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[1] Particle‐tracking methods are often used to model contaminant transport in fractured
porous media because they are straightforward to implement for fracture networks and are
able to take into account the matrix effect without mesh generation. While classical
methods assume infinite matrix or regularly spaced fractures, we have developed a
stochastic method adapted to solute transport in complex fracture networks associated with
irregular matrix blocks. Diffusion times in the matrix blocks are truncated by the finite size
of the blocks. High ratios of matrix diffusion to fracture advection, small fracture
apertures, and small blocks favor the transfer of particles to nearby fractures through
matrix diffusion. Because diffusion occurs on both sides of the originating fracture before
particles reach one of the neighboring fractures, transfer times to both neighboring
fractures are strongly affected by the network configurations on both sides of the fracture.
This new particle‐tracking method is able to deal with complex fracture networks by
considering heterogeneous configurations on both sides of the fracture. We finally show
on simple Sierpinski lattice structures that neglecting the finite size of the matrix blocks
may lead to orders of magnitude overestimations of the transfer times.

Citation: Roubinet, D., H.‐H. Liu, and J.‐R. de Dreuzy (2010), A new particle‐tracking approach to simulating transport in
heterogeneous fractured porous media, Water Resour. Res., 46, W11507, doi:10.1029/2010WR009371.

1. Introduction

[2] Exchanges between fracture and matrix have been
recognized as a major issue for modeling solute transport in
fractured media [Carrera et al., 1998; Neretnieks, 1980].
Solutes are quickly advected in highly permeable fractures
while they may be trapped by diffusion in the surrounding
matrix blocks. Upscaled transport laws result from the
successive speedups in fractures and slowdowns in matrix
blocks. Beyond the rate of exchanges, the key controlling
parameter is the broad‐range distribution of block sizes
coming from widely scattered fracture lengths and correla-
tion scales [Bonnet et al., 2001; Bour and Davy, 1999; Davy
et al., 2006; Davy, 2010; Neuman, 2005]. Most modeling
frameworks relying on double porosity concepts [Warren
et al., 1963], however, are considering a limited scattering
of block sizes and shapes. Some continuous approaches,
as the multiple interacting continua approach [Pruess and
Narasimhan, 1985], are able to deal with block shape and
size variability by using a proximity function. However,
this representation is applicable for fracture networks dense
enough to be modeled by a continuum medium and requires
large computational developments and resources due to the
several levels of matrix block discretization. Other approaches
based on a discrete representation of the fractures generally

called discrete fracture network (DFN) can theoretically
account for the more intricate and nested organization of
the matrix blocks. Because of the geometrical complexity of
the block shapes, DFN fracture matrix approaches imple-
ment mesh‐free numerical methods like particle tracking
where the presence of the matrix is integrated into a
retardation time of the particles [Cvetkovic et al., 2004;
Dershowitz and Miller, 1995].
[3] The retardation time has been initially modeled by

considering that all particles leaving a given fracture will
return to this same fracture and will not transfer to other
fractures. In this case, the retardation time is deduced from
the classical solution by Tang et al. [1981] assuming a
single fracture surrounded by an infinite matrix. Based on
the solution of parallel and regularly spaced fractures
[Sudicky and Frind, 1982], the method has been extended to
account for nearby fractures [Liu et al., 2000; Shan and
Pruess, 2005]. Diffusion times become bounded by the
presence of nearby fractures toward which particles can be
transferred. This advanced method has still the major
shortcoming of relying on highly regular fracture config-
urations precluding any block shape variability.
[4] We propose hereafter to further extend the particle‐

tracking method to account for general block shape con-
figurations. The proposed particle‐tracking method does not
rely on an analytical solution of the diffusion equation but
directly on the definition of a stochastic process with rele-
vant boundary conditions. The method is applicable to
heterogeneous fractured porous media without restriction
on fracture geometry or network density. We present in
section 2 the stochastic process valid both in 2D and 3D.
Sections 3 and 4 show validation and illustration cases of the
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method in 2D and sections 5 and 6 are devoted to discussion
and conclusion.

2. Theory and Method

[5] The method has been developed for steady state flow
conditions. Matrix diffusion is assumed to be 1D and per-
pendicular to fractures. We denote z and x the particle
position in the fracture and in the matrix, respectively
(Figure 1). For simplicity, we assume purely advective
transport in fractures with homogeneous concentration
across the width of the fracture. Similar assumptions have
been used for developing analytical solutions for solute
transport in fracture matrix systems [Sudicky and Frind,
1982; Tang et al., 1981]. We show successively how par-
ticles diffuse into the matrix and come back to their origi-
nating fracture or are transferred to nearby fractures. We
quantify the associated probabilities and transient times.

2.1. Diffusion Times for Single Fractures Embedded
in an Infinite Matrix

[6] The case of a single fracture in an infinite surrounding
matrix is valid when diffusion in the matrix occurs on dis-
tances smaller than the characteristic scale of the block. This
condition is satisfied when transport is more controlled by
the advection in the fracture than by the diffusion in the
matrix. The cumulative distribution of the particle diffusion

time in the infinite matrix for a given advection time ta in the
fracture is [Liu et al., 2006; Painter and Cvetkovic, 2005]

P t < Tð Þ ¼ erfc
�m

ffiffiffiffiffiffiffi
Dm

p

2b
ffiffiffiffi
T

p ta

� �
ð1Þ

with b the half aperture of the fracture, �m the surrounding
matrix porosity and Dm the local matrix diffusion coefficient
(Dm is the molecular diffusion coefficient multiplied by the
tortuosity factor [Bear, 1979]). This formulation, based on
the assumption of diffusion in a virtually infinite matrix,
assumes that particles go back to the same fracture after their
diffusion within the matrix.
[7] From equation (1), the diffusion time tdiff is modeled

as a series of independent identically distributed random
variables

tdiff ¼ �m
ffiffiffiffiffiffiffi
Dm

p
2�b

ta

� �2

ð2Þ

witha = erfc−1 (U[0,1]) andU[0,1] a uniform random number
in the interval [0,1]. Note that equation (2) is obtained by
replacing P(t < T) in equation (1) with U[0,1].
[8] The matrix is assumed “infinite” only when the

average diffusion distance perpendicular to the fracture xdiff
is smaller than the fracture spacing Bf

xdiff ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Dmt*diff

r
¼ �mDmffiffiffi

2
p

�b
ta < Bf ð3Þ

where tdiff* is the average of t*diff with t*diff =
tdiff
2 the time

necessary to reach a penetration depth in the matrix equal to
xdiff. By comparison, tdiff is the time needed to reach a dis-
tance xdiff plus the time needed to go back to the originating
fracture. This statement is not strictly valid for a single
particle but is satisfied for a large number of particles. By
defining the Péclet number as Pe = lv

Dm
, where l is the dis-

tance traveled in the fracture during the advection time ta
with the velocity v (Figure 1), the condition (3) of “infinite
matrix” is valid only for large values of the Péclet number
(dominance of advection in the fracture over diffusion in the
matrix):

Pe >
�ml2ffiffiffi
2

p
�bBf

: ð4Þ

For smaller values of the Péclet number, the assumption of
infinite matrix breaks down and particles may transfer to the
nearby fractures through the matrix.

2.2. Transfer Probabilities and Diffusion Times
to Nearby Fracture(s)

[9] When condition (4) is not satisfied, the particle may be
transferred to a nearby fracture. We determine the probability
of transfer to the ith neighboring fracture Ptransfer

i and the
probability of return to the originating fracture as well as the
corresponding transfer times ttransfer. The probability of
leaving the originating fracture Ptransfer is equal to the sum of
the Ptransfer

i .
[10] We consider a fracture at position x = 0 with two

parallel neighboring fractures at positions x = l1 < 0 and x =
l2 > 0, respectively (Figure 1). We denote Ptransfer

1 = P(l1, l2,

Figure 1. Notations for the particle‐tracking method. Here
x and z are the particle positions in the matrix and in the
fracture, respectively, Dm and �m are the matrix diffusion
and porosity, v is the fluid velocity in the fracture, Bf is
the fracture spacing, and l is the distance traveled in the frac-
ture. The initial fracture is at position x = 0 and its neighbor-
ing fractures are at positions x = l1 < 0 and x = l2 > 0. The
red lines represent the particle displacement by 1D diffusion
in the matrix and by advection in the fracture. The particle
starts at position A and arrives at position B′ (case of trans-
fer), with B′ the orthogonal projection of B onto the neigh-
boring fracture. The advection time required for travel from
A to B is the time step of the algorithm for which the diffu-
sion time, corresponding to several entering the matrix, is
studied.
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ttransfer ≤ t*diff ) the probability for a particle to transfer from
position x = 0 to position x = l1 < 0 without crossing the
position x = l2 > 0 before the time t*diff and Ptransfer

2 =
P(l2, l1, ttransfer ≤ t*diff) the probability for a particle to transfer
to x = l2 without crossing the position x = l1 before the time
t*diff. From Feller [1954], these probabilities are expressed in
the Laplace space by the following expressions:

L P1
transfer

� �
¼

exp l1
ffiffiffiffiffiffiffiffiffiffiffiffi
�=Dm

p� �
�

1� exp �2l2
ffiffiffiffiffiffiffiffiffiffiffiffi
�=Dm

p� �

1� exp 2 l1 � l2ð Þ ffiffiffiffiffiffiffiffiffiffiffiffi
�=Dm

p� �
ð5Þ

LðP2
transferÞ ¼

exp l2
ffiffiffiffiffiffiffiffiffiffiffiffi
�=Dm

p� �
�

1� exp �2l1
ffiffiffiffiffiffiffiffiffiffiffiffi
�=Dm

p� �

1� exp 2 l2 � l1ð Þ ffiffiffiffiffiffiffiffiffiffiffiffi
�=Dm

p� � ð6Þ

with L() the Laplace transform defined by L(f(t)) =
Rþ1

0
e−lt

f(t) dt. A sketch of the conceptual model is proposed in
Figure 1. The particle crosses several times its originating
fracture before reaching one of the two neighboring frac-
tures. Ptransfer

1 is larger than Ptransfer
2 since jl1j < jl2j. Particle

behavior is nonsymmetric along the initial fracture since
more than 50% of the transferred particles reach the nearest
fracture with small transfer times in comparison to the far-
thest fracture. The irregular fracture spacing also induces
strong modifications in the mean position and shape of the
transfer time distribution (Figure 2). Compared to the sym-
metric configuration (black curve), arrival in the asymmetric
case (red curve) is delayed by half an order of magnitude.
Because diffusion occurs on both sides of the originating
fracture before the particle reaches one of the neighboring

fractures as sketched in Figure 1, transfer to both neigh-
boring fractures is largely delayed even if only one of the
distances to the nearby fractures is increased. Increase of
only one of the distances also affects the shape of the
transfer time distribution by yielding significantly larger
arrival times (green curve and blue dots of Figure 2).
[11] For parallel regularly spaced fractures, jl1j = jl2j, the

probabilities Ptransfer
1 and Ptransfer

2 are equal, the particle
behavior on each side is symmetric along the initial fracture
and the solution is equal to the one of Sudicky and Frind
[1982]. Furthermore, if the second fracture is extremely
far from the initial position (l1 = l < 0 and l2 = +∞),
Ptransfer
2 tends to 0 and Ptransfer

1 tends to the following first
passage time distribution (FPTD) [Feller, 1965]:

P1
transfer ¼ P x ¼ l1; ttransfer � t*diff

� �
¼ 2P Y

t*diff
� l1

� �

¼ 2 1� P Y
t*diff

< l1

� �� �
¼ 1� erf

l1

2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
Dmt*diff

q
0
B@

1
CA: ð7Þ

This case is illustrated by the last configurations in Figure 2
for which the transfer time distribution is obtained by the
Feller formulation (5) and (6) (green curve) and the FPTD
formulation (7) (blue dots). The superposition of the curves
shows that the upper matrix side is virtually “infinite” as
particles do not transfer to the upper fracture before reaching
the lower one.

2.3. Particle‐Tracking Procedure

[12] We consider a segment AB of the initial fracture with
a particle starting at position A (Figure 1). Assuming that the
particle goes from A to B, a reference diffusion time tdiff is
determined from equation (2) as if the fracture were
embedded in an infinite matrix. Transfer to the ith neigh-
boring fracture occurs with the probability Ptransfer

i and the
required time ttransfer is derived from equations (5) and (6).
In this case, the particle travels from A to B′ with B′ the
orthogonal projection of B onto the arrival fracture (Figure 1)
and the travel time is tAB′ = ta + ttransfer . ttransfer is drawn
from the transfer time distribution Ptransfer

i truncated by the
reference diffusion time t*diff . In the absence of analytical
formulation in the time domain, these computations require
numerical Laplace inversions performed using Stehfest’s
method [Stehfest, 1970]. In the particular case of a single
neighboring fracture, transfer to the nearby fracture occurs
with the probability Ptransfer

1 and the required time ttransfer is
derived from equation (7). Transfer does not occur with a
probability 1 − Ptransfer

1 . In this latter case, the infinite matrix
assumption is valid and the particle travel time from A to B
is simply tAB = ta + tdiff.
[13] To maintain the simulation accuracy in the particle‐

tracking method, the length of the segment AB should be
restricted to statistically prevent the occurrence of more than
one transfer to nearby fractures. To this end, we restrict the
advection along the fracture by statistically limiting the
transfer probability to plim. Considering the half diffusion
time t*diff, this condition is expressed by limiting t*diff to the
mean transfer time httransferi as

P tdiff* � ttransfer
� �	 
 ¼ 1� P tdiff* � ttransfer

� �	 
 � plim: ð8Þ

Figure 2. Cumulative distribution of the transfer time to
nearby fractures. Particles transfer from position x = 0 to
positions x = l1 and x = l2. Solid lines and dots represent
results obtained with Feller and FPTD formulations, respec-
tively. The local diffusion coefficient is equal to 10−8 m2/s,
and the fracture positions are expressed in meters.
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Using the stochastic expression of the analytical solution
for a single fracture embedded in an infinite matrix
(equation (1)), we obtain the following condition on advec-
tion time to ensure a transfer probability lower than plim

ta �
2b

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ttransfer
� �q

�m
ffiffiffiffiffiffiffi
Dm

p erfc�1 1� plimð Þ: ð9Þ

with the mean transfer time httransferi obtained by using the
backward Fokker‐Planck equation and equal to the mean exit
time of particles injected between two absorbing barriers
[Gardiner, 2009]

ttransfer
� � ¼ l1j j l2j j

2Dm
: ð10Þ

This particle‐tracking method has been implemented in a
software called PATH2 for Particle Tracking model for
Highly Heterogeneous fractured porous media.

3. Validation

[14] The proposed model is validated for a single fracture
embedded in an infinite matrix and a set of parallel fractures
by comparing simulation results with analytical solutions
[Pan and Bodvarsson, 2002; Sudicky and Frind, 1982; Tang
et al., 1981]. Figure 3 shows comparisons between analyt-
ical and numerical results for several different fracture
spacings (black, red and green curves) and for a single
fracture system (blue curve). In these examples, the distance
between inlet and outlet points is 100 m, fluid velocity is
10−3 m/s, fracture aperture is 10−3 m, matrix diffusion coef-
ficient is 10−8 m2/s, and matrix porosity is 0.15. The upper
boundary of the transfer probabilities plim (equation (9)) has
been set to 0.1 by verifying that the results do not vary for
lower values. The simulation results are very close to the
analytical solutions, indicating that the proposed particle‐

tracking approach can accurately deal with solute transport
involving solute particle transfer to neighboring fractures for
regular configurations.

4. Illustration on Sierpinski Lattices

[15] As an example of application, the software PATH2 is
used to simulate solute transport in complex fracture net-
works with fractal properties and correlation between frac-
ture length and position [Bonnet et al., 2001; Davy et al.,
2006; Doughty and Karasaki, 2002; Liu et al., 2004]. We
use Sierpinski lattices as a model of hierarchical organiza-
tion [Doughty and Karasaki, 2002]. We apply impervious
boundary conditions and head gradient on the horizontal and
vertical sides of the domain, respectively, inducing a mean
fluid velocity of 10−3 m/s from the left side to the right side.
Particles are tracked on these structures with a matrix
porosity of 0.15, a local diffusion coefficient of 10−8 m2/s
and the relationship 2b = 10−5lf between fracture aperture 2b
and fracture length lf. The domain size L is 27 m. We per-
form three different Monte Carlo simulations with the length
of the smallest fracture lmin equal to 9 m, 3 m and 1 m.
Illustrations of single realizations are shown in the insets of
Figure 4. The curves of the Figure 4 represent the cumulative
distribution of the time required to reach the right side of the
domain for particles injected on the left side. For compari-
son purposes, transport is first simulated by assuming infi-
nite surrounding matrix (Figure 4, dashed lines), and second
by using the software PATH2 allowing particle transfer to
nearby fractures through the matrix (Figure 4, solid lines).
Under the assumption of infinite surrounding matrix (Figure 4,
dashed lines), the decrease in lmin induces breakthrough
curves with larger arrival times but similar shape. It is
mostly due to the enhancement of matrix diffusion com-
pared to fracture advection for the smaller aperture b of the

Figure 3. Breakthrough curves for a set of parallel frac-
tures (black, red, and green curves) with different fracture
spacings (B) and for a single fracture (blue curve). Solid
lines and squares represent analytical solution and numerical
results, respectively.

Figure 4. Breakthrough curves for hierarchical fracture
networks with different fracture resolutions. The length of
the smallest fracture ranges from 1 m to 9 m (from the green
curves to the black curves) with a domain size of 27 m.
Dashed lines show results assuming infinite matrix, whereas
solid lines show results by accounting for the effect of the
neighboring fractures.
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smaller fractures (equation (1)). Allowing particle transfer
(Figure 4, solid lines) significantly alters the shape of the
breakthrough curve for the case lmin = 1 m only. It is only for
the smallest explored distance between fractures corre-
sponding to lmin (Bf = lmin) that particles can be transferred to
neighboring fractures as the assumption of infinite matrix
(equation (4)) becomes invalid for the smallest matrix
blocks. Large matrix diffusion times are truncated by
transfer to closer nearby fractures and the breakthrough
curve becomes steeper (Figure 4, black solid line). Assum-
ing an infinite matrix in this case leads to 1–2 orders of
magnitude overestimation of the mean and standard devia-
tion of arrival times. As previously stated in section 2, dif-
fusion on both sides of the fractures is impacted by the
presence of smaller matrix blocks through the increased
probability of faster particle transfer to the nearest fracture.

5. Discussion

[16] The present particle‐tracking method has been
developed under the assumptions of steady state and uni-
form flow, pure advection in the fracture and 1D diffusion in
the homogeneous matrix. Possible approximations of the
method come from the fracture network discretization. From
the DFN representation, the 2D fracture network is sepa-
rated into segments delimited by fracture intersections and
extremities. These segments, themselves, are divided in
sections such as at most one transfer may occur for a particle
traveling along a section. The condition on the section
length, deduced from the equation (9), is not restrictive as
the required section length will not be critically small for
realistic fractured media.
[17] The method could also be adapted to less regular

networks with nonparallel fractures. Over a given advective
step within a fracture, we define on each side the charac-
teristic transfer distance as the mean distance to the closest
neighboring fracture. The method precision can be improved
by restricting the advective step within the originating
fracture.
[18] The presented model could be improved by a full

representation of physical processes occurring in the frac-
ture. Longitudinal dispersion effect could be integrated
within the distribution of the diffusion times (equation (1))
by using the analytical solution developed for this case by
Tang et al. [1981]. However, it seems more difficult to
integrate transversal dispersion and/or Poiseuille profile
within the fracture as it requires the development of an
analytical solution to deduce the associated diffusion time
distributions.
[19] After all, the most interesting challenge is the

extension to 3D fractured porous media for field applica-
tions. As particle path is a succession of 1D displacement
(even for 2D fractures represented by planes), the diffusion
time distributions described in the theoretical part, and thus
the conceptual model, are fully applicable to 3D media.

6. Conclusion

[20] To account for the effects of small‐scale fractures
and small matrix block sizes, it is critical to consider the
impact of nearby fractures on solute transport. These small‐
scale fractures may not significantly contribute to global‐
scale water flow but may have significant effects on solute

transport through matrix diffusion [Liu et al., 2006]. To the
best of our knowledge, the current study may represent the
first effort in developing a particle‐tracking algorithm that
can handle effects of complex and widely scattered finite
matrix blocks on solute transport in fractured porous media.
With this simulation method, we intend to explore the effect
of matrix diffusion on solute transport processes in complex
fracture structures in order to better understand the origin of
the scale dependence of the effective matrix diffusion
coefficient [Liu et al., 2004]. This method can be also used
to improve site characterization by determining the impacts
of fracture network structures on transport data.
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CIS7‐004). The Brittany council is acknowledged for its financial contribu-
tion through a mobility grant.

References
Bear, J. (1979), Hydraulics of Groundwater, McGraw‐Hill, London.
Bonnet, E., O. Bour, N. E. Odling, P. Davy, I. Main, P. Cowie, and

B. Berkowitz (2001), Scaling of fracture systems in geological media,
Rev. Geophys., 39(3), 347–383, doi:10.1029/1999RG000074.

Bour, O., and P. Davy (1999), Clustering and size distributions of fault
patterns: Theory and measurements, Geophys. Res. Lett., 26(13),
2001–2004, doi:10.1029/1999GL900419.

Carrera, J., et al. (1998), On matrix diffusion: Formulations, solution
methods and qualitative effects, Hydrogeol. J., 6(1), 178–190, doi:10.1007/
s100400050143.

Cvetkovic, V., S. Painter, N. Outters, and J. O. Selroos (2004), Stochastic
simulation of radionuclide migration in discretely fractured rock near the
Äspö Hard Rock Laboratory, Water Resour. Res., 40, W02404,
doi:10.1029/2003WR002655.

Davy, P. (2010), A likely universal model of fracture scaling and its con-
sequence for crustal hydromechanics, J. Geophys. Res., 115, B10411,
doi:10.1029/2009JB007043.

Davy, P., et al. (2006), Flow in multiscale fractal fracture networks, Geol.
Soc. Spec. Publ., 261(1), 31–45, doi:10.1144/gsl.sp.2006.261.01.03.

Dershowitz, W., and I. Miller (1995), Dual‐porosity fracture flow and
transport, Geophys. Res. Lett., 22(11), 1441–1444, doi:10.1029/
95GL01099.

Doughty, C., and K. Karasaki (2002), Flow and transport in hierarchically
fractured rock, J. Hydrol., 263(1–4), 1–22, doi:10.1016/S0022-1694(02)
00032-X.

Feller, W. (1954), Diffusion processes in one dimension, Trans. Am. Math.
Soc., 77(1), 1–31.

Feller, W. (1965), An Introduction to Probability Theory and Its Applica-
tions, John Wiley, New York.

Gardiner, C. (2009), Stochastic Methods, Springer, Berlin.
Liu, H. H., G. S. Bodvarsson, and L. Pan (2000), Determination of particle

transfer in random walk particle methods for fractured porous media,
Water Resour. Res., 36(3), 707–713, doi:10.1029/1999WR900323.

Liu, H. H., et al. (2004), Scale dependency of the effective matrix diffusion
coefficient, Vadose Zone J., 3(1), 312–315.

Liu, H. H., et al. (2006), An interpretation of potential scale dependence of
the effective matrix diffusion coefficient, J. Contam. Hydrol., 90(1–2),
41–57, doi:10.1016/j.jconhyd.2006.09.006.

Neretnieks, I. (1980), Diffusion in the rock matrix: An important factor in
radionuclide retardation, J. Geophys. Res., 85(B8), 4379–4397,
doi:10.1029/JB085iB08p04379.

Neuman, S. P. (2005), Trends, prospects and challenges in quantifying flow
and transport through fractured rocks, Hydrogeol. J., 13(1), 124–147,
doi:10.1007/s10040-004-0397-2.

Painter, S., and V. Cvetkovic (2005), Upscaling discrete fracture network
simulations: An alternative to continuum transport models,Water Resour.
Res., 41, W02002, doi:10.1029/2004WR003682.

Pan, L. H., and G. S. Bodvarsson (2002), Modeling transport in fractured
porous media with the random‐walk particle method: The transient
activity range and the particle transfer probability, Water Resour. Res.,
38(6), 1080, doi:10.1029/2001WR000901.

ROUBINET ET AL.: A NEW PARTICLE‐TRACKING APPROACH W11507W11507

5 of 6



Pruess, K., and T. N. Narasimhan (1985), A practical method for modeling
fluid and heat‐flow in fractured porous media, SPEJ Soc. Pet. Eng. J.,
25(1), 14–26, doi:10.2118/10509-PA.

Shan, C., and K. Pruess (2005), An analytical solution for slug tracer tests
in fractured reservoirs, Water Resour. Res., 41, W08502, doi:10.1029/
2005WR004081.

Stehfest, H. (1970), Numerical inversion of Laplace transforms, Commun.
ACM, 13(1), 47, doi:10.1145/361953.361969. (Correction, Commun.
ACM, 13(10), 624, doi:10.1145/355598.362787, 1970.)

Sudicky, E. A., and E. O. Frind (1982), Contaminant transport in fractured
porous media: Analytical solutions for a system of parallel fractures,
Water Resour. Res., 18(6), 1634–1642, doi:10.1029/WR018i006p01634.

Tang, D. H., E. Frind, and E. Sudicky (1981), Contaminant transport in
fractured porous media: Analytical solution for a single fracture, Water
Resour. Res., 17(3), 555–564, doi:10.1029/WR017i003p00555.

Warren, J. E., et al. (1963), The behavior of naturally fractured reservoirs,
SPEJ Soc. Pet. Eng. J., 3(3), 245–255.

J.‐R. de Dreuzy and D. Roubinet, Géosciences Rennes, UMR CNRS
6118, Université de Rennes I, F‐35042 Rennes, France. (delphine.
roubinet@univ‐rennes1.fr)
H.‐H. Liu, Earth Sciences Division, Lawrence Berkeley National

Laboratory, Berkeley, CA 94720, USA.

ROUBINET ET AL.: A NEW PARTICLE‐TRACKING APPROACH W11507W11507

6 of 6



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /All
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (ECI-RGB.icc)
  /CalCMYKProfile (Photoshop 5 Default CMYK)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness false
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Preserve
  /UCRandBGInfo /Remove
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
    /Courier
    /Courier-Bold
    /Courier-BoldOblique
    /Courier-Oblique
    /Helvetica
    /Helvetica-Bold
    /Helvetica-BoldOblique
    /Helvetica-Oblique
    /Symbol
    /Times-Bold
    /Times-BoldItalic
    /Times-Italic
    /Times-Roman
    /ZapfDingbats
  ]
  /AntiAliasColorImages false
  /CropColorImages false
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.00000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages false
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.00000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages false
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 400
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.00000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects true
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /ENU ()
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AllowImageBreaks true
      /AllowTableBreaks true
      /ExpandPage false
      /HonorBaseURL true
      /HonorRolloverEffect false
      /IgnoreHTMLPageBreaks false
      /IncludeHeaderFooter false
      /MarginOffset [
        0
        0
        0
        0
      ]
      /MetadataAuthor ()
      /MetadataKeywords ()
      /MetadataSubject ()
      /MetadataTitle ()
      /MetricPageSize [
        0
        0
      ]
      /MetricUnit /inch
      /MobileCompatible 0
      /Namespace [
        (Adobe)
        (GoLive)
        (8.0)
      ]
      /OpenZoomToHTMLFontSize false
      /PageOrientation /Portrait
      /RemoveBackground false
      /ShrinkContent true
      /TreatColorsAs /MainMonitorColors
      /UseEmbeddedProfiles false
      /UseHTMLTitleAsMetadata true
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /BleedOffset [
        0
        0
        0
        0
      ]
      /ConvertColors /ConvertToRGB
      /DestinationProfileName (sRGB IEC61966-2.1)
      /DestinationProfileSelector /UseName
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements true
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles true
      /MarksOffset 6
      /MarksWeight 0.250000
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PageMarksFile /RomanDefault
      /PreserveEditing true
      /UntaggedCMYKHandling /UseDocumentProfile
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


