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[1] We argue that most fracture systems are spatially organized according to two
main regimes: a “dilute” regime for the smallest fractures, where they can grow
independently of each other, and a “dense” regime for which the density distribution is
controlled by the mechanical interactions between fractures. We derive a density
distribution for the dense regime by acknowledging that, statistically, fractures do not cross
a larger one. This very crude rule, which expresses the inhibiting role of large fractures
against smaller ones but not the reverse, actually appears be a very strong control on the
eventual fracture density distribution since it results in a self‐similar distribution whose
exponents and density term are fully determined by the fractal dimension D and a
dimensionless parameter g that encompasses the details of fracture correlations and
orientations. The range of values for D and g appears to be extremely limited, which
makes this model quite universal. This theory is supported by quantitative data on either
fault or joint networks. The transition between the dilute and dense regimes occurs at
about a few tenths of a kilometer for faults systems and a few meters for joints. This
remarkable difference between both processes is likely due to a large‐scale control
(localization) of the fracture growth for faulting that does not exist for jointing. Finally, we
discuss the consequences of this model on the flow properties and show that these
networks are in a critical state, with a large number of nodes carrying a large
amount of flow.

Citation: Davy, P., R. Le Goc, C. Darcel, O. Bour, J. R. de Dreuzy, and R. Munier (2010), A likely universal model of fracture
scaling and its consequence for crustal hydromechanics, J. Geophys. Res., 115, B10411, doi:10.1029/2009JB007043.

1. Introduction

[2] Measuring the complexity of fracture networks has
been an issue for the last 20 years with consequences on
brittle strength, rock permeability, and earthquake dynamics
[Allegre et al., 1982; Crampin, 1999; Davy et al., 2006;
King, 1983; Renshaw, 1999; Turcotte, 1986]. A special
focus has been given to the scaling properties of fracture
networks that link rock samples to crustal scales (see the
pioneer study of Tchalenko [1970] and the review paper by
Bonnet et al. [2001], and references therein). Power laws
have been found to likely describe ubiquitously the scaling
properties of fracture density with two consequences: (1)
Fracture networks are scale‐free objects (power law is the
only mathematical function that does not require a scale
parameter) and (2) long fractures are much more numerous
than for any other distribution type (lognormal in particular,
which was often taken as the fitting function). Although
ubiquitous in natural systems, the reason why this power

law scaling emerges is still an issue. It is supposed to derive
from a complex, a few say critical, self‐organized dynamics,
one of whose characteristics is to produce long‐range cor-
related patterns that make large‐scale structure probable and
“genetically” (thus statistically) linked to smaller ones [Bak
et al., 1988; Bak and Tang, 1989; Sornette et al., 1990;
Sornette, 2006].
[3] In this paper, we aim to give a theoretical framework

for fracture scaling models based on very basic properties. It
is beyond the scope of this paper to discuss how complex
forms derive from complex processes; we just acknowledge
a few basic properties of fracturing, and we elaborate on the
consequences. The points are as follows:
[4] 1. A fracture induces a perturbation of the stress (and

strain) field that modify (both enhance and decrease) the
occurrence probability for another fracture to initiate and/or
grow at its vicinity. The extent of this perturbation is of the
order of the fracture length [see, e.g., Atkinson, 1987;
Chinnery and Petrak, 1968; Segall and Pollard, 1980] even
if longer‐range perturbation can be expected when numer-
ous fractures interact [Herrmann and Roux, 1990].
[5] 2. For quasi‐static fracturing, most of the fracture

growth (with the exception of boundary‐related fractures) is
controlled by the perturbation of stress field induced by the
fracture itself and by neighbor fractures [Atkinson, 1987]. If
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the fracture does not produce by itself the reasons for
stopping its own growth, it is reasonable to think that the
eventual fracture pattern and its scaling law result from a
basic property of the fracture‐to‐fracture mechanical inter-
actions [Renshaw and Pollard, 1994; Segall and Pollard,
1983; Segall, 1984].
[6] We first discuss both end‐members of the fracturing

process: The dilute case where fractures are likely growing
independently from each other and the dense case where
fracture growth is fully controlled by the presence of sur-
rounding fractures. We then combine both into a geomet-
rical model of fracture organization that likely applies over
the whole range of fracture scales. A key result is that the
large‐scale part of this model appears to be almost universal;
i.e., both the scaling exponents and the density term are,
although not strictly fixed, highly constrained and almost
independent of the details of the fracturing process,
boundary conditions, intensity of fracturing, etc. The rele-
vance of this model can thus be easily checked with actual
fracture distribution; we show that it successfully fits the
density distribution of fracture networks from meter to
tenths of kilometer scales. Finally, we discuss the con-
sequences of the derived organization in terms of fracture
connectivity and permeability.

2. Fracture Organization Model From Fracture
Growth Consideration

2.1. Dilute Case

[7] When the density of fracture is low, fractures can
freely grow and the eventual size distribution depends on the
length dependency of the growth rate function. If the growth
rate is a power law:

dl

dt
� la ð1Þ

as it is likely (see Atkinson [1987, and references therein]
and Lyakhovsky [2001, and references therein] for a dis-
cussion about rock mechanics), then the fracture density
distribution n(l) eventually scales as n(l)∼l−a if a ≠ 1, and
n(l)∼exp(−l/lo) if a = 1 [Sornette and Davy, 1991]. Esti-
mating a is an open issue, especially for geological systems.
Lyakhovsky [2001] reported exponent a (quoted m/2 in the
article) in the range 1–2.5 from laboratory tests on rock
samples and numerical simulations for quasi‐static crack
growth (actually 1.3–1.8 for the latter), but he mentioned
smaller exponents when the growth is controlled by the
transport of reactive species to the crack tip and larger ones
for large crack lengths. Sornette and Davy [1991] argue,
from thermodynamic arguments, that the exponent a is likely
2 if the damping force that counterbalances the applied stress
does not depend on l and dl/dt. A few experiments on rock‐
like materials (dry sand [Davy et al., 1990, 1995; Sornette et
al., 1993] and plaster [Mansfield and Cartwright, 2001]) and
numerical simulations [Cowie et al., 1995; Hardacre and
Cowie, 2003a, 2003b] also address this issue by analyzing
the evolution of quite complex fault network. The power law
model was found to correctly fit fracture length distributions
even for low‐density networks, except for the largest frac-
ture; most of the 2‐D exponents (i.e., measured on fault
traces) are close to 2.

[8] Note that the growth rate equation (1) includes frac-
ture linkage mechanisms, ubiquitously observed in fracture
networks and partly responsible for the displacement‐length
relationship [e.g., Cladouhos and Marrett, 1996; Cowie and
Scholz, 1992; Schlagenhauf et al., 2008; Schultz, 2000;
Schultz and Fossen, 2002; Xu et al., 2006].
[9] Thus, a general expression of the density length dis-

tribution of dilute fracture networks can be

ndilute l; Lð Þ ¼ �l�aLD ð2Þ

where ndilute(l, L)dl is the number of fractures in a system of
size L (either an area in 2‐D or a volume in 3‐D) whose
length l′ is in the range [l, l + dl]. D is formally the mass (or
correlation) dimension of the fracture‐center network that is
smaller or equal to the topological dimension (see Bonnet et
al. [2001] and Bour et al. [2002] for further explanation). As
the exponent a, D is supposed to be related to some fun-
damental properties of the fracturing process. The parameter
a is the density term that is likely increasing during fracture
growth.
[10] Note that the power law distribution is the eventual

result of the growth equation (1), which means that it is
reached only after a certain time. Before that time, the
fracture length distribution is likely dependent on the initial
conditions or on the fracture nucleation process.

2.2. Dense Case

[11] For dense networks (we will define later how dense
they must be), fracture lengths are likely controlled by the
fracture‐to‐fracture mechanical interactions. The cause of
limited fracture growth has been widely discussed in the
past [Crampin, 1994, 1999; Pollard and Aydin, 1988;
Renshaw and Pollard, 1994; Renshaw, 1997; Renshaw et
al., 2003]. A detailed knowledge of these interactions is
hardly measurable and beyond the capacity of numerical
models, especially when there is a large number of fractures.
Even if the calculation was feasible, it would be difficult to
relate the characteristics of the stress field to the eventual
fracture distribution. To overcome this difficulty, we
develop a very simple model that is based on basic geo-
metrical rules of the fracture‐to‐fracture interactions for
dense networks. By doing this, we aim to capture the fun-
damental characteristics of network geometry that are con-
sistent with the mechanical interactions.
[12] We first point out that the very basic reason for a

fracture to stop growing is to meet another fracture. This
assumption is quantitatively supported by the large numbers
of T‐shape intersections (when a fracture stops on another)
compared to X‐shape (both fractures cross each other),
which makes fracture pattern really different from Poisso-
nian or random equivalents. As an example of this assess-
ment, the number of T‐tips per fracture reported on a series
of Swedish outcrops (see a detailed description in section 3)
ranges from 0.6 to 1.6 with an average of about 1.2, which is
by far much larger than any Poissonian realization (for
which a T‐tip configuration is unlikely).
[13] Second, it makes sense to assume that large fractures

inhibit the growth of smaller ones in their vicinity [Nur,
1982; Segall and Pollard, 1983; Spyropoulos et al., 1999],
but that the reverse is not likely to occur. This hierarchical
rule is illustrated by Segall and Pollard [1983, Figure 11],

DAVY ET AL.: A UNIVERSAL MODEL OF FRACTURE SCALING B10411B10411

2 of 13



and it is basically related to the dependency of both the
driving force for fracture growth and the stress perturbation
on fracture length [Griffith, 1920].
[14] From both these assumptions, we derive a simple

statistical rule: A fracture stops growing when it crosses a
larger one, which means that the fracture length l is statis-
tically about equal to the distance to the closest larger
fracture d:

l � d ð3Þ

We now demonstrate that this rule leads to a self‐similar
distribution of the fracture density distribution. We consider
the general case of a fracture network distribution charac-
terized by a density distribution n(l, L), which is the number
of fractures of length in the range [l, l + dl] within a volume
(or surface in 2‐D) of typical size L. The cumulative dis-
tribution, C(l, L) =

R1
l n(l′, L)dl′, is the number of fractures

larger than l. If D is the network dimension (which can be a
noninteger value for fractal networks), the average distance
between the centroids of a fracture of length l and a larger
one is [Bour and Davy, 1999]

d lð Þ � L

C l; Lð Þ1=D
ð4Þ

Combining equations (3) and (4) yields

l ¼ �d ¼ �
L

Cdense l; Lð Þ1=D
ð5Þ

where Cdense is the resulting cumulative distribution and g is
a dimensionless ratio, whose order of magnitude is likely
close to 1. By deriving equation (4) with l, we obtain an
expression for the density distribution ndense (l, L):

ndense l; Lð Þ ¼ D�DLDl� Dþ1ð Þ ð6Þ

Note that equation (6) is the only distribution that satisfies
the rule (3), and thus both equations (3) and (6) are actually
equivalent.
[15] Let us now analyze the property of this distribution.

We first notice that it is self‐similar since the power law
length exponent is exactly the fractal dimension +1 [Bour et
al., 2002]. To appraise this geometrical property that qua-
lifies systems whose organization is scale‐independent, we
try to figure out how the fracture pattern looks like at any
scale L. For this, we count the number of fractures in a
system of size L, whose size represents a significant fraction
of the system (let us say between xL and x′L):

N Lð Þ ¼
Z x 0L

xL
ndense l 0; Lð Þdl 0 ¼ �D x�D � x 0�D

� �
ð7Þ

N(L) appears to be independent of L, and only dependent on
the dimensionless numbers g, x, and x′. An observer who
tries to appraise the density of fractures by counting the
number of “large” fractures is going to find the same
number at all scales. This is the basic property that defines a
self‐similar pattern.
[16] The second interesting property of this distribution is

that its density depends only on two parameters of the initial
growing pattern: the correlation dimension D and the geo-
metric parameter g.

[17] D is upper bounded by the dimension of the growth
space, but can be smaller because of fracture‐to‐fracture
correlations. A collection of fractal dimensions have been
measured mainly from 2‐D outcrop or lineament maps (see
review in the work of Bonnet et al. [2001]) with values in
2‐D ranging from 1 to 2 and reasonably from 1.7 to 2 (the
small values are associated with networks where only a few
large fractures are mapped, making the measure somehow
meaningless). Little is known about the factors that control
D (see, however, de Arcangelis et al. [1989], Hansen et al.
[1991], and Herrmann and Roux [1990]). As it measures the
fracture‐center scaling organization, we expect it to express
more the physics of the nucleus phase than of the growth
phase. Large‐scale localization such as encountered in
faulting is the type of correlation that may lower D. Note
that D is generally measured from the pair correlation
function [Hentschel and Proccacia, 1983], which is very
well defined for large enough networks [Vicsek, 1992]. D
was found to be smaller for fault networks [Bour and Davy,
1999] than for joints [Bour et al., 2002], consistent with the
existence of large‐scale correlation for the former.
[18] The variable g is expected to vary with fracture ori-

entation distribution. For instance, subparallel fracture sets
are supposed to encounter another large fracture at a larger
distance than perpendicular fracture sets. We present 2‐D
simulations that give insight on the range of g values in the
next paragraph.
[19] Above all, g encompasses the complexity of frac-

turing that departs from the simplistic formulated rule
(a fracture stops growing when intersecting a larger one),
which is basically more probabilistic than absolutely true.
[20] As already mentioned, the distribution is likely uni-

versal in the sense that neither D nor g are supposed to vary
a lot. We thus call this model likely universal fracture model
(UFM), the basic equation (5) being the UFM equation and
equation (6) being the UFM distribution.

2.3. Transition From Dilute to Dense

[21] We now analyze the transition from dilute to dense
network, assuming that they follow equations (2) and (6),
respectively. We study the case a < D + 1, which is likely in
geological systems (see Bonnet et al. [2001] and the pre-
vious discussion). Note that the reverse case (a > D + 1)
would end up to a transition from dense to dilute.
[22] We first analyze the distance between a fracture

and its larger neighbor in the dilute case. This can be
done by using equation (4) with C(l, L) derived from
equation (2):

ddilute lð Þ � a� 1

�

� �1
D

l
a�1
D

Since a < D + 1, the distance increases with l at a rate
slower than l (see Figure 1).
[23] It exists a finite length lc for which lc = gddilute (lc).

For fractures with a length l < lc, the distance between
fractures (ddilute) is larger than the fracture length; thus,
statistically, fractures are not intersecting their larger
neighbor and thus can grow freely according to a growth
equation like equation (2). For l > lc, fractures stop
growing freely since they are likely crossing a larger one.
Their length cannot exceed the distance d(l), and thus they
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obey the UFM length distribution. The transition length is
given by

lc ¼ a� 1

�
�D

� � 1
Dþ1�a

ð8Þ

Increasing the density term a leads to a decrease of the
fracture‐to‐fracture distance (and thus to a decrease of lc)
and to a larger scale range for the dense regime.
[24] In short, we propose that there is a break in the length

distribution scaling due to the transition between a freely
growing (dilute) regime and a regime where the fracture‐to‐
fracture interactions are prevailing.

2.4. Numerical Simulations

[25] We perform basic numerical simulations with 2‐D
networks both to check mathematics and to evaluate the
g parameter. We assume that the UFM rule (a fracture
stops growing when intersecting a larger one) is strictly
ensured, which is certainly not true in real systems.
[26] Fractures are first stochastically generated according

to a dilute length distribution where a = 2.3. Then we remove
one by one the shortest top of a fracture that inter sects a larger
one. The method is dependent on the order of treating frac-
tures, but we check that this effect does not change the results.
The simulations were made with 2‐D networks with different
orientations and initial distributions. An example of the
eventual length distribution is given in Figure 2.
[27] These general principles are validated by numerical

simulations and in particular the UFM distribution. For
uniformly distributed orientations or two orthogonal sets,
g is equal to about 1, giving a density of the UFM dis-
tribution DgD = 2. For two fracture sets with an angle of
20°, g is larger, as expected, in the range 1.5–1.7, giving a
density term DgD of 5–6.
[28] Note that this model is neither realistic nor exploited

exhaustively (in the sense that we do not explore all possible
cases of fracture orientations and intersection rules). How-
ever, we do not want to push too far such a “toy” model. We
just aim to assess the order of magnitude of g (actually

between 1 and 2). Further work is in progress where frac-
tures are nucleating and growing simultaneously according
to equation (1) and where the interactions between fractures
are much better described (in the same spirit as the work of
Renshaw and Pollard [1994]).

3. Does UFM Applies to Geological Fracture
Distribution

[29] We argue that the UFM theory is ubiquitous in nat-
ural fracture networks, keeping in mind that the testing of
any scaling distribution requires an exhaustive sampling of
fracture networks that is barely achieved in geological
studies [Bonnet et al., 2001]. We analyze three fracture sets
for which we are confident about the data completeness and
the mapping method.
[30] Note that the UFM theory has been developed for

3‐D networks, but the only data that allow us to test the
theory are from 2‐D fracture traces. Darcel et al. [2003a]
demonstrate that if a distribution is self‐similar in 3‐D, it
has the same property in 2‐D when cut by a plane and
conversely since both the power law length exponents, a2D
and a3D, and the fractal dimensions, D2D and D3D, are linked
by the relationship: X2‐D = X3‐D − 1, with X either a or D.
Since the UFM rule (d∼l) is univocally equivalent to a self‐
similar distribution, a fracture network that is self‐similar in
2‐D must obey the UFM rule in 3‐D. In Appendix A, we
give the analytical stereological relationship for the case of
randomly oriented disks.
[31] The first data set is the joint network of the Hornelen

Basin (Norway) that was mapped carefully at different
scales [Odling, 1997] and whose scaling properties were
thoroughly analyzed in the work of Bour et al. [2002].
Seven fracture networks were mapped with outcrop scales
ranging from 18 to 720 m. Although the mapping technique
was different for small and large outcrops, all the density

Figure 1. Sketch of the evolution of the distance between
fractures for each class of fracture length l.

Figure 2. Length distribution of a fracture network gener-
ated according to the following rules: Fractures are gener-
ated using a power law length distribution with an
exponent a = 2.3 (dashed line), and the eventual distribution
results from removing the shortest tip of fractures that inter-
sect a larger one. The bold gray curve is the fit for the large
length distribution.
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distributions were found to be consistent with the density
equation:

n l; Lð Þ ¼ 4:5 l�2:8L1:8 ð9Þ

The density term, a = 4.5 ± 1, corresponds to g = 1.7 ± 0.2
according to equation (5). Odling [1997] argue that 1 m is a
possible physical limit to this power law behavior for this
fracture system. No upper limit to this power law scaling
was detectable.
[32] The second site series was developed by the Swedish

Nuclear Fuel and Waste management company Svensk
Kärnbränslehantering AB (SKB) as part of an ongoing
investigation conducted to locate a repository for spent
nuclear fuel [Fox et al., 2007; La Pointe et al., 2008; Svensk
Kärnbränslehantering AB (SKB), 2004a, 2004b; Stephens et
al., 2008; Wahlgren et al., 2008]. The area was deeply
investigated with both fracture maps at outcrop scales (0.5–
10 m) and regional scales (100–10 km) and a host of deep
(∼1 km) cored boreholes. At the outcrop scale, fractures are
mostly joints and barely faults with a detectable displace-
ment. The large‐scale (100–10 km) lineaments that are
widespread in the Scandinavian shield are quite heavily
fractured shear zones or thick faults with a gouge. The
caution with which outcrops have been mapped, with an
exhaustive sampling of fractures whose lengths are larger
than 50 cm, enables one to give an estimate of the scaling
exponent despite the limited range of scales. This was not
possible for lineament maps, where an exhaustive detection
of fractures and fracture limits is much less reliable. The
fracture density distribution is shown in Figure 3. A fit is
calculated for each outcrop map (dashed lines in Figure 3)
by comparing fracture networks at different scales (bold
lines in Figure 3). The exponents measured on outcrops are
a = 2.2 for all of them except one where a higher density of
small fractures is visually detectable (Figure 4). For this

latter outcrop, the “through‐scale” model is consistent with
the fit with the following scaling law:

n l; Lð Þ ¼ 4 �1ð Þl�3L2 ð10Þ
The last example is the San Andreas fault map published by
Davy [1993] from the compilation of Jennings [1988]. In terms

Figure 3. (left) Density of fracture length per unit area for both outcrop and lineament maps in Sweden.
Outcrops and lineaments are from the Simpevarp and Laxemar areas. The last curve is derived from a
compilation of lineaments over Sweden. The dashed lines are power law fits for outcrops. The solid lines
are self‐similar equations with a density term of 3.5 (black) and 4.5 (gray). (right) The portion of Figure 3
(left) that contains outcrop data.

Figure 4. Plot of the density term versus the power law
length exponent a for all the Swedish outcrops mapped in
the Svensk Kärnbränslehantering AB project. The two
photographs refer to fracture patterns whose characteristics
are indicated. The gray square represents the through‐scale
model (see section 3).
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of fracturing mechanisms, we may not expect faulting to be
similar to jointing, and we thus expect highly different density
distributions. But, expect the differences in orientations, the
argument developed in the UFM theory should remain valid
and leads to similar conclusions. Davy [1993] and Bour and
Davy [1999] noticed that the length distribution has a power
law scaling only for faults smaller than 10 km (Figure 5). The
departure from power law for large faults have been inter-
preted as a segmentation of the largest faults [Davy, 1993], or
as a truncating effect [Bour and Davy, 1999]. The exponent a
of the small‐scale power law ranges between 1.5 and 2,
depending on the correction applied for large fractures. A
correlation dimensionD = 1.7, also smaller than the dimension
of joints, has been derived from a correlation analysis. We
apply the UFM equation to the density distribution (solid line
in Figure 5). The fit is very good for faults larger than 20 km
up to the largest recorded fault of 100 km.
[33] The UFM equation obtained for the San Andreas,

with L = 450 km, is

n l; Lð Þ ¼ 4 l�2:7L1:7 ð11Þ

All the equations (9), (10), and (11) are consistent with
equation (6), with the same density term and a = D + 1.
They just differ in the fractal dimension D.
[34] Finally, we mention that the break in the scaling

distribution, which is constitutive of the presented theory,
has also been observed on the displacement‐length rela-
tionship of fractures. On the basis of the analysis of the
Krafla fracture swarm (Iceland), which was assumed to be
primarily jointing (opening mode) by Hatton et al. [1994],
Main et al. [1999] and Renshaw and Park [1997] found a
more than linear scaling for fractures smaller than 2.5–70 m
and a linear or less than linear scaling for larger fractures.
The interpretation of the scaling break is diverse: enhance-
ment of small‐fracture aperture by largest one [Renshaw and
Park, 1997], thermal effects at large‐fracture tips [Hatton et

al., 1994], or cooperative behavior of large‐fracture growth
[Main et al., 1999]. The self‐similar model, which entails
displacement proportional to length, is consistent with the
linear relationship observed for large fractures.

4. More About Faults and Faulting

[35] The large value of the crossover scale lc for fault
networks (∼20 km for the San Andreas system shown in
Figure 5) means that most of faults are in the dilute regime.
The dense regime may appear rather as an abnormal dis-
tribution queue of the dilute regime than as a broad‐scaling
relationship. This effect was already emphasized on geo-
logical networks and experiments. It has been modeled by a
gamma or exponential function [Ackermann et al., 2001;
Cowie et al., 1994; Davy, 1993; Hardacre and Cowie,
2003a, 2003b; Spyropoulos et al., 1999] or by a censoring
function [Bour and Davy, 1999; Pickering et al., 1995].
Apart from the latter, which is a pure statistical effect, the
main mechanical causes invoked for this cutoff are the
segmentation of large fractures [Davy, 1993] or some finite‐
size effects induced by the thickness of the mechanical layer
[Ackermann et al., 2001; Spyropoulos et al., 1999]. In the
next paragraph, we discuss the pertinence of the UFM
theory and fit relative to processes and data. We illustrate the
discussion with the experiments from the work of
Spyropoulos et al. [1999], Ackermann et al. [2001], and
Davy et al. [1995] and the numerical simulations from the
work of Hardacre and Cowie [2003b].
[36] In the experiments of Spyropoulos et al. [1999] and

Ackermann et al. [2001], the fracture length distribution
evolves toward an exponential function. Cracks are propa-
gating within a brittle layer that is stretched from below by a
thick rubber pad. This strong coupling between the brittle
layer and the rubber pad controls the eventual spacing between
cracks [Spyropoulos et al., 1999]; the brittle thickness is the
mechanical length that eventually controls the length distri-
bution. The UFM theory, which postulates that fracture
growth is limited by the interaction between fractures, is not
appropriate to describe this mechanical system, and thus it
cannot predict the dependency on the layer thickness. This is
valid for all subparallel joints whose spacing appears to be
controlled by a mechanical layer [Wu and Pollard, 1995].
[37] The numerical simulations of Hardacre and Cowie

[2003a, 2003b] seem to end up with similar conclusions:
The exponential distribution successfully describes the
length distribution of active faults at the later stages, but the
boundary conditions are different from those of the afore-
mentioned experiments since the simulations are in 2‐D and
faults propagate in mode II (i.e., growth is parallel to
length). The only characteristic length scale is the system
size, which is a limit for fault length rather than a
mechanical control. Even if the UFM distribution is a priori
not suitable for fitting data, we check how it may explain
part of the data shown in in the work of Hardacre and
Cowie [2003b]. We plot the cumulative UFM:

C l; Lð Þ ¼
Z lmax

l
n l 0; Lð Þdl 0 ¼

Z lmax

l
D�Dl 0�Dþ1LDdl 0

¼ �D l

L

� ��D

ð12Þ

Figure 5. The length distribution of the San Andreas fault
system from the work of Davy [1993] with the fault trace
map shown inside the plot. The small‐scale dilute distribu-
tion (dashed line) has a power law length exponent a = 1.5.
The large‐scale dense distribution is given in the text.
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based on Figure 7 of Hardacre and Cowie [2003b], with
gD = 2 and D = 1.8, as found in the previous paragraph for
fault networks, and a length L = 7 km, which is the largest
fault length (Figure 6). Although any power law exponent
cannot be derived from the graph, we find that the UFM
equation fits well the distribution extreme at large length.
Note, however, that these simulations must be used with
caution because (1) faults are not explicitly modeled and the
procedure to identify them is quite complex and (2) the
number of faults is small (∼100), which casts some doubt
about the relevance of the large fault distribution.
[38] We do a similar exercise on the experiments from the

work of Davy et al. [1990, 1995], Schueller et al. [2005], and
Sornette et al. [1993], whose boundary conditions are of the
same nature as those used by Hardacre and Cowie [2003b].
Again, we find that the UFM distribution fits well the large
end‐member of the length distribution (Figure 7).
[39] Even if these two examples are successful in dem-

onstrating the validity of the UFM fit at large lengths, we
acknowledge that a fit is far from sound scientific proof. We
also point out that the scaling information contained in UFM
(l −D + 1) is not actually testable on fault systems because of
the very small range of length concerned by the fit. The
UFM equation is neither better nor worse than an expo-
nential function, considering the large scattering that is
intrinsic to the density of scarce data (Figure 7).
[40] Nevertheless, the UFM equation provides a good fit

without any tuning parameter (considering that Dg D = 4 has
been obtained for all networks, the fractal dimension can be
calculated independently, and L is the system size). In
contrast, the exponential fit requires two tuning parameters,
one of which is a characteristic length and the other a
density. In Figure 7, the exponential fit yields a character-

istic length of 3 cm, which is much smaller than L (35–
75 cm) and larger than the brittle layer thickness (5 mm).
[41] These considerations give credit to the ability of the

UFM theory to describe fault distribution. This is not a

Figure 6. Cumulative distribution of faults recorded in the simulation presented in the work of Hardacre
and Cowie [2003b] (original figure is shown as top right inset). The simulation dimensions are 5 × 10 km.
Both active (dashed lines) and total (square points and thin black solid line) faults are shown. The bold
gray solid line is the UFM distribution with L = 7 km and gD = 2.

Figure 7. The graph represents the density distribution of
fault lengths for the last recorded stage (15% of shortening)
of the experiment R15 from the work of Davy et al. [1995]
(yellow squares). The experiment is shown in the top right
inset. Its dimensions are 75 × 35 cm. The UFM equation
(gray bold solid line) is calculated with DgD = 4, D = 1.8,
and L = 50 mm (the length of the largest fault with an angle
of 30° to compression). The exponential fit (black thin solid
line) is n(l) = 160*exp(–l/3.2).
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definite conclusion but definitely an orientation for further
work.

5. Differences Between Faulting and Jointing

[42] Even if a successful analysis of a few networks is not
definite proof, the UFM seems to be a promising theory for
both fault and joint networks, although both fracture sys-
tems present large differences in terms of processes, density,
orientation, and spatial organization. In this section, we
discuss further the differences between faulting and jointing.
[43] Note that a precise definition of faulting and jointing

can be somewhat ambiguous (see, however, an interesting
discussion in the review paper by Pollard and Aydin [1988]).
Here faulting or jointing refers to the main fracturing pro-
cess of fracture systems. Faulting or jointing qualifies a
fracturing process where most of the fractures exhibit or do
not exhibit, respectively, a noticeable shear displacement.
Faulting also implies a significant shear displacement at the
system boundaries, and large‐scale localization is consid-
ered to be the eventual stage of faulting.
[44] First, the reason why the UFM theory could be

universal partly stays in the simplicity of its basic rule
(a fracture stops growing when intersecting a larger one).
Nevertheless, the distribution of the joint (Scandinavian
outcrops from Norway (Hornelen Basin) and Sweden
(Simpevarp, Laxemar)) and fault networks (San Andreas,
California) we analyzed present a few significant differences
[see also Bonnet et al., 2001]:
[45] 1. lc is much larger for faults (∼20 km) than for joints

(1–10 m). A small lc indicates a higher density in the dilute
regime (or a larger density parameter a in equation (2)).
[46] 2. The orientation distribution of faults and joints is

quite different. Faults tend to be organized around two
orientation poles while the orientation distribution of joints
is broader.
[47] 3. The fractal dimension of faults is slightly smaller

(1.5–1.8 on 2‐D outcrops) than of joints (1.8–2). Even if this
difference is not so large, it is significant and emphasizes a
higher clustering of faults than of joints. These results
highlight the long‐range correlations of the faulting process
that emerge from the spatial organization of deformation
and/or stress [Davy et al., 1990; Sornette et al., 1993]. Note
that the density distribution, even if highly quantitative, is
quite weak in revealing the details of the fracture organi-
zation such as correlation patterns.
[48] How can we explain these factual differences? To our

knowledge, this issue is still totally open in the literature.
We cannot pretend to have a definite answer; we just point
out a few reasons that deserve being tested in further work.
[49] First, the UFM predicts that only a few faults prop-

agate throughout the entire system. This is true both for
faults and joints. The fact that lc for fault systems is close to
the system size means that only the largest faults are close
enough to interact mechanically. A second observation is
that fault networks stop growing when large‐scale defor-
mation localization appears [Hardacre and Cowie, 2003b;
Sornette et al., 1993]. This last stage is concomitant to the
development of the largest faults. The fact that lc remains
large even at the eventual stages of the fault development
emphasizes a quasi‐inhibition of the growth of new small
faults after the eventual localization. This is well demon-

strated by the numerical simulations of Hardacre and Cowie
[2003a, 2003b], where both inactive and active faults are
analyzed. All these points are relatively well described and
justified by experiments, numerical simulations, and theo-
ries on faulting.
[50] The case of jointing is more difficult since little is

known about it (see, however, Pollard and Aydin [1988]). In
particular, there is no indication, to our knowledge, about
the general evolution of the network growth (whether it
eventually stops). The fact that the UFM distribution applies
on a very large range of scales indicates (1) that fracture
density is limited by the fracture‐to‐fracture mechanical
interactions in a way quantitatively similar to the process
that we describe previously and (2) that in contrast to
faulting, the dense regime applies to scales much smaller
than the system size, meaning that large‐scale localization
does not stop small‐scale fracture growth as it seems to do
for faulting. We suspect that this difference between faulting
and jointing can be related to the existence of internal
stresses in joint systems due to bulk volume changes
(thermal expansion/contraction, rock exhumation, etc.),
fluid pressure [Olson, 1993; Pollard and Aydin, 1988], or
gravity forces. Schmittbuhl and Roux [1994] demonstrated
that internal stresses have important consequences on frac-
ture processes and scaling, but they do not calculate
explicitly fracture lengths. In particular, Schmittbuhl and
Roux [1994, p. 50] conclude that “when the internal stres-
ses become larger, the behavior displays a nonvanishing
plasticity, as well as a diffuse damage [sic].” This damage
and the role played by microcracking is a large difference
with faulting and consistent with a high density of micro-
cracks and thus a small value of lc. Apart from this study,
there are a few studies that document an increase of the
density of small faults, generally because of the coupling
with another process, such as ductile materials [Davy and
Cobbold, 1991; Davy et al., 1995], or dynamic waves
[Poliakov and Herrmann, 1994].
[51] To conclude, we conjecture that the difference

between faulting and jointing is the capacity of small frac-
tures to grow even after the largest fractures appear, and we
suspect that this was made possible in joints due to internal
stresses.

6. Highlighting the Consequences of the UFM
Organization

[52] Because the UFM is based on a local condition of
fracture connectivity, it likely has important consequences
on network connectivity and thus on transport properties
(permeability, dispersivity, etc.). The connectivity of frac-
ture networks with a power law length distribution has been
studied by Bour and Davy [1997, 1998], Darcel et al.
[2003b], and Renshaw [1999]. Large‐scale connectivity is
ensured both by the presence of large fractures and by the
clustering of smaller ones. In d dimensions, connectivity
was found to be controlled by the percolation parameter:

p ¼
Z lmax

lmin

n l; Lð Þ � linc d

Ld
dl ð13Þ

where linc is the part of fracture length that is included in the
system of size L [Bour and Davy, 1997, 1998] and lmin and
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lmax are the smallest and largest fracture lengths, which are
supposed to be much smaller and larger (respectively) than
any characteristic length of the problem. Equation (13) is
based on concepts of excluded volume (linc

d ) [Balberg et al.,
1984; Huseby et al., 1997]; it has been demonstrated to
correctly quantify connectivity threshold for 2‐D and 3‐D
networks (d = 2 and d = 3, respectively). The extension to
fractal networks is still an issue: Berkowitz et al. [2000]
postulated that d can be replaced by the fractal dimension
D of network in equation (13), but Darcel et al. [2003b]
demonstrated from numerical simulations that the resulting
expression is not appropriate for 2‐D fractal networks. They
actually found that equation (13) correctly describes per-
colation only if a ≤ D + 1, and if d is the dimension of the
embedding space (that is always larger than the fractal
dimension D). If a > D + 1, the connectivity of networks is
dominated by the lacunarity of fractal networks, which make
infinitely large network always disconnected. Here we
consider the former case (a ≤ D + 1) and assume that
expression (13) is valid for 2‐D and 3‐D fractal networks,
with d the dimension of space (either 2 or 3).
[53] Since linc is l if l < L, and linc / L if l > L, the integral

can be split into both contributions of small and large
fractures.

p �
Z L

lmin

n l; Lð Þ � l d
Ld

dl þ
Z lmax

L
n lð Þdl

In the case a < D + 1, which is the likely conditions of
the dilute regime, both terms, as well as p, are varying as
LD + 1 – a with a few important consequences:
[54] 1. Connectivity increases with the system size L.

Thus, statistically, small systems are unconnected while
large ones are fully connected [Bour, 1997; Bour and Davy,
1998; Darcel et al., 2003b].
[55] 2. The ratio between both contributions (large and

small fractures) is scale‐independent.
[56] 3. Because the contribution of large fractures is not

negligible, the unconnected‐to‐connected transition is no
more equivalent to a second‐order phase transition
[de Dreuzy et al., 2001b]. Its width in terms of range of
p values does not vanish for very large systems in contrast
with the classical percolation theory, where the percolation
threshold is equivalent to a second‐order phase transition
[Stauffer, 1979].
[57] The self‐similar model with a = D + 1, as is the UFM,

displays similar property to the classical percolation theory.
The percolation parameter is constant (i.e., independent
of L) [Darcel et al., 2003b] as well as the number of
fractures larger than the system size L:

N l > Lð Þ ¼
Z lmax

L
n l; Lð Þdl ¼

Z lmax

L
D� Dl� Dþ1ð ÞLDdl ¼ �D

The likely model for real fracture networks contains both
previous cases: a < D + 1 for small fractures in the
dilute regime and a self‐similar distribution for large
fractures in the dense regime. We calculate the percola-
tion parameter by taking equation (2) as representative of
the dilute regime and equation (6) of the UFM distri-
bution; the transition length between both regimes is lc
defined in equation (8). The percolation parameter writes

as the sum of three integrals whose bounds and values
depend on the relative position of the crossover scale lc
to system size L:

P L<lcj ¼
Z lc

lmin

ndilute l; Lð Þ � ld
Ld

dl þ
Z lc

L
ndilute l; Lð Þdl

þ
Z lmax

lc

ndense l; Lð Þdl

P L>lcj ¼
Z lc

lmin

ndilute l; Lð Þ � ld
Ld

dl þ
Z L

lc

ndense l; Lð Þ � ld
Ld

dl

þ
Z lmax

L
ndense l; Lð Þdl

By using equations (2), (6), and (8), and assuming lmin � L
and lmax � L, we obtain

p L<lcj ¼ a� 1

d þ 1� a
�D

L

lc

� �Dþ1�a

þ �D
L

lc

� �Dþ1�a

��D
L

lc

� �D
" #

þ �D
L

lc

� �D

¼ d�D

d þ 1� a

L

lc

� �Dþ1�a

If D 6¼ d; L>lcj ¼ a� 1

d þ 1� a
�D

L

lc

� �D�d

þ D

d � D

� �D 1� L

lc

� �D�d
 !

þ �D ¼ d

d � D
�D

� 1� Dþ 1� a

d þ 1� a

L

lc

� �D�d
 !

If D ¼ d; p L>lcj ¼ a� 1

d þ 1� a
�d þ d�d ln

L

lc

� �
þ �d

¼ d�d
1

d þ 1� a
þ ln

L

lc

� �� �

For systems smaller than lc, the percolation parameter
increases with the system size almost as it does for the

Figure 8. Evolution of the percolation parameter with the
ratio of L to lc for different values of the fractal dimension
D. The exponent a and d are taken equal to 2, as well as
gD. The shaded rectangle represents the expected range of
percolation threshold.
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simple power law model. At L = lc, the percolation parameter
is equal to

P L¼lcj ¼ d

d þ 1� a
�D

For larger systems (L > lc), the percolation parameter
slightly increases with L as a constant plus an additional
term that can be either a slow power law (for D < d) or a
logarithmic function (for D = d). This varying term comes
from the contribution of fractures smaller than L. The graph
in Figure 8 shows the percolation parameter as a function of
the ratio L/lc for 2‐D fracture traces with the parameters
derived from the analysis of fracture maps presented in the
previous paragraph (gD ≈ 2, and d + 1 − a ≈ 0.8 – 1). At L =
lc, the percolation parameter is slightly below the percolation

threshold in 2‐D [Balberg et al., 1984; Bour and Davy,
1997; Robinson, 1984]. The percolation threshold is
reached for L between 1.3 and 2 times lc. Note that a, the
density term in the dilute regime, is taken into account by lc.
This analysis gives a rationale for the intuitive statement that
fracture networks are likely below percolation threshold in
the dilute regime and above but close to the percolation
threshold in the dense regime.
[58] However, the UFM is not only a self‐similar model, it

also contains spatial correlations between fractures that are
likely playing a role on large‐scale connectivity and on
connectivity changes. Since the UFM is by construction
very close to percolation threshold, we expect small change
of the fracture position or permeability to have very large
consequences on flow.
[59] To illustrate this statement, we calculate flow on the

UFM simulations presented in this section. We compare it to
two models: small‐crack networks, whose behavior is
described by the classical percolation theory, and a power
law length distribution model with an exponent a = 2.2. As a
measure of the connectivity organization, we calculate the
distribution of incoming flow at the network nodes at per-
colation threshold and slightly above (Figure 9). The small‐
fracture case is indicative of what this distribution may look
like. At the percolation threshold, there are a large number
of nodes carrying a large amount of total flow. Removing
these nodes will thus entail large consequences on the flow
organization, up to the total disconnection of the system.
Above percolation threshold, the flow is much more dis-
tributed over nodes; for instance, at p = 1.25pc (Figure 9,
bottom), no node carries more than 10% of total flow.
[60] At percolation threshold, the flow frequency distri-

bution is about similar for the three systems, with a long tail
that emphasizes a large number of “critical” nodes (Figure 9,
upper graph). Above the threshold, the UFM simulations
remain long‐tailed, quite similar to the percolation threshold
case, while the two other models are much more short‐tailed
(Figure 9, bottom).
[61] This result highlights how critical the UFM connec-

tivity must be. We may expect small variations to induce
dramatic changes of the hydraulic network properties. Let us
imagine, for instance, that fractures are ending up very close
to their inhibiting neighbor but not intersecting it; the geo-
metric distribution remains about similar to equation (6) but
the connectivity will be dramatically reduced. This property
puts the emphasis on the detail of fracture intersection (in a
mechanistic sense) as a critical control on network perme-
ability. In that respect, the network‐connectivity issue is
more a concern for mechanical investigations than for
classical “percolation‐like” network studies.
[62] The connectivity and transport properties of the UFM

networks still need more analysis. Further work will be
performed on other aspects of connectivity (assortative
properties [Newman, 2002, 2003], topology, averaging
properties [de Dreuzy et al., 2001a; Desbarats, 1992], and
the role of the intersection length distribution, etc.).

7. Conclusion

[63] We argue that most of fracture systems are spatially
organized according to two main regimes: a dilute regime
for the smallest fractures, where they grow independently of

Figure 9. (top) A flow pattern of a UFM realization; the
frequency distribution of flow at network nodes calculated
at (middle) percolation threshold and (bottom) slightly
above percolation for p/pc = 1.25 or 1.5.
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each other, and a dense regime for which the density dis-
tribution is controlled by the mechanical interactions
between fractures.
[64] In the dilute regime, the density of fractures increases

during the fracturing process, and we do not expect any
universality in the density parameter. On the basis of con-
siderations about fracture growth rate and fault trace length
measurements, we conjecture that the fracture length dis-
tribution could tend to a power law scaling with a 2‐D
exponent (i.e., measured on fault traces) close to −2.
[65] In the dense regime, we derive the density distribu-

tion by acknowledging that, statistically, fractures do not
cross a larger one. This simple rule expresses the inhibiting
role of large fractures against smaller ones but not the
reverse. This very crude description of mechanical interac-
tions actually appears to be a very strong control on the
eventual fracture property distribution. Assuming that frac-
ture centers are fractal with a dimension D, the only length
distribution that satisfies the UFM rule is a power law with
an exponent −(D + 1). The fracture density is fully deter-
mined by the fractal dimension D and a dimensionless
parameter g that encompasses the details of fracture corre-
lations and orientations. The range of values for g appears to
be extremely limited, which makes the fracture density
distribution quite well constrained. For this reason, we call
this model UFM for (likely) universal fracture model.
[66] The smallest fractures are in the dilute regime and the

largest fractures are in the dense one. The transition is a
length scale lc, which decreases while increasing the density
of the dilute regime. This theory is supported by quantitative
data on fracture networks. We report three exhaustive
studies on fracture distributions for both joint and fault
networks for which the UFM successfully provides an
excellent fit for the density distributions at large fracture
lengths. For smaller fractures, the distribution scaling
appears different with smaller power law length exponents,
as it is expected for the dilute regime. The transition
between this regime and the UFM distribution is about a few
tenths of a kilometer for fault systems and a few meters for
joints. This is a remarkable difference between both fracture
processes whose origin is an open issue. For faulting, the
transition length lc appears to be close to the dimension of
the actual mechanical system, meaning that only a few very
large faults are in the dense/UFM regime. This is consistent
with the almost ending of fault growth (in the dilute regime)
once the eventual large‐scale localization is achieved. For
jointing, we suspect that large‐scale localization is no more
an inhibiting factor of fracture growth; only the fracture‐to‐
fracture interactions, which are basic to UFM, stop fracture
growth. We argue that this difference may be due to the
prevailing role of internal stresses in the jointing process. In
addition, we point out that the UFM does not apply to
fracture systems whose growth is primarily controlled by an
external force or constraint.
[67] Since the UFM distribution is well connected by

definition, we expect important consequences in the flow
properties of fracture network. We calculate the percolation
parameter for such a system and demonstrate that it exceeds
the percolation threshold once the UFM regime develops.
We also give a few insights about the flow organization of
fracture networks; in particular, we show that, even above

the percolation threshold, the network remains critical with a
large number of nodes carrying a large amount of flow.

Appendix A: Stereology Issue

[68] Let us assume a 3‐D density distribution of the form

n3d l; L; �; 8ð Þ ¼ �3D �;8ð ÞLD3d l�a3d ;

where n3d (l, L, �, 8)dl d� d8 is the number of fractures of
length in the range [l,l + dl], strike in [�,� + d�], and dip in
[8,8 + d8], within a typical volume of size L. If fractures are
likely modeled by 2‐D disks in a 3‐D space, the distribution
of 2‐D fracture traces is

n2d t; Lð Þ ¼
ffiffiffi
�

p
2

G a3d
2

� �
G a3dþ1

2

� � Z �
2

0

Z �

0
�3d �;8ð Þ sin8d�d8

� �

� LD3d�1 t�a3dþ1;

where G is the gamma function. The density term is thus a
complex function of the angular distributions. For uniform
orientations, the 2‐D density distribution writes as

n2d t; Lð Þ ¼ �ffiffiffi
�

p G a3d
2

� �
G a3dþ1

2

� � LD3d�1 t�a3dþ1;

where a is the integral of a3d over strike and dip. This
stereological rule, plus the trivial relationship D3d = D2d + 1
transforms equation (6) into

n2d t; Lð Þ ¼ D3d�
D3d

G D3dþ1
2

� �
ffiffiffi
�

p
G D3dþ2

2

� � LD3d�1t�D3d

� 0:4 D2d þ 1ð Þ�D2dþ1LD2d t�D2dþ1

This equation is not very different from equation (6) written
for 2‐D fractures. The scaling is similar and the density term
is of the same order of magnitude. This emphasizes that the
basic geometrical argument that lead to equation (6) (i.e., the
fact that a fracture stops on its largest neighbor) is still valid
on 2‐D traces.
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