (magenta symbols). The grey area underlines 732 

a lower part of the graph where errors range between 5×10
-6

% and 10
-4

%. The dashed horizontal line 733 

pictures the 10% error value. The dashed diagonal lines are power-law functions of exponent -1 and 734 

are meant as a guide for the eye for the decrease tendency of the EHM method. Note that errors 735 

larger than 10
3
 are not represented.  736 
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Figure 5 – flow_error versus numerical memory complexity (nnz) for stochastic complex fracture 739 

networks at threshold with distributed fracture transmissivities. The dashed horizontal line pictures 740 

the 10% error value. The dashed diagonal lines are power-law functions of exponent -1 and are 741 

meant as a guide for the eye for the decrease tendency of the EHM method. Note that errors larger 742 

than 10
3
 are not represented.  743 
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Figure 6 – flow_error versus numerical memory complexity (nnz) for stochastic complex fracture 746 

networks with distributed fracture transmissivities. The dashed horizontal line pictures the 10% error 747 

value. The dashed diagonal lines are power-law functions of exponent -1 and are meant as a guide 748 

for the eye for the decrease tendency of the EHM method. Note that errors larger than 10
3
 are not 749 

represented. 750 
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 753 

Figure 7 –flow_error versus dblock the discretization ratio rblock times the length of the block edge for 754 

the network D1 (domain size L=100). 755 
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 758 

Figure 8 – Computation time (red dashed line) and numerical memory complexity taken as the 759 

number of non-zero elements in the largest matrix (black line) as a function of block size divided by 760 

the segment discretization length 1/rblock for D1 with dblock equal to 1. 761 


