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[1] We argue that most fracture systems are spatially organized according to two

main regimes: a “dilute” regime for the smallest fractures, where they can grow
independently of each other, and a “dense” regime for which the density distribution is
controlled by the mechanical interactions between fractures. We derive a density
distribution for the dense regime by acknowledging that, statistically, fractures do not cross
a larger one. This very crude rule, which expresses the inhibiting role of large fractures
against smaller ones but not the reverse, actually appears be a very strong control on the

eventual fracture density distribution since it results in a self-similar distribution whose
exponents and density term are fully determined by the fractal dimension D and a
dimensionless parameter + that encompasses the details of fracture correlations and
orientations. The range of values for D and ~ appears to be extremely limited, which
makes this model quite universal. This theory is supported by quantitative data on either
fault or joint networks. The transition between the dilute and dense regimes occurs at
about a few tenths of a kilometer for faults systems and a few meters for joints. This
remarkable difference between both processes is likely due to a large-scale control
(localization) of the fracture growth for faulting that does not exist for jointing. Finally, we
discuss the consequences of this model on the flow properties and show that these
networks are in a critical state, with a large number of nodes carrying a large

amount of flow.

Citation: Davy, P., R. Le Goc, C. Darcel, O. Bour, J. R. de Dreuzy, and R. Munier (2010), A likely universal model of fracture
scaling and its consequence for crustal hydromechanics, J. Geophys. Res., 115, B10411, doi:10.1029/2009JB007043.

1. Introduction

[2] Measuring the complexity of fracture networks has
been an issue for the last 20 years with consequences on
brittle strength, rock permeability, and earthquake dynamics
[Allegre et al., 1982; Crampin, 1999; Davy et al., 2006;
King, 1983; Renshaw, 1999; Turcotte, 1986]. A special
focus has been given to the scaling properties of fracture
networks that link rock samples to crustal scales (see the
pioneer study of Tchalenko [1970] and the review paper by
Bonnet et al. [2001], and references therein). Power laws
have been found to likely describe ubiquitously the scaling
properties of fracture density with two consequences: (1)
Fracture networks are scale-free objects (power law is the
only mathematical function that does not require a scale
parameter) and (2) long fractures are much more numerous
than for any other distribution type (lognormal in particular,
which was often taken as the fitting function). Although
ubiquitous in natural systems, the reason why this power
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law scaling emerges is still an issue. It is supposed to derive
from a complex, a few say critical, self-organized dynamics,
one of whose characteristics is to produce long-range cor-
related patterns that make large-scale structure probable and
“genetically” (thus statistically) linked to smaller ones [Bak
et al., 1988; Bak and Tang, 1989; Sornette et al., 1990;
Sornette, 2006].

[3] In this paper, we aim to give a theoretical framework
for fracture scaling models based on very basic properties. It
is beyond the scope of this paper to discuss how complex
forms derive from complex processes; we just acknowledge
a few basic properties of fracturing, and we elaborate on the
consequences. The points are as follows:

[4] 1. A fracture induces a perturbation of the stress (and
strain) field that modify (both enhance and decrease) the
occurrence probability for another fracture to initiate and/or
grow at its vicinity. The extent of this perturbation is of the
order of the fracture length [see, e.g., Atkinson, 1987,
Chinnery and Petrak, 1968; Segall and Pollard, 1980] even
if longer-range perturbation can be expected when numer-
ous fractures interact [Herrmann and Roux, 1990].

[5s] 2. For quasi-static fracturing, most of the fracture
growth (with the exception of boundary-related fractures) is
controlled by the perturbation of stress field induced by the
fracture itself and by neighbor fractures [Atkinson, 1987]. If
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the fracture does not produce by itself the reasons for
stopping its own growth, it is reasonable to think that the
eventual fracture pattern and its scaling law result from a
basic property of the fracture-to-fracture mechanical inter-
actions [Renshaw and Pollard, 1994; Segall and Pollard,
1983; Segall, 1984].

[6] We first discuss both end-members of the fracturing
process: The dilute case where fractures are likely growing
independently from each other and the dense case where
fracture growth is fully controlled by the presence of sur-
rounding fractures. We then combine both into a geomet-
rical model of fracture organization that likely applies over
the whole range of fracture scales. A key result is that the
large-scale part of this model appears to be almost universal;
i.e., both the scaling exponents and the density term are,
although not strictly fixed, highly constrained and almost
independent of the details of the fracturing process,
boundary conditions, intensity of fracturing, etc. The rele-
vance of this model can thus be easily checked with actual
fracture distribution; we show that it successfully fits the
density distribution of fracture networks from meter to
tenths of kilometer scales. Finally, we discuss the con-
sequences of the derived organization in terms of fracture
connectivity and permeability.

2. Fracture Organization Model From Fracture
Growth Consideration

2.1. Dilute Case

[7] When the density of fracture is low, fractures can
freely grow and the eventual size distribution depends on the
length dependency of the growth rate function. If the growth
rate is a power law:

et (1)
as it is likely (see Atkinson [1987, and references therein]
and Lyakhovsky [2001, and references therein] for a dis-
cussion about rock mechanics), then the fracture density
distribution n(/) eventually scales as n(l)~[ “ if a # 1, and
n(~exp(=1l/l,) if a = 1 [Sornette and Davy, 1991]. Esti-
mating a is an open issue, especially for geological systems.
Lyakhovsky [2001] reported exponent a (quoted m/2 in the
article) in the range 1-2.5 from laboratory tests on rock
samples and numerical simulations for quasi-static crack
growth (actually 1.3-1.8 for the latter), but he mentioned
smaller exponents when the growth is controlled by the
transport of reactive species to the crack tip and larger ones
for large crack lengths. Sornette and Davy [1991] argue,
from thermodynamic arguments, that the exponent « is likely
2 if the damping force that counterbalances the applied stress
does not depend on / and d//d¢. A few experiments on rock-
like materials (dry sand [Davy et al., 1990, 1995; Sornette et
al., 1993] and plaster [Mansfield and Cartwright, 2001]) and
numerical simulations [Cowie et al., 1995; Hardacre and
Cowie, 2003a, 2003b] also address this issue by analyzing
the evolution of quite complex fault network. The power law
model was found to correctly fit fracture length distributions
even for low-density networks, except for the largest frac-
ture; most of the 2-D exponents (i.e., measured on fault
traces) are close to 2.
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[8] Note that the growth rate equation (1) includes frac-
ture linkage mechanisms, ubiquitously observed in fracture
networks and partly responsible for the displacement-length
relationship [e.g., Cladouhos and Marrett, 1996; Cowie and
Scholz, 1992; Schlagenhauf et al., 2008; Schultz, 2000;
Schultz and Fossen, 2002; Xu et al., 2006].

[s] Thus, a general expression of the density length dis-
tribution of dilute fracture networks can be

Rgitue (1, L) = ol ~LP (2)

where ngiue(/, L)d/ is the number of fractures in a system of
size L (either an area in 2-D or a volume in 3-D) whose
length /' is in the range [/, / + dI]. D is formally the mass (or
correlation) dimension of the fracture-center network that is
smaller or equal to the topological dimension (see Bonnet et
al. [2001] and Bour et al. [2002] for further explanation). As
the exponent a, D is supposed to be related to some fun-
damental properties of the fracturing process. The parameter
« is the density term that is likely increasing during fracture
growth.

[10] Note that the power law distribution is the eventual
result of the growth equation (1), which means that it is
reached only after a certain time. Before that time, the
fracture length distribution is likely dependent on the initial
conditions or on the fracture nucleation process.

2.2. Dense Case

[11] For dense networks (we will define later how dense
they must be), fracture lengths are likely controlled by the
fracture-to-fracture mechanical interactions. The cause of
limited fracture growth has been widely discussed in the
past [Crampin, 1994, 1999; Pollard and Aydin, 1988;
Renshaw and Pollard, 1994; Renshaw, 1997; Renshaw et
al., 2003]. A detailed knowledge of these interactions is
hardly measurable and beyond the capacity of numerical
models, especially when there is a large number of fractures.
Even if the calculation was feasible, it would be difficult to
relate the characteristics of the stress field to the eventual
fracture distribution. To overcome this difficulty, we
develop a very simple model that is based on basic geo-
metrical rules of the fracture-to-fracture interactions for
dense networks. By doing this, we aim to capture the fun-
damental characteristics of network geometry that are con-
sistent with the mechanical interactions.

[12] We first point out that the very basic reason for a
fracture to stop growing is to meet another fracture. This
assumption is quantitatively supported by the large numbers
of T-shape intersections (when a fracture stops on another)
compared to X-shape (both fractures cross each other),
which makes fracture pattern really different from Poisso-
nian or random equivalents. As an example of this assess-
ment, the number of T-tips per fracture reported on a series
of Swedish outcrops (see a detailed description in section 3)
ranges from 0.6 to 1.6 with an average of about 1.2, which is
by far much larger than any Poissonian realization (for
which a T-tip configuration is unlikely).

[13] Second, it makes sense to assume that large fractures
inhibit the growth of smaller ones in their vicinity [Nur,
1982; Segall and Pollard, 1983; Spyropoulos et al., 1999],
but that the reverse is not likely to occur. This hierarchical
rule is illustrated by Segall and Pollard [1983, Figure 11],
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and it is basically related to the dependency of both the
driving force for fracture growth and the stress perturbation
on fracture length [Griffith, 1920].

[14] From both these assumptions, we derive a simple
statistical rule: A fracture stops growing when it crosses a
larger one, which means that the fracture length / is statis-
tically about equal to the distance to the closest larger
fracture d:

I~d 3)

We now demonstrate that this rule leads to a self-similar
distribution of the fracture density distribution. We consider
the general case of a fracture network distribution charac-
terized by a density distribution n(/, L), which is the number
of fractures of length in the range [/, / + d/] within a volume
(or surface in 2-D) of typical size L. The cumulative dis-
tribution, C(/, L) = floc n(l', L)d!', is the number of fractures
larger than /. If D is the network dimension (which can be a
noninteger value for fractal networks), the average distance
between the centroids of a fracture of length / and a larger
one is [Bour and Davy, 1999]

L
d(ly ~— = 4
O~ )
Combining equations (3) and (4) yields
I=~d = L (s)

=y
Cdcnsc(le)]/D

where Cgense 18 the resulting cumulative distribution and 7 is
a dimensionless ratio, whose order of magnitude is likely
close to 1. By deriving equation (4) with /, we obtain an
expression for the density distribution #genee (/, L):

Naense(1, L) = DyPLP1~(P+) (6)

Note that equation (6) is the only distribution that satisfies
the rule (3), and thus both equations (3) and (6) are actually
equivalent.

[15] Let us now analyze the property of this distribution.
We first notice that it is self-similar since the power law
length exponent is exactly the fractal dimension +1 [Bour et
al., 2002]. To appraise this geometrical property that qua-
lifies systems whose organization is scale-independent, we
try to figure out how the fracture pattern looks like at any
scale L. For this, we count the number of fractures in a
system of size L, whose size represents a significant fraction
of the system (let us say between xL and x'L):

x'L
N(L) = / Rgense(!', L)dl" = 4P <x7D —x'_D> (7)
xL

N(L) appears to be independent of L, and only dependent on
the dimensionless numbers 7, x, and x'. An observer who
tries to appraise the density of fractures by counting the
number of “large” fractures is going to find the same
number at all scales. This is the basic property that defines a
self-similar pattern.

[16] The second interesting property of this distribution is
that its density depends only on two parameters of the initial
growing pattern: the correlation dimension D and the geo-
metric parameter .
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[17] D is upper bounded by the dimension of the growth
space, but can be smaller because of fracture-to-fracture
correlations. A collection of fractal dimensions have been
measured mainly from 2-D outcrop or lineament maps (see
review in the work of Bonnet et al. [2001]) with values in
2-D ranging from 1 to 2 and reasonably from 1.7 to 2 (the
small values are associated with networks where only a few
large fractures are mapped, making the measure somehow
meaningless). Little is known about the factors that control
D (see, however, de Arcangelis et al. [1989], Hansen et al.
[1991], and Herrmann and Roux [1990]). As it measures the
fracture-center scaling organization, we expect it to express
more the physics of the nucleus phase than of the growth
phase. Large-scale localization such as encountered in
faulting is the type of correlation that may lower D. Note
that D is generally measured from the pair correlation
function [Hentschel and Proccacia, 1983], which is very
well defined for large enough networks [Vicsek, 1992]. D
was found to be smaller for fault networks [Bour and Davy,
1999] than for joints [Bour et al., 2002], consistent with the
existence of large-scale correlation for the former.

[18] The variable « is expected to vary with fracture ori-
entation distribution. For instance, subparallel fracture sets
are supposed to encounter another large fracture at a larger
distance than perpendicular fracture sets. We present 2-D
simulations that give insight on the range of vy values in the
next paragraph.

[19] Above all, v encompasses the complexity of frac-
turing that departs from the simplistic formulated rule
(a fracture stops growing when intersecting a larger one),
which is basically more probabilistic than absolutely true.

[20] As already mentioned, the distribution is likely uni-
versal in the sense that neither D nor -y are supposed to vary
a lot. We thus call this model likely universal fracture model
(UFM), the basic equation (5) being the UFM equation and
equation (6) being the UFM distribution.

2.3. Transition From Dilute to Dense

[21] We now analyze the transition from dilute to dense
network, assuming that they follow equations (2) and (6),
respectively. We study the case a < D + 1, which is likely in
geological systems (see Bonnet et al. [2001] and the pre-
vious discussion). Note that the reverse case (¢ > D + 1)
would end up to a transition from dense to dilute.

[22] We first analyze the distance between a fracture
and its larger neighbor in the dilute case. This can be
done by using equation (4) with C(/, L) derived from
equation (2):

1

—1\? o
ddilule(l) ~ (a ) ITI

(07

Since a < D + 1, the distance increases with / at a rate
slower than / (see Figure 1).

[23] It exists a finite length /. for which /. = vdgjue (1)
For fractures with a length / < [, the distance between
fractures (dgjiue) 1S larger than the fracture length; thus,
statistically, fractures are not intersecting their larger
neighbor and thus can grow freely according to a growth
equation like equation (2). For [ > [, fractures stop
growing freely since they are likely crossing a larger one.
Their length cannot exceed the distance d(/), and thus they
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Figure 1. Sketch of the evolution of the distance between

fractures for each class of fracture length /.

obey the UFM length distribution. The transition length is

given by
L (2= 1 5 CE (8)
c= o v

Increasing the density term « leads to a decrease of the
fracture-to-fracture distance (and thus to a decrease of [.)
and to a larger scale range for the dense regime.

[24] In short, we propose that there is a break in the length
distribution scaling due to the transition between a freely
growing (dilute) regime and a regime where the fracture-to-
fracture interactions are prevailing.

2.4. Numerical Simulations

[25] We perform basic numerical simulations with 2-D
networks both to check mathematics and to evaluate the
~v parameter. We assume that the UFM rule (a fracture
stops growing when intersecting a larger one) is strictly
ensured, which is certainly not true in real systems.

[26] Fractures are first stochastically generated according
to a dilute length distribution where a =2.3. Then we remove
one by one the shortest top of a fracture that inter sects a larger
one. The method is dependent on the order of treating frac-
tures, but we check that this effect does not change the results.
The simulations were made with 2-D networks with different
orientations and initial distributions. An example of the
eventual length distribution is given in Figure 2.

[27] These general principles are validated by numerical
simulations and in particular the UFM distribution. For
uniformly distributed orientations or two orthogonal sets,
~ is equal to about 1, giving a density of the UFM dis-
tribution Dy” = 2. For two fracture sets with an angle of
20°, ~ is larger, as expected, in the range 1.5-1.7, giving a
density term Dy? of 5-6.

[28] Note that this model is neither realistic nor exploited
exhaustively (in the sense that we do not explore all possible
cases of fracture orientations and intersection rules). How-
ever, we do not want to push too far such a “toy” model. We
just aim to assess the order of magnitude of v (actually
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between 1 and 2). Further work is in progress where frac-
tures are nucleating and growing simultaneously according
to equation (1) and where the interactions between fractures
are much better described (in the same spirit as the work of
Renshaw and Pollard [1994]).

3. Does UFM Applies to Geological Fracture
Distribution

[20] We argue that the UFM theory is ubiquitous in nat-
ural fracture networks, keeping in mind that the testing of
any scaling distribution requires an exhaustive sampling of
fracture networks that is barely achieved in geological
studies [Bonnet et al., 2001]. We analyze three fracture sets
for which we are confident about the data completeness and
the mapping method.

[30] Note that the UFM theory has been developed for
3-D networks, but the only data that allow us to test the
theory are from 2-D fracture traces. Darcel et al. [2003a]
demonstrate that if a distribution is self-similar in 3-D, it
has the same property in 2-D when cut by a plane and
conversely since both the power law length exponents, a,p
and asp, and the fractal dimensions, D,p and Dsp, are linked
by the relationship: X, p = X3.p — 1, with X either a or D.
Since the UFM rule (d~/) is univocally equivalent to a self-
similar distribution, a fracture network that is self-similar in
2-D must obey the UFM rule in 3-D. In Appendix A, we
give the analytical stereological relationship for the case of
randomly oriented disks.

[31] The first data set is the joint network of the Hornelen
Basin (Norway) that was mapped carefully at different
scales [Odling, 1997] and whose scaling properties were
thoroughly analyzed in the work of Bour et al. [2002].
Seven fracture networks were mapped with outcrop scales
ranging from 18 to 720 m. Although the mapping technique
was different for small and large outcrops, all the density
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Figure 2. Length distribution of a fracture network gener-
ated according to the following rules: Fractures are gener-
ated using a power law length distribution with an
exponent a = 2.3 (dashed line), and the eventual distribution
results from removing the shortest tip of fractures that inter-
sect a larger one. The bold gray curve is the fit for the large
length distribution.
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Figure 3. (left) Density of fracture length per unit area for both outcrop and lineament maps in Sweden.
Outcrops and lineaments are from the Simpevarp and Laxemar areas. The last curve is derived from a
compilation of lineaments over Sweden. The dashed lines are power law fits for outcrops. The solid lines
are self-similar equations with a density term of 3.5 (black) and 4.5 (gray). (right) The portion of Figure 3

(left) that contains outcrop data.

distributions were found to be consistent with the density
equation:

n(l,L) = 4.5 17288 9)

The density term, oo = 4.5 + 1, corresponds to v = 1.7 £ 0.2
according to equation (5). Odling [1997] argue that 1 m is a
possible physical limit to this power law behavior for this
fracture system. No upper limit to this power law scaling
was detectable.

[32] The second site series was developed by the Swedish
Nuclear Fuel and Waste management company Svensk
Kéarnbrénslehantering AB (SKB) as part of an ongoing
investigation conducted to locate a repository for spent
nuclear fuel [Fox et al., 2007; La Pointe et al., 2008; Svensk
Kdrnbrinslehantering AB (SKB), 2004a, 2004b; Stephens et
al., 2008; Wahligren et al., 2008]. The area was deeply
investigated with both fracture maps at outcrop scales (0.5—
10 m) and regional scales (100—10 km) and a host of deep
(~1 km) cored boreholes. At the outcrop scale, fractures are
mostly joints and barely faults with a detectable displace-
ment. The large-scale (100-10 km) lineaments that are
widespread in the Scandinavian shield are quite heavily
fractured shear zones or thick faults with a gouge. The
caution with which outcrops have been mapped, with an
exhaustive sampling of fractures whose lengths are larger
than 50 cm, enables one to give an estimate of the scaling
exponent despite the limited range of scales. This was not
possible for lineament maps, where an exhaustive detection
of fractures and fracture limits is much less reliable. The
fracture density distribution is shown in Figure 3. A fit is
calculated for each outcrop map (dashed lines in Figure 3)
by comparing fracture networks at different scales (bold
lines in Figure 3). The exponents measured on outcrops are
a = 2.2 for all of them except one where a higher density of
small fractures is visually detectable (Figure 4). For this

latter outcrop, the “through-scale” model is consistent with

the fit with the following scaling law:
n(l,L) = 4(x1)173L* (10)

The last example is the San Andreas fault map published by
Davy[1993] from the compilation of Jennings [1988]. In terms

3
E o <
1)
=
7) 24
c
% | 5%
O Forskmark
14
@@ O Laxemar
1 < Simpevarp
0 T T T T T T T T T T T T T J
2.0 2.2 2.4 2.6 2.8 3.0 3.2
exponent, a

Figure 4. Plot of the density term versus the power law
length exponent a for all the Swedish outcrops mapped in
the Svensk Kéarnbranslehantering AB project. The two
photographs refer to fracture patterns whose characteristics
are indicated. The gray square represents the through-scale
model (see section 3).
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Figure 5. The length distribution of the San Andreas fault
system from the work of Davy [1993] with the fault trace
map shown inside the plot. The small-scale dilute distribu-
tion (dashed line) has a power law length exponent a = 1.5.
The large-scale dense distribution is given in the text.

of fracturing mechanisms, we may not expect faulting to be
similar to jointing, and we thus expect highly different density
distributions. But, expect the differences in orientations, the
argument developed in the UFM theory should remain valid
and leads to similar conclusions. Davy [1993] and Bour and
Davy [1999] noticed that the length distribution has a power
law scaling only for faults smaller than 10 km (Figure 5). The
departure from power law for large faults have been inter-
preted as a segmentation of the largest faults [Davy, 1993], or
as a truncating effect [Bour and Davy, 1999]. The exponent a
of the small-scale power law ranges between 1.5 and 2,
depending on the correction applied for large fractures. A
correlation dimension D = 1.7, also smaller than the dimension
of joints, has been derived from a correlation analysis. We
apply the UFM equation to the density distribution (solid line
in Figure 5). The fit is very good for faults larger than 20 km
up to the largest recorded fault of 100 km.

[33] The UFM equation obtained for the San Andreas,
with L = 450 km, is

n(l,L) =4 77017 (11)
All the equations (9), (10), and (11) are consistent with
equation (6), with the same density term and a = D + 1.
They just differ in the fractal dimension D.

[34] Finally, we mention that the break in the scaling
distribution, which is constitutive of the presented theory,
has also been observed on the displacement-length rela-
tionship of fractures. On the basis of the analysis of the
Krafla fracture swarm (Iceland), which was assumed to be
primarily jointing (opening mode) by Hatton et al. [1994],
Main et al. [1999] and Renshaw and Park [1997] found a
more than linear scaling for fractures smaller than 2.5-70 m
and a linear or less than linear scaling for larger fractures.
The interpretation of the scaling break is diverse: enhance-
ment of small-fracture aperture by largest one [Renshaw and
Park, 1997], thermal effects at large-fracture tips [Hatton et
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al., 1994], or cooperative behavior of large-fracture growth
[Main et al., 1999]. The self-similar model, which entails
displacement proportional to length, is consistent with the
linear relationship observed for large fractures.

4. More About Faults and Faulting

[35] The large value of the crossover scale /. for fault
networks (~20 km for the San Andreas system shown in
Figure 5) means that most of faults are in the dilute regime.
The dense regime may appear rather as an abnormal dis-
tribution queue of the dilute regime than as a broad-scaling
relationship. This effect was already emphasized on geo-
logical networks and experiments. It has been modeled by a
gamma or exponential function [Ackermann et al., 2001;
Cowie et al., 1994; Davy, 1993; Hardacre and Cowie,
2003a, 2003b; Spyropoulos et al., 1999] or by a censoring
function [Bour and Davy, 1999; Pickering et al., 1995].
Apart from the latter, which is a pure statistical effect, the
main mechanical causes invoked for this cutoff are the
segmentation of large fractures [Davy, 1993] or some finite-
size effects induced by the thickness of the mechanical layer
[Ackermann et al., 2001; Spyropoulos et al., 1999]. In the
next paragraph, we discuss the pertinence of the UFM
theory and fit relative to processes and data. We illustrate the
discussion with the experiments from the work of
Spyropoulos et al. [1999], Ackermann et al. [2001], and
Davy et al. [1995] and the numerical simulations from the
work of Hardacre and Cowie [2003D].

[36] In the experiments of Spyropoulos et al. [1999] and
Ackermann et al. [2001], the fracture length distribution
evolves toward an exponential function. Cracks are propa-
gating within a brittle layer that is stretched from below by a
thick rubber pad. This strong coupling between the brittle
layer and the rubber pad controls the eventual spacing between
cracks [Spyropoulos et al., 1999]; the brittle thickness is the
mechanical length that eventually controls the length distri-
bution. The UFM theory, which postulates that fracture
growth is limited by the interaction between fractures, is not
appropriate to describe this mechanical system, and thus it
cannot predict the dependency on the layer thickness. This is
valid for all subparallel joints whose spacing appears to be
controlled by a mechanical layer [Wu and Pollard, 1995].

[37] The numerical simulations of Hardacre and Cowie
[2003a, 2003b] seem to end up with similar conclusions:
The exponential distribution successfully describes the
length distribution of active faults at the later stages, but the
boundary conditions are different from those of the afore-
mentioned experiments since the simulations are in 2-D and
faults propagate in mode II (i.e., growth is parallel to
length). The only characteristic length scale is the system
size, which is a limit for fault length rather than a
mechanical control. Even if the UFM distribution is a priori
not suitable for fitting data, we check how it may explain
part of the data shown in in the work of Hardacre and
Cowie [2003b]. We plot the cumulative UFM:
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Figure 6. Cumulative distribution of faults recorded in the simulation presented in the work of Hardacre
and Cowie [2003b] (original figure is shown as top right inset). The simulation dimensions are 5 x 10 km.
Both active (dashed lines) and total (square points and thin black solid line) faults are shown. The bold
gray solid line is the UFM distribution with L = 7 km and ~