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[1] We investigate the influences of pore‐scale dispersion and of larger‐scale permeability
heterogeneities on themacrodispersion without themolecular diffusion. Permeability follows
a lognormal exponentially correlated distribution characterized by its correlation length l
and its lognormal variance s2. Macrodispersion is evaluated numerically by using
parallel simulations on grids of characteristic size ranging from 200l to 1600l. We note
aL and aT the pore‐scale longitudinal and transversal dispersivities. For aL/l < 10−2 and
aT/l < 10−3, the influence of pore‐scale dispersion on the macrodispersion is smaller than
5% of the macrodispersion due only to permeability heterogeneities. Larger dispersivities
(aL/l ≥ 10−2 or aT/l ≥ 10−3) induce larger effects than those obtained by the semianalytical
expression of Salandin and Fiorotto (1998) for s2 > 1. The effects of local dispersion on
the longitudinal macrodispersion remain limited to 25% at most of the macrodispersion
due only to permeability heterogeneities. For s2 > 1, isotropic local dispersion induces a
reduction of the longitudinal macrodispersion, whereas anisotropic local dispersion lets
it increase. The longitudinal and transverse local dispersions induce opposite effects on
the longitudinal macrodispersion, which are respectively an increase and a reduction. The
transverse macrodispersion null without local dispersion or molecular diffusion becomes
strictly positive with local dispersion. Because of the velocity field heterogeneities, it is
amplified by a factor of 2 to 50 from the grid scale to the macro scale. The transverse
dispersion is triggered by both longitudinal and transverse local dispersions. A reduction of
a factor of 2 of the transverse local dispersion at fixed longitudinal local dispersion yields
only a reduction of a factor of 4 at most of the transverse macrodispersion for s2 ≥ 2.25.

Citation: Beaudoin, A., J.‐R. de Dreuzy, and J. Erhel (2010), Numerical Monte Carlo analysis of the influence of pore‐scale
dispersion on macrodispersion in 2‐D heterogeneous porous media, Water Resour. Res., 46, W12537,
doi:10.1029/2010WR009576.

1. Introduction

[2] Field‐scale dispersion results from the variations in
fluid velocity occurring from the pore scale to the formation
scale and from molecular diffusion [Frippiat and Holeyman,
2008; Gelhar et al., 1992]. It is modeled by an equivalent
diffusion law parameterized by the dispersion tensor D
[Bear, 1973]. Its components are given by

Dij ¼ �T vj j þ dð Þ�ij þ �L � �Tð Þ vivj
vj j ; ð1Þ

where aL and aT are the longitudinal and transverse dis-
persivities, respectively, d is the molecular diffusivity, v is

the fluid velocity, and dij is the Kronecker delta function.
This formalism is mostly used at two scales. At the local
scale, the dispersion coefficient results from the effects of
the variations of the pore‐scale fluid velocity. At field scale,
the dispersion coefficient, also called the macrodispersion
coefficient, comes both from the previous local effects and
from the variations in fluid velocities due to permeability
heterogeneities. In this study, we focus on the effects of the
local dispersion on the macrodispersion coefficient for
highly heterogeneous two‐dimensional (2‐D) porous media.
We take the most classical model in the context of porous
media. It consists of an exponentially correlated lognormal
isotropic permeability field [Freeze, 1975; Gelhar, 1993]. It
is characterized by the variance of the distribution of the
logarithm of the permeability s2 and by its correlation
length l. Its correlation function is given by

C rð Þ ¼ �2 exp � rj j
�

� �
; ð2Þ

where r is the vector between two points. The originality
of this work does not rely on the correlation structure
but on the magnitude of the heterogeneity. We investigate
high‐heterogeneity cases for which s2 2 [1, 9], while most

1LOMC, Université du Havre, Le Havre, France.
2Institut P ′, UPR 3346 CNRS, Université de Poitiers, ENSMA, SP2MI,

Chasseneuil, France.
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previous studies dealt with the low heterogeneity cases
(s2 < 1) [Chaudhuri and Sekhar, 2005; Fiori, 1996, 1998;
Gelhar and Axness, 1983]. High and low heterogeneity
cases can lead to fundamentally different behaviors [deDreuzy
et al., 2007; Dentz and Tartakovsky, 2008; Jankovic et al.,
2003]. For example, for 2‐D pure advection cases, while it
has been well established that the longitudinal macrodisper-
sion coefficient depends linearly on s2 for low‐heterogeneity
cases [Gelhar and Axness, 1983], recent numerical and theo-
retical studies show that it depends on the square ofs2 for high‐
heterogeneity cases [de Dreuzy et al., 2007; Dentz and
Tartakovsky, 2008]. We identify the macrodispersion coeffi-
cient with the asymptotic dispersion coefficient in these cases
of lognormally finitely correlated permeability fields. In this
study, even if the permeability heterogeneity is high, it is still
limited ensuring the convergence of the longitudinal and
transverse dispersion coefficients to finite values.
[3] For low levels of heterogeneity (s2 < 1) and local

dispersivities much smaller than the correlation length
(aL� l and aT� l), the first‐order perturbation analysis of
Gelhar and Axness [1983] shows that the local dispersion
does not modify the leading order of the longitudinal mac-
rodispersion coefficient DLA(GA) and lets the transverse
dispersion coefficient DTA(GA) increase according to

DLA GAð Þ
u

¼ ��2; ð3Þ

DTA GAð Þ
u

¼ �2

8
�L þ 3�Tð Þ; ð4Þ

where index A stands for asymptotic dispersion equivalent
here to macrodispersion as previously said, (GA) is an
identifier for the solution of Gelhar and Axness [1983] and u
is the mean velocity. The longitudinal macrodispersion
coefficient is proportional to the correlation length l. The
transverse macrodispersion coefficient is the sum of two terms
proportional to the local longitudinal and transverse dis-
persivities,aL andaT, respectively. Semianalytical approaches
accounting in the dispersion term for velocity variations con-
firm the lack of strong dependence of the longitudinal mac-
rodispersion coefficient on s2 [Salandin and Fiorotto, 2000].
Salandin and Fiorotto [2000] show that the local dispersion
induces an increase of both the longitudinal and transverse
macrodispersion coefficients for s2 < 1. Differences with the
solution of Gelhar and Axness [1983] are more important for
the transverse component than for the longitudinal compo-
nent of the macrodispersion.
[4] For high‐heterogeneity cases (s2 > 1), Salandin and

Fiorotto [2000] use their semianalytical solution to predict
a decrease of the longitudinal macrodispersion coefficient.
They also give an estimate of the transverse macrodisper-
sion coefficient. Still for s2 > 1, the sole numerical simu-
lations have been performed for single realizations with aL =
0.15 m and aT = 0.015m on a 2047 × 511m grid with 1 × 1 m
square grid cells [Trefry et al., 2003]. For l = 2 m and 8 m
corresponding to l/aL ≈ 13.5 and l/aL ≈ 54, respectively, the
normalized time‐dependent longitudinal dispersion coeffi-
cientDL(t)/(uls

2) ranges between 1.2 and 1.4 in the first case
and between 1 and 1.75 in the second case for 0.25 < s2 < 4.
No conclusion can be drawn from the time‐dependent
transverse dispersion coefficient DT(t) because of its high
variability due to the strong influence of local fluctuations in

the velocity field. The main difficulty of numerical studies
comes from the necessity to perform large scale and finely
resolved Monte Carlo simulations.
[5] In previous studies, we set up a methodology to

determine the macrodispersion coefficient from large‐scale
Monte Carlo parallel numerical simulations on pure advec-
tion and advection‐diffusion cases [de Dreuzy et al., 2007].
We perform intensive numerical simulations to investigate
the respective effects of local dispersion and of permeability
fluctuations on macrodispersion for the high heterogeneity
cases. After describing the methods to solve the advection‐
dispersion equation and to determine the macrodispersion in
sections 2 and 3, we present the results and discuss them in
sections 3 and 4.

2. Model, Numerical Schemes, and Algorithms

[6] We describe first the hydrogeological model and,
second, the numerical methods used for obtaining the per-
meability field and for simulating flow and the transport
processes. The methods used are classical. Their imple-
mentation has been tuned for efficiency in order to simulate
large and finely resolved domains. The contribution of this
paper concerns neither the model nor the numerical
schemes, but rather the results of macrodispersion. We thus
only recall the model assumptions, the numerical schemes,
and the main convergence proofs of macrodispersion to its
asymptotic regime. More detailed justifications are provided
in work by de Dreuzy et al. [2007] and by A. Beaudoin
et al., Convergence analysis of advection diffusion simu-
lations in 2‐D heterogeneous porous media, unpublished,
2010. Because the permeability field is characterized by
statistical laws, the resulting modeling is stochastic. In
this paper, we use a basic nonintrusive Monte Carlo
method.
[7] Lognormally and exponentially correlated permeabil-

ity fields are generated with a Fourier transform method
[Gutjahr, 1989; Pardo‐Igúzquiza and Chica‐Olmo, 1993]
using the parallel library FFTW [Frigo and Johnson, 2005].
The computation domains are regular square or rectangular
grids of sizes Lx and Ly with square grid cells (dx = dy = lm).
The aspect ratio of the system Lx/Ly ranges from 1 to 2 in
square to rectangular domains. The total number of grid cells
varies between 2048 × 2048 and 16384 × 8192. The key
characteristic scale is the permeability correlation length, l,
giving sense to the other scales. Lx/l is the number of cor-
relation length in the main flow direction taken here as x. The
l/lm is the grid cell resolution per correlation length. Ideally
Lx/l and l/lm should be both as large as possible.
[8] Flows follow the classical steady‐state diffusion

equation r(Krh) = 0 with K the permeability and h the
hydraulic head. Boundary conditions are like those on a
permeameter with a fixed head on the vertical sides and no
flow on the horizontal sides of the domain. The flow
equations is discretized with a finite volume scheme and
harmonic intermesh permeabilities [Chavent and Roberts,
1991]. The finite volume discretization yields a large‐scale
linear system solved with the algebraic multigrid method
implemented in HYPRE [Erhel et al., 2009; Falgout et al.,
2005]. Velocity is first computed on each grid face and then
derived within the grid cells from linear interpolations both
in x and y directions as it is the sole interpolation scheme
that verifies the continuity equation [Pollock, 1988].
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[9] Solute concentration c follows the classical advection
dispersion equation with the dispersion tensor D given by
equation (1) for a constant porosity,

@c

@t
þr � vcð Þ � r � D � rcð Þ ¼ 0; ð5Þ

where we recall that v is the local velocity. Injection is
instantaneous on a large segment of length I = 0.4Ly per-
pendicular to the main flow direction and centered on the
domain medium line. The segment is shifted downstream
from the domain inlet by a distance of l to avoid border
effects. Injection is proportional to flow. The large injec-
tion window ranging from 80 to 320 correlation lengths is
designed to speed up the convergence to the asymptotic
regime. The rate of advection to hydrodynamic dispersion
is measured by the nondimensional Peclet numbers

PeL ¼ �=�L and PeT ¼ �=�T ð6Þ

in the longitudinal and transverse directions, respectively. In
sections 4 and 5, we compare the advection dispersion results
with previously obtained advection diffusion results at
equivalent Peclet numbers. The Peclet number then char-
acterizes the rate of advection to diffusion and is defined by

Pe ¼ �u=d; ð7Þ

where we recall that u is the mean velocity and d is the dif-
fusion coefficient. As opposed to diffusion, which is constant
in the domain, hydrodynamic dispersion is locally variable
because of its dependence on velocity. The problem is dif-
ferent from the advection‐diffusion case [de Dreuzy et al.,
2007]. For hydrodynamic dispersion, the local rate of
advection to dispersion is constant where it is highly variable
for advection to diffusion. Transport was simulated by a
random walk particle tracking method fully described in
several review papers [Delay et al., 2005; Hoteit et al., 2002;
Ramirez et al., 2008; Salamon et al., 2006]. The randomwalk
method solves for the following Fokker‐Planck equation [van
Kampen, 1981],

@c

@t
þr � vþr � Dð Þcð Þ � rr : Dcð Þ ¼ 0: ð8Þ

We use the reflection method [La Bolle et al., 1996; Uffink,
1985] to handle the discontinuities of the dispersion gradi-
ent. This choice is however not critical as it has been shown
that dispersion results are not very sensitive to the method
chosen for lognormally and finitely correlated permeability
fields, even for s2 values as large as 4 [Salamon et al., 2006].
Particles are injected according to flow in the injection win-
dow and are tracked using a parallel algorithm with syn-
chronized communications of particles between CPUs
[Beaudoin et al., 2007].
[10] Our results rely on the effective dispersion coefficient

[Dentz et al., 2000; Kitanidis, 1988]. In the preasymptotic
regime, the effective dispersion differs from the ensemble
dispersion. The effective dispersion coefficient is obtained
by averaging the dispersion coefficients obtained on a
realization basis. The ensemble dispersion is defined by first
averaging the moments over the simulations and second by
deriving the dispersion. The ensemble dispersion is sys-
tematically larger than the effective dispersion as it mea-

sures the plume dispersion around the mean plume position
computed over all simulations [Dentz et al., 2000]. The
choice of the effective over the ensemble dispersion is only
motivated by convergence issues as both are asymptotically
equal. The interest of the effective dispersion over the
ensemble dispersion is to take advantage of the largest
possible time span over which solute has not begun to reach
the outlet of the domain. In equivalent words, the advantage
of the effective dispersion is to avoid the limitations induced
by the finite size of the domain and the dispersion of the
breakthrough times between simulations. The longitudinal
and transverse dispersion coefficients are first derived on a
realization basis according to

Di
L tð Þ ¼ 1

2�u

d x2 tð Þ� �
i
� x tð Þh i2i

� �
dt

; ð9Þ

Di
T tð Þ ¼ 1

2�Tu

d y2 tð Þ� �
i
� y tð Þh i2i

� �
dt

; ð10Þ

respectively, where hxk(t)ii and hyk(t)ii are the kth moments
of the solute plume of the ith simulation. We emphasize that
the longitudinal and transverse dispersion coefficients of
equations (9) and (10) are normalized by lu and aTu,
respectively. These different normalization factors are
deduced from the low heterogeneity approximations given
by equations (2) and (3). In the absence of dispersion (aL =
aT = 0), but with diffusion (d > 0), we normalize the
transverse macrodispersion by the diffusion coefficient d.
Equation (10) is replaced by

Di
T tð Þ ¼ 1

2d

d x2 tð Þ� �
i
� x tð Þh i2i

� �
dt

: ð11Þ

The average over NS Monte Carlo simulations is performed
in a second step

DL tð Þ ¼ Di
L tð Þ� �

i¼1;Ns
and DT tð Þ ¼ Di

T tð Þ� �
i¼1;Ns

: ð12Þ

The hxk(t)ii and hyk(t)ii are approximated from the random
walker position moments computed on realization bases,

xk tð Þ� �
i
¼ 1

Np

XNp

j¼1

xij tð Þ
� �k

and yk tð Þ� �
i
¼ 1

Np

XNp

j¼1

yij tð Þ
� �k

;

ð13Þ

where xj
i(t) and yj

i(t) are the coordinates of the jth particle
within the ith simulation, Np is the number of particles for
one simulation. All time‐dependent dispersion results will
be presented against tN defined as the time t normalized by
the characteristic time necessary to cross a correlation length
l/u (tN = tu/l).

3. Convergence to the Asymptotic Regime

[11] This study summarizes the guidelines for the choice
of the different numerical parameters. We have also per-
formed a more detailed convergence analysis of the
numerical methods used for simulating flow and transport
(A. Beaudoin et al., Convergence analysis of advection
diffusion simulations in 2‐D heterogeneous porous media,
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unpublished, 2010). We first handle the convergence of the
time‐dependent dispersion coefficients with the particle
number Np, Secondly, we study the convergence of dis-
persion to its asymptotic regime and determine the neces-
sary system sizes in terms of correlation lengths L/l.

3.1. Convergence With Particle Number Np

[12] Previous studies have pointed out the importance to
perform a statistically representative sampling of the
velocity field. It is especially important for systems
consisting of inclusions [Fiori et al., 2008]. For the
heterogeneous grids considered here, we have shown that,
for the pure advection cases, 5000 particles were enough
[de Dreuzy et al., 2007; de Dreuzy et al., 2008]. Figure 1
shows the longitudinal and transverse time‐dependent dis-
persion coefficients DL

i (t) and DT
i (t), respectively, for a

single realization taken with the largest variance s2 = 9 and
a particle number Np evolving from 1000 to 10,000. From
Np = 1000 to Np = 5000, both the longitudinal and transverse
dispersions are significantly modified with a decrease of

their variability and more discernable asymptotic tendencies.
From Np = 5000 to Np = 10,000, some differences remain
but it does not change the asymptotic behavior. For the
simulations presented on Figure 1, the differences between
the averages of the time‐dependent dispersion coefficients
for tN in the interval [200, 400] are limited to 4% and 8%
for the longitudinal and transverse dispersion coefficients,
respectively. We also note that there is no systematic
increase of the dispersion coefficients with the number of
particles even when increasing it from 1000 to 10,000.
This shows that 5000 particles are enough for a statistically
representative sampling of the velocity field. As the largest
s2 case is the most detrimental one, the particle number Np

is fixed to 5000 for all simulations. Given that the injection
segment length varies between 80l and 320l, the initial
sampling of the permeability field corresponds to 15 to 60
particles per correlation length on average.

3.2. Convergence With the Domain Size in Terms of
Correlation Lengths

[13] The convergence of the macrodispersion coefficients
depends on the domain size both from the initial sampling of
the velocity field and from the average number of correlation
lengths crossed by the solute plume. Enlarging the system
simultaneously in the x and y directions improves both the
initial sampling and the average length of the particle path-
lines. The injection window has been fixed as large as pos-
sible to optimize the initial velocity sampling. It should not
be too large however to avoid particles getting too close to
the no‐flow sides of the domain where the velocity field is
influenced by the presence of the boundary condition
[Englert et al., 2006; Salandin and Fiorotto, 1998]. We have
checked that all particles kept a distance of at least 30 cor-
relation lengths from the no‐flow sides of the domain.
[14] We have looked for the smallest domains for which

the asymptotic regime is obtained for at least half of the
simulation exploitable time range. The exploitable time
range extends from the time of injection to the first break-
through time, that is, the time for which the first particle
arrives at the domain outlet. These times strongly depend on
s2. For the lowest heterogeneity case (s2 = 0.25), a 2048 ×
2048 domain (Lx/dx = Ly/dy = 2048) with 10 grid cells by
correlation length (l/lm = 10) is large enough and long
enough to establish the asymptotic regime in the longitu-
dinal direction and for the isotropic local dispersion case
(aL = aT) (Figure 2a). The solute plume reaches the
asymptotic regime when its mean position has crossed
around 15 correlation lengths (tN = 15). The asymptotic
regime is maintained between tN = 15 and tN = 150. For the
highest heterogeneity case (s2 = 9), the minimal system sizes
for which convergence is maintained over at least half of the
time range are Lx/dx = Ly/dy = 16,384 with 10 grid cells by
correlation length (l/lm = 10) (Figure 2b). The asymptotic
regime is reached for tN = 400 at the latest and is maintained
until the breakthrough time tN = 1000. The exploitable time
ranges are comparable with those obtained for the pure
advection case (solid curves on Figure 2). System sizes for
intermediary s2 values are given in Table 1.
[15] Transverse dispersions appear on Figure 3 to be more

variable both for the low and high heterogeneity cases. The
first reason for the larger variations is the difference in
scales over which DL(tN) and DT(tN) vary. Because of the

Figure 1. Normalized (a) longitudinal and (b) transverse
dispersion coefficients as expressed by equations (9) and
(10) for a single simulation against the normalized time for
increasing particle numbers withPeL =PeT = 20, d = 0, s

2 = 9,
l/lm = 10 and Lx/l = Ly/l = 819.2.l.
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differences in the normalization factors in equations (9) and
(10), DL(tN)/DT (tN) is proportional to PeT which ranges
between 10 and 100. The second reason is that, because
DT (tN) is much smaller than DL(tN), it is more sensitive to
the local velocity variability. Despite its nonmonotonous
variations, DT(tN) does not show any systematic tendency
over the second‐half of the exploitable time range.
[16] As, for the domain sizes chosen, the asymptotic

regime is maintained over at least the second half of the
simulation time range we define the realization‐based lon-
gitudinal asymptotic dispersion coefficient or macrodisper-
sion coefficient as

Di
LA ¼

R tib
0:5tib

Di
L tð Þdt

tib
; ð14Þ

where tb
i is the first breakthrough time of the ith simulation.

The longitudinal macrodispersion coefficient is obtained by
averaging over the number of simulations NS,

DLA ¼ Di
LA

� �
i¼1;Ns

: ð15Þ

The advantage of deriving the asymptotic dispersion coef-
ficient first on a realization basis is to adapt the averaging
time range [0.5tb

i , tb
i ] to the realization first breakthrough

time, rather than taking for all simulations the minimum of
the realization first breakthrough times tb. We also deter-
mine the variance of DL(t) over the averaging interval [0.5tb,
tb] s(DLA) and use it as a precision criterion for DLA. From
Figure 2, s(DLA) represents the amplitude of the variations
of DL(t) on the second half of the simulation time range. The
comparison of s(DLA) to DLA gives a simple test to deter-
mine for which cases the numerical results lead to a reliable
estimate of the macrodispersion. Results are significant only
when DLA > s(DLA). For all asymptotic results presented
in this paper s(DLA)/DLA and s(DTA)/DTA remain always
smaller than 0.15. The same procedure is followed to get
the transverse dispersion coefficients by replacing index L by
index T. After intensive testing, we have determined that
the described methodology can identify macrodispersion
for longitudinal and transverse local dispersivities verifying
PeL ≤ 100 and PeT ≤ 1000. We recall that the asymptotic
coefficients DLA and DTA defined here and used throughout
the paper are normalized by lu and aTu. Their definition
thus differs fromDLA(GA) andDTA(GA) given by equations (3)
and (4).
[17] All simulation parameters are recalled in Table 1.

The total number of grid cells is equal to LxLy/lm
2 and ranges

from 4.2 × 106 to 134 × 106 for s2 increasing from 0.25 to 9.
Simulations NS = 100 are performed for each parameter set
and simulations have been performed for 78 parameter sets
decomposed in 24 for the convergence with l/lm (i.e.,
6 values of s2 times 4 values of l/lm) (A. Beaudoin et al.,
Convergence analysis of advection diffusion simulations in
2‐D heterogeneous porous media, unpublished, 2010) and
54 for the effective determination of the macrodispersion
(i.e., 6 values of s2 times 3 values of PeL times 3 values of
PeL/PeT). All 176 longitudinal and transverse dispersion
chronicles have been checked for convergence.
[18] The largest simulations 16,384 × 8192 were per-

formed on a cluster of 1.33 GHz Intel Xeon cores (66 CPUs
times 2 cores per CPU) with 4 Gb per CPU. The 8192 ×
8192 simulations required only half of the cluster resources
and lasted one full day for a single parameter set, corre-
sponding to 100 Monte Carlo simulations. The 2048 × 2048
simulations can be performed on a personal workstation. All

Figure 2. Longitudinal dispersion coefficient normalized by
lu as expressed by equation (9) and obtained for isotropic
local dispersion PeL = PeT with (a) s2 = 0.25 and (b) s2 = 9.
Results are obtained with Np = 5000 particles and are aver-
aged over NS = 100 simulations. Dashed curves on Figure 2a
come from the analytical approximation of Salandin and
Fiorotto [2000]. Domain sizes are, for s2 = 0.25, Lx/l =
Ly/l = 204.8 and, for s2 = 9, Lx/l = 2Ly/l = 1638.4.

Table 1. Simulation Parameters

Parameter Values

s2 0.25, 1, 2.25, 4, 6.25, 9
PeL, PeT 10, 20, 100
PeL/PeT 1, 10, 100
NS 100
Np 5000
[Lx/l, Ly/l] [204.8, 204.8] for s2 ≤ 2.25

[819.2, 819.2] for s2 = 4
[1638.4, 819.2]
for s2 > 4

l/lm 2, 5, 10, 20
Injection window 0.4 Ly
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taken into account, including the benchmark runs, the simu-
lations required 20 days of computation for the full cluster
resources and 50 days for half of the cluster resources. The
cumulated single CPU time amounts to 16 years.

4. Results

[19] As our objective is to find the influence of local
dispersion on macrodispersion, we use for the longitudinal
component the relative difference DDLA between the mac-
rodispersion coefficients obtained with local dispersion and
with neither dispersion nor diffusion

DDLA ¼ DLA PeL;PeT ;Pe ¼ 1ð Þ=½
DLA PeL ¼ 1;PeT ¼ 1;Pe ¼ 1ð Þ� � 1: ð16Þ

As the transverse macrodispersion in pure advection cases is
null [de Dreuzy et al., 2007; Lunati et al., 2002], we keep
for the transverse component the quantity DTA given by
equation (10). Because of its normalization, DTA can be
interpreted as the ratio of the transverse macrodispersion
coefficient to the local transverse dispersion coefficient. All
values of macrodispersion coefficients given hereafter have

been checked for convergence on their corresponding time‐
dependent dispersion chronicle.

4.1. Isotropic Local Dispersion (PeL = PeT)

[20] We first study the isotropic local dispersion case
(aL = aT) not because of its field relevance but because it
can be compared to several existing numerical and analytical
results and to results obtained by replacing the local dis-
persion by the diffusion having on average the same Peclet
number. The DDLA and DTA display opposite tendencies, as
DDLA decreases with s2 (Figure 4a) while DTA increases
with s2 (Figure 4b). These tendencies are qualitatively
similar to those obtained with theoretical and semianalytical
approximation methods [Neuman et al., 1987; Salandin and
Fiorotto, 2000] and to those obtained with diffusion instead
of dispersion [de Dreuzy et al., 2007]. For s2 equal to
0.25 and 1, the semianalytical approximation and numerical
results of the longitudinal macrodispersion coefficient (filled
symbols compared to dashed curves on Figure 4a) are very
close together. More precisely the difference is of the order of
4% for s2 = 0.25 and 8% for s2 = 1. The close results of the
semianalytical and numerical longitudinal macrodispersion
coefficients are a partial a posteriori validation of the
numerical methodology. For the transverse macrodispersion,
values of DTA for s2 = 0.25 and 1 are at the resolution limit
of the numerical methodology and cannot be reliably com-
pared to the analytical approximation.
[21] For s2 = 2.25, the isotropic local dispersion does

not induce any discernable effect on the longitudinal
macrodispersion coefficient. For s2 ≥ 4, the isotropic local
dispersion induces a slight reduction of the longitudinal
macrodispersion coefficient. The reduction is limited to
around 30% at most for s2 = 9 and PeL = PeT = 10. The
increase of the transverse macrodispersion coefficient is
much more significant as the transverse macrodispersion
coefficient is null for pure advection. For s2 values larger
than 1, the deviation of the semianalytical and numerical
results is larger for the transverse macrodispersion coeffi-
cient than for the longitudinal macrodispersion coefficient
(Figure 4b). The transverse macrodispersion coefficient is
specifically triggered by the local dispersion (Figure 4b).
The macrodispersion coefficient is, however, 2–50 times
larger than the local dispersion (DTA2 [2, 50]). The effect of
the local dispersion is amplified by the heterogeneity of
permeability as DTA increases with s2. DTA also increases
with less local dispersion (lower PeL values). It does not
mean that transverse macrodispersion is lower with more
local dispersion, but that its amplification is lower with
more local dispersion. The amplification is thus linked to
the existence of local dispersion or diffusion rather than to
their magnitude. The same trends are observed with diffu-
sion instead of dispersion (Figure 4b).
[22] As said previously, the effect of isotropic local dis-

persion is qualitatively similar to the effect of diffusion. For
s2 ≥ 1, local dispersion like diffusion induces a reduction of
the longitudinal macrodispersion and an increase of the
transverse macrodispersion. We have reported on Figure 4
the macrodispersions obtained for diffusion with the same
Peclet numbers for local dispersion (PeL and PeT defined by
(6)) and for diffusion (Pe defined by (7)). The objective is to
compare more quantitatively the relative effects of diffusion
and dispersion. Globally, diffusion induces a reduction of

Figure 3. Transverse dispersion coefficient normalized by
aTu as expressed by equation (10) for (a) s2 = 0.25 and
(b) s2 = 9. Parameters are identical to those of Figure 2.
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the longitudinal macrodispersion coefficient twice as large
as local dispersion. On the contrary the dispersion due to
permeability heterogeneities amplifies the transverse local
dispersion to the transverse macrodispersion coefficient 1.5–
3 times as much as diffusion.
[23] We explain these opposite tendencies by the fact that

the local dispersion is larger than diffusion in the high
velocity zones whereas diffusion is larger than the local
dispersion in the low velocity zones. The longitudinal mac-
rodispersion is especially sensitive to the solutes trapped in
the low‐velocity zones. Adding diffusion releases them from
their trap and significantly reduces the longitudinal macro-
dispersion coefficient [de Dreuzy et al., 2007]. As local dis-
persion is proportional to velocity, it is less effective than
diffusion as a releasing factor and the reduction of the mac-
rodispersion coefficient is smaller. In the transverse direction,
solutes in the high velocity zones are spread laterally further
away with dispersion than with diffusion. This could explain
the increase of the transverse macrodispersion coefficient.

4.2. Anisotropic Pore‐Scale Dispersion (PeL < PeT)

[24] The addition of anisotropy in the local dispersivity
does not add much difference to the longitudinal macro-

dispersion coefficient for values of s2 smaller or equal to
2.25 (Figure 5). For s2 equal to 0.25, the modification
of the longitudinal dispersion coefficient induced by local
dispersivity is less than 10% of the global longitudinal
macrodispersion coefficient when reducing the transverse
dispersion by two orders of magnitude. For s2 equal to 1 and
2.25, the longitudinal macrodispersion coefficient is close to
0 for isotropic as well as for anisotropic local dispersion. For
s2 larger than 2.25, anisotropy lets the longitudinal macro-
dispersion increase (Figure 5a). The increase is significant at
least for the qualitative influence of dispersion. In fact, for
high levels of heterogeneities (s2 > 1), the anisotropic local
dispersion (PeL/PeT ≥ 10) induces an increase of longitudinal
macrodispersion coefficient, whereas isotropic local disper-
sion has the opposite effect, that is, a decrease of the longi-
tudinal macrodispersion coefficient. The same tendencies
have been obtained for PeL = 10 and 100.
[25] In the transverse direction, a decrease of the trans-

verse local dispersion systematically induces a decrease of the
transverse macrodispersion coefficient (Figure 5b). From the
local scale to the macro scale, the reduction decreases with
more permeability heterogeneity. For low‐heterogeneity
cases (s2 ≤ 1), the decrease is of the order of 70% for one
order of magnitude decrease of the transverse local dispersion
(i.e., fromPeL/PeT = 1 toPeL/PeT = 10), the case for which the
analytical solution of equation (4) predicts a decrease of
67.5%. For the high‐heterogeneity cases (s2 > 1), the
reduction of the transverse macrodispersion coefficient is
more limited to at most a factor of 2 for a one order of
magnitude decrease of the transverse local dispersion.

5. Discussion

[26] Like previous studies [Gelhar and Axness, 1983;
Salandin and Fiorotto, 2000], we find that the contribution
of local dispersion to the longitudinal macrodispersion
remains highly limited. Quantitatively, the contribution
reaches at most 25% for the highest heterogeneity (s2 = 9)
but is more generally limited to 10% (Figures 4a and 5a).
Qualitatively, local transverse and longitudinal dispersivities
induce opposite effects on longitudinal macrodispersion.
While the longitudinal dispersivity lets the longitudinal mac-
rodispersion coefficient increase by generating dispersion
within the stream tubes, local transverse dispersion lets it
decrease by restricting the correlation of velocities along the
flow lines [Matheron and de Marsily, 1980]. As a result, the
longitudinal macrodispersion coefficient either slightly in-
creases for s2 ≥ 4 and PeT/PeL ≥ 10, does not change for s2 = 1
and 2.25, or slightly decreases in isotropic cases and s2 ≥ 1.
[27] The effect of the local dispersion cannot simply be

added to the macrodispersion without local dispersion. First,
both the longitudinal and transverse local dispersions
influence the longitudinal macrodispersion as just said.
They also both influence the transverse macrodispersion for
s2 < 1 as demonstrated by equation (6)). Second, the
transverse macrodispersion is much larger than the local
transverse dispersion (Figures 4b and 5b). Most of the
amplification factors are in the interval [2, 15] even if they
can reach 50. In any case, it is much larger than the pre-
dictions of Salandin and Fiorotto [2000] (Figure 4b). Third,
surprisingly for s2 > 1 the decrease of the transverse local
dispersion by two orders of magnitude induces only a
reduction of the transverse macrodispersion coefficient by at

Figure 4. As functions of s2 for various values of Pe and
PeL = PeT: (a) relative difference of longitudinal macrodis-
persion coefficients and (b) absolute difference of transverse
macrodispersion coefficients. Dashed curves come from the
analytical approximation of Salandin and Fiorotto [2000].
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most a factor of 4 (Figure 5b). The strong tortuosity yielded
by the high heterogeneity thus lets the transverse disper-
sion coefficient strongly increase from the microscale to
the macroscale.
[28] Local dispersion is thus critical for the transverse

dispersion at least in two dimensions. The transverse mac-
rodispersion only comes from the existence of local dis-
persion and diffusion. Neglecting the local dispersion would
yield a zero transverse macrodispersion coefficient. Adding
it simply to the estimates without local dispersion leads to
strong underestimates of the transverse macrodispersion. In
three dimensions (3D) the situation is different as the esti-
mates of macrodispersion with only advection and neither
diffusion nor dispersion give a nonzero transverse dispersion
[Attinger et al., 2004; Dentz et al., 2002; Jankovic et al.,

2009; Schwarze et al., 2001]. One of the perspectives of
this work is to estimate the additional effect of the local
dispersion and diffusion in 3D.

6. Conclusions

[29] We have investigated the effect of local‐scale disper-
sion on macrodispersion in heterogeneous 2‐D permeability
fields. Local‐scale dispersion is modeled by longitudinal
and transversal dispersivities aL and aT. Macrodispersion
comes both from the local‐scale dispersivities and from the
permeability heterogeneity. Permeability has been modeled
by a lognormal Gaussian correlated field with a wide range
of variances s22 [0, 9]. The asymptotic longitudinal and
transverse dispersion coefficients have been estimated by
using extensive Monte Carlo simulations on large domains.
We have determined that the domain sizes necessary for
reaching the asymptotic regime ranged from 200 to 1600
correlation lengths l. We defined the macrodispersion
coefficient as the average effective dispersion over a large
time interval and on a large enough number of simulations.
We have been able to determine macrodispersion only for
aL/l > 10−2 and aT/l > 10−3, cases for which the effect of
the local dispersion is larger than the precision of the
numerically derived macrodispersion. We have found that
the effect of the local dispersivities on the longitudinal
macrodispersion coefficient remains small whatever the
heterogeneity level. Induced modifications are limited to
25% at most of the macrodispersion coefficients due only
to permeability heterogeneities. These modifications are
smaller than those emerging from the case of a diffusion
calibrated to lead to the same values of the Peclet number.
The influence on the transverse macrodispersion is much
larger as it is null without dispersion and becomes positive
with local dispersion. Due to the velocity field heteroge-
neity, the effect of the local dispersion is amplified by a
factor 2 to 50 for s2 ≥ 2.25. It is much larger than the effect
of a diffusion calibrated to lead to the same values of the
Peclet number. On the transverse dispersion, the effect of
the dispersion anisotropy remains limited. By reducing by
two orders of magnitude the transverse dispersivity with a
fixed longitudinal dispersivity, the transverse macrodisper-
sion is reduced only by at most a factor of 4 for s2 ≥ 2.25.
We conclude that the transverse macrodispersion is trig-
gered by the transverse local dispersion and amplified by
the strong stream tube tortuosity emerging from the per-
meability field heterogeneity.
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