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Abstract 

Along active margins, tectonic features that develop in response to plate convergence are 

strongly controlled by subduction zone geometry. In West Junggar, a segment of the giant 

Palaeozoic collage of Central Asia, the West Karamay Unit represents a Carboniferous 

accretionary complex composed of fore-arc sedimentary rocks and ophiolitic mélanges. The 

occurrence of quasi-synchronous upright folds and folds with vertical axes suggests that 

transpression plays a significant role in the tectonic evolution of the West Junggar. Latest 

Carboniferous (ca. 300 Ma) alkaline plutons postdate this early phase of folding, which was 

synchronous with accretion of the Carboniferous complex. The Permian Dalabute sinistral 

fault overprints Carboniferous ductile shearing and split the West Karamay Unit ca. 100 
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kilometres apart. Oblique convergence may have been provoked by the buckling of the 

Kazakh orocline and relative rotations between its segments. Depending upon the shape of the 

convergence zone, either upright folds and fold with vertical axes, or alternatively, strike-slip 

brittle faults developed in response to strain partitioning. Sinistral brittle faulting may account 

for the lateral imbrication of units in the West Junggar accretionary complex. 
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1. Introduction 

In contrast with strictly frontal convergence, which is rarely observed, examples of oblique 

subduction are widespread (Chamot-Rooke and Rabaute, 2007), and often generate strike-slip 

faults parallel to the upper plate boundary (Allen, 1965; Katili, 1970). The western North 

American Cordilleras, Andes, Taiwan, and Sumatra are the best examples of such an oblique 

convergent setting. Fitch (1972) was the first to link the tectonic structures in the upper plate 

to the oblique slip of the lower plate. Based on earthquake focal mechanisms in western 

Pacific, he proposed that the total decoupling of the oblique slip would result into a 

component of convergence normal to the trench and a shearing component parallel to the 

trench marked by transcurrent faulting. Beck (1983) improved this model by establishing the 

geometric and thermal constraints that favour decoupling of oblique convergence. Very 

oblique convergence, gently dipping subduction and thermal softening of the upper plate are 

the main conditions that favour the decoupling of oblique slip in a subduction zone.  

Because total decoupling of oblique convergence is rarely achieved at sites of oceanic 

subduction, McCaffrey (1992) proposed a partial decoupling model, and demonstrated that 

margin geometry could influence the tectonic response of the upper plate. Therefore, oblique 

convergence along a concave or a convex subduction zone toward the ocean will be 
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accommodated by transpression or transtension, respectively. The present curvature of the 

western Sunda and Aleoutian subduction zones (Ekström and Engdahl, 1989; McCaffrey, 

1991) are good paradigms of oblique slip partitioning that may also be reproduced by 

analogical modelling (Chemenda et al., 2000). The rheology of the accretionary wedge also 

influences the geometric variability of the subduction zone (Platt, 1993). Very oblique 

convergence would logically generate an intense slicing of the upper plate boundary 

(Martinez et al., 2002). Triple junctions and ridge subduction can also account for the 

initiation or reactivation of strike-slip faults in the overriding plate (Thorkelson, 1996; Roeske 

et al., 2003). 

Lateral tectonic transport along the active margin is a direct consequence of decoupling 

(Coney et al., 1980; Beck, 1983; Jarrard, 1986); it is referred as “Sunda style” tectonics 

(Beck, 1983), and thousands of kilometres along-margin displacements have been evidenced 

in far-travelled allochthonous terranes of western North America (Beck, 1980; Coney et al., 

1980). However, in most cases, terrane traveling is limited to a few tens of kilometres (Beck, 

1986). This variability depends upon the age and obliquity of the subduction, and occurrence 

of a buttress or not (Beck, 1991). Therefore, oblique convergence that may result in lateral 

terrane transport significantly contributes to lateral growth of the continental margin and, 

consequently, to a reorganisation of the continental crust pattern. 

During the last decades, Mesozoic and Cenozoic cases of oblique subduction have been 

established in the Circum-Pacific area, (Karig et al., 1978; Engebretson et al., 1985; Kimura, 

1986; Reutter et al., 1991; Beck, 1994; Kusky et al., 1997a, b) by comparison with modern 

analogues (Malod et al., 1995; Lallemand et al., 1999; Goldfinger et al., 1996). In contrast, 

oblique subduction is rarely documented in older accretionary orogens (Henderson, 1987; 

Veevers, 2003). The purpose of this article is to report an example of Palaeozoic oblique 

convergence and to discuss its regional geodynamic controls. 



 4 

The Altaids (Sengör et al., 1993; Sengör and Natal’in, 1996) or Central Asian Orogenic 

Belt (CAOB; Mossakovsky et al., 1993; Windley et al., 2007) are a wide orogenic collage 

formed during the Palaeozoic as a result of the convergence of Siberia, Baltica, Tarim, and 

North China blocks (Fig. 1a). Because of post-Palaeozoic tectonics, the present structure 

exhibits a distorted pattern of accretionary complexes, magmatic arcs, and ribbon-like micro 

continents. Several conflicting models have been proposed for the Altaids (for a review see 

Windley et al., 2007 and Xiao et al., 2010). The Kipchak Arc model is characterized by a 

single long-lived subduction that was later shredded by strike-slip faults (Sengör et al., 1993; 

Sengör and Natal’in, 1996). An archipelago model was alternatively proposed (Filipova et al., 

2001; Xiao et al., 2008); it consists of accreted and laterally docked pairs of associated 

accretionary complexes and magmatic arcs. A remarkable feature of the Altaids is the 

presence of horseshoe-shaped belts, such as the Kazakh Orocline (Fig. 1b; Abrajevitch et al., 

2008), or the Central Mongol Orocline (Yakubchuk et al., 2008). These structures are 

intimately associated with lithosphere-scale strike-slip faults along which palaeomagnetic 

evidence document block rotations and displacements over thousands kilometres (Van der 

Voo et al., 2006; Wang et al., 2007; Choulet et al., in press); however, the link between 

oroclinal bending, transcurrent faulting and accretion remains poorly understood. 

This study deals with the structural pattern of the Late Palaeozoic West Karamay 

accretionary complex, in order to document transcurrent tectonics and lateral docking. On the 

basis of new geochronological data and multi-scale structural analysis, we present the first 

evidence of an oblique convergent system in West Junggar. Considering the structural pattern 

of the Central Asian puzzle, we discuss the possible origin of oblique subduction, and the 

controls of regional geodynamics on the geometry of the convergent plate boundary. 

 

2. Geological outline 
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2.1. Central Asia 

 

In the central part of the Altaids, a region that extends from central Kazakhstan to Xinjiang 

(northwestern China), three main geological domains are recognized (Fig. 1b). To the 

northeast, (1) the Altai range is composed by Early and Late Palaeozoic units that were 

accreted and docked to the Siberian margin and affected by high-grade metamorphism 

(Windley et al., 2002; Xiao et al., 2004). To the south, the convergence between the Tarim 

Block and several micro continents such as Yili and Central Tianshan formed the (2) 

Palaeozoic Tianshan Orogen (Charvet et al., 2007). The central and northwestern parts of 

Central Asia display a horseshoe shape that can be followed from North Tianshan to West 

Junggar around the Balkash Lake area (Fig. 1b). This megastructure is termed the (3) Kazakh 

Orocline (Zonenshain et al., 1990). In central Kazakhstan, the outer part of the orocline is 

made of micro continents and intra-oceanic arcs, which amalgamated during the Early 

Palaeozoic (Kröner et al., 2008). In the inner part of the orocline, the subduction of the 

Junggar Ocean below the Kazakhstan active margin generated Late Palaeozoic accretionary 

complexes and magmatic arcs (Degtyarev, 1999; Wang et al., 2006; Windley et al., 2007). To 

the north of this domain (Fig. 1b), the Irtysh-Zaisan fold-and-thrust Belt results from the Late 

Carboniferous closure of the Ob-Zaisan Ocean that originally separated the Kazakh orocline 

and the south-western margin of Siberia (Buslov et al., 2004). The Permian-Early Triassic 

transcurrent tectonics that affected Central Asia (Allen et al., 1995; Laurent-Charvet et al., 

2003), eventually dismembered the oroclinal system, displaced segments over more than 1000 

km, and thus disorganised its original structure (Wang et al., 2007; Choulet et al., in press). 

 

2.2. West Junggar 
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West Junggar, a mountainous area located along the Kazakh border in northwestern China, 

forms the easternmost part of the Kazakh orocline (Fig. 1b). It is limited by two major strike-

slip fault systems, the Irtysh-Gornotsaev sinistral shear zone to north and the Chingiz-Alakol-

North Tianshan dextral shear zone to the south (Choulet et al., in press; Fig 1b). Permian 

displacements along these faults have been estimated from several hundreds to more than one 

thousand kilometres (Wang et al., 2007; Choulet et al., in press). These faults represent major 

tectonic boundaries between West Junggar, Altai, and Tianshan. Although detailed 

investigations are rare in West Junggar, several authors have recognized numerous 

stratigraphic and tectonic units (Feng et al., 1989; Buckman and Aitchinson, 2004). The 

section below is a brief summary of the litho-stratigraphic units defined in Choulet et al. 

(unpublished results; Fig. 2a). 

The Chingiz-Tarbagatay Unit in the central part of the West Junggar massif, is composed 

of Early Palaeozoic mélange, turbidite and magmatic arc rocks (Unit I in Fig. 2a; Feng et al., 

1989). The Mayila and Tangbale Units are also formed by Early Palaeozoic ophiolitic 

mélanges and turbidites (Units IVa and IVb in Fig. 2a; Buckman and Aitchinson, 2004). 

Unconformable Middle Devonian conglomerate that overlie Ordovician and Silurian rocks 

argue for a Late Silurian event (XBGRM, 1965). A-type Early Devonian granites intrude the 

Chingiz-Tarbagatay Unit and postdate the pre-Late Silurian accretion-subduction (Chen et al., 

2010). These units with still a poorly documented architecture represent the substratum of the 

Devonian-Carboniferous arcs (Units IIa and IIIa in Fig. 2a). At the end of the Middle 

Devonian, two new subduction zones developed. To the north, the south-dipping subduction 

of the Ob-Zaisan Ocean by generated the Sawuer arc and Erquis accretionary complex (Unit 

IIa and IIb in Fig. 2a; Windley et al., 2007; Shen et al., 2008; Zhou et al., 2008b; Chen et al., 

2010). To the south, the Barliek magmatic arc, and the West Karamay accretionary complex 

are related to the northwest-dipping subduction of the Junggar Ocean (Units IIIa and IIIb in 
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Fig 2a; Feng et al., 1989; Buckman and Aitchinson, 2004; Chen et al., 2006; Xiao et al., 

2008). This magmatic arc–subduction complex assemblage corresponds to the easternmost 

extension of the Kazakh orocline (Choulet et al., in press; Fig. 1b). 

A particularity of West Junggar is the abundant and widespread Late Palaeozoic 

magmatism (Han et al., 2006; Fig 2a), which affected the entire Central Asia (Jahn et al., 

2000). Magmatic suites consist of A-type and I-type plutons, mafic dykes and volcanic rocks, 

emplaced between 320 Ma and 250 Ma (Chen and Jahn, 2004; Li et al., 2004; Han et al., 

2006; Xu et al., 2008; Geng et al., 2009; Yin et al., 2010). A-type granitoids were generated 

either by a partial melting of the depleted-mantle reservoir (Han et al., 1999) or, alternatively, 

by a thermally induced melting of the Palaeozoic juvenile lower crust followed by in situ 

differentiation (Chen and Jahn, 2004; Su et al., 2006); or both processes acting together (Chen 

and Arakawa, 2005; Geng et al., 2009). I-type granitoids stem from the melting of Early 

Palaeozoic juvenile crust (Chen and Jahn, 2004) or a depleted mantle reservoir (Zhou et al., 

2008b). Dolerite and low-Mg diorite dykes dated between 283Ma and 241Ma (Qi, 1993; Li et 

al., 2004; Xu et al., 2008; Zhou et al., 2008a) have a depleted-mantle origin. All these rocks 

have been assigned a post-collisional setting. 

In contrast, 320-300 Ma calk-alkaline rocks with adakitic affinities (Zhang et al., 2006; 

Geng et al., 2009; Tang et al., 2010) and high-Mg diorite dykes (Yin et al., 2010) were 

recently described and slab melting related to ridge subduction was proposed to account for 

their genesis. These new data led several authors to consider that subduction may have 

continued during Permian (Geng et al., 2010; Xiao et al., 2010), but this is not supported by 

field evidence. Actually, eruption of Permian lava flows (Tan et al., 2006) is closely 

associated with the accumulation of Permian coarse red sandstones and conglomerates, 

considered as a post-orogenic molasse (Feng et al., 1989; Allen et al., 1995; Jin and Li, 1999; 
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Buckman and Aitchinson, 2004; Fig. 2b). Undeformed Early Permian molasse postdates 

turbidite accumulation; therefore, subduction likely ended before the Early Permian. 

All the Palaeozoic rocks of West Junggar have been affected by Permian post accretion 

transcurrent tectonics (Allen et al., 1995; Laurent-Charvet et al., 2003; Fig 1b). SW-NE 

trending faults, such as the Dalabute sinistral fault, affect Permian plutons and generate 

cataclasite (Allen et al., 1995; Fig 2b), whilst ductile mylonite is never observed. 

 

3. Age and nature of the West Karamay Unit 

 

West Junggar Mountains are bounded to the east by the Junggar basin (Fig. 2b); in this 

area, low elevation and desert morphology expose discontinuous outcrops. From the bottom 

to the top, the Carboniferous Xibeikulasi, Baogoutu, and Tailegula formations have been 

classically recognized (XBGRM, 1966; 1978; Wu and Pan, 1991); however, similar 

lithologies and the lack of accurate stratigraphic evidence led several authors to reappraise 

this classification (Feng et al., 1989; Buckman and Aitchinson, 2004; Choulet et al., 

unpublished results). In the following section, they will be collectively termed “West 

Karamay Unit” (Fig. 2b; Choulet et al., unpublished results). This unit consists of imbricate 

slices of turbidite, greywacke, and ophiolitic mélange (Feng et al., 1989), described thereafter 

(Fig 2b). 

 

3.1. The turbidite series 

 

In the West Karamay Unit, ca. 10 m-thick alternations of fine-grained grey siltstone and 

blackish mudstone are the predominant lithology (Feng et al., 1989; Li and Jin, 1989; Guo et 

al., 2002; Fig. 3a); in many places, the Permian magmatism and associated high heat flow 
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transformed these rocks into hornfels (Choulet et al., unpublished results; Fig. 2a). In clastic 

rocks, quartz and clay are dominant, but many feldspar and lithic clasts are also preserved 

(Fig. 3b), and coarse-grained, greywacke contains numerous andesite clasts (Fig. 3c). Slumps, 

disrupted soft sandstone beds, Bouma sequences (Fig 3d), and the coexistence of deep-water 

and shallow-water ichnofacies attest to the tectonic instability of the basin and 

resedimentation processes (Jin and Li, 1999). 

Rare fossils of plants, corals and brachiopods do not provide a better age assignment than 

Carboniferous (XBGRM, 1966; Li and Jin, 1989; Wu and Pan, 1991). Recent U-Pb 

geochronological data on detrital zircons yield a maximum Late Carboniferous age (ca. 305 

Ma) for turbidite deposition, which is close to the age of accretion (Choulet et al., 

unpublished results). The positive Hf values of these zircons argue for a juvenile origin 

consistent with an immature active margin (Choulet et al., unpublished results). The bedding 

(S0) is usually apparent in coarse-grained turbidites, but often undistinguishable from the slaty 

cleavage (S1) in black mudstone. Relationships between bedding and cleavage will be 

described and discussed later in this article. Turbidites often dip steeply, however upright 

folds hinges are rarely observed (Fig. 3e). 

 

3.2. The graywacke mass flows 

 

Mass flows are lenses without obvious internal structure intercalated within turbidite series 

(Wu and Pan, 1991; Guo et al., 2002). These discharges of sand-sized volcanic materials can 

reach tens of metres in thickness. Despite highly variable geometry of the mass flow itself, the 

greywacke is very homogenous and occasionally well sorted (Guo et al., 2002); quartz, zoned 

feldspar and volcanic-rock clasts are dispersed in a matrix of fine-grained quartz and clay 

(Fig. 3f). Rock fragments are usually dark andesite, occasionally exposing fluidal texture 
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(Fig. 3g), consistent with a volcanic-arc origin for these volcaniclastic rocks. Greywackes are 

lithologically identical to the volcaniclastic sandstone beds of turbidite sequences. Some of 

these rocks were previously referred to as volcanic tuffs (Wu and Pan, 1991; Buckman and 

Aitchinson, 2004), however, the clayey matrix and rounded clasts clearly rule out a 

pyroclastic origin for this rocks, which otherwise present all the features of volcaniclastic 

turbidites accumulated in a fore-arc basin. Nevertheless, Tournaisian-Visean and Moscovian 

volcanic tuffs are locally associated with greywacke mass-flows (Guo et al., 2010; Zhang et 

al., 2011a), a possible consequence of transient filling-up. 

A U-Pb geochronological study on detrital zircons was performed on a sample of 

greywacke from Sartuohai (Fig. 2a). In coarse-grained greywacke, zircons were separated and 

analyzed by LA-ICPMS at the Institute of Geology and Geophysics, Chinese Academy of 

Sciences, Beijing. Details regarding analytical procedure and instrumentation can be found in 

Wu et al. (2010). Isotopic ratios and individual ages are reported in Table 1. Detrital zircon 

grains are generally euhedral and display growth zoning on cathodo-luminescence images 

(Fig. 4a), a feature consistent with a magmatic origin. The U-Pb Concordia plot displays 

concordant ages, which are considered as crystallization ages (Fig. 4b). The age distribution 

pattern shows one single population mode of 320 Ma and a maximum age of sedimentation 

(the mean of the three youngest concordant grains; Dickinson and Gehrels, 2009) of ca. 305 

Ma (Fig. 4c). 

These results are similar to those obtained from nearby tuff and turbidite (Zhang et al., 

2011a; Choulet et al., unpublished results). Each sample of tuff, greywacke and turbidite 

displays an unimodal age distribution, with a population peak ranging between 330 Ma and 

320 Ma (Fig. 4c). Maximum ages of deposition of both turbidites and greywacke mass flows 

cluster around 305 Ma. The consistency between minimum age of sedimentation and single 

population peak age implies a local and single source for the turbidites and greywacke 
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discharges (Zhang et al., 2011a; Choulet et al., unpublished results). This is consistent with 

the angular shape of detrital zircon grains that indicate short transport from the source to the 

basin (Fig. 4a). The potential sources of these zircon grains are the mid-Carboniferous (Feng 

et al., 1989; Han et al., 2006; Shen et al., 2008; Chen et al., 2010) Barliek and Sawuer 

magmatic arc rocks. 

 

3.3. Ophiolitic and sedimentary mélanges 

 

These rock bodies occur as irregular bands, within the sedimentary series (Fig. 2b). 

Mélanges are characterized by the lack of internal strata continuity and inclusion of various-

sized blocks of oceanic material in a fragmented fine matrix (Greenly, 1919; Raymond, 

1984). In West Junggar, the matrix is usually serpentine or, locally, metasomatized 

serpentine, termed listwaenite (Buckman and Aitchinson, 2004), this material is highly 

sheared and encloses lens-shaped exotic fragments. Many stripes of mélange interleaved with 

sediments are too small for being represented on geological maps; in contrast, two large 

bands, the Dalabute and Karamay mélanges have been mapped in detail (Feng et al., 1989; 

Zhang et al., 2011a; 2011b; Fig. 2b). 

 

3.3.1. The Dalabute mélange 

 

The Dalabute (also called Darbut) ophiolitic mélange crops out on the northwestern side of 

the Dalabute Fault (Fig. 2b). The width of the rock body can reach several kilometres and its 

fabric dips steeply. However, a preserved northwest dipping foliation suggests that the 

ophiolitic mélange lies below the sediments that crop out to the west of the Dalabute Fault 

(Feng et al., 1989; Fig 2c). 
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The mélange also contains serpentinized harzburgite blocks that can reach several tens to 

hundreds of metres near Sartuohai mine (Fig. 2b; 5a), cumulate gabbro, and basalt 

metamorphosed into amphibolite or greenschist (Feng et al., 1989; Fig. 5b). Pillow basalts are 

not uncommon (Fig. 5c). Mafic rocks display OIB, N-MORB or E-MORB affinities (Zhang 

et al., 1993; Wang et al., 2003; Buckman and Aitchinson, 2004; Lei et al., 2008; Gu et al., 

2009; Liu et al., 2009). Since the dismembered nature of the mélange facilitates fluids 

migration, some magmatic rocks have been transformed into roddingite at the boundary with 

the serpentinite matrix (Buckman and Aitchinson, 2004; Fig. 5d). The rheological behaviour 

of serpentinite (Saleeby, 1984) also enhances the exhumation of high-grade metamorphic 

rocks such as blueschists (Feng et al., 1989). Boulders of red chert and recrystallized 

radiolarite are often associated with greenish mafic rocks, giving the landscape its typical 

“coloured mélange” look (Fig. 5e). Sometimes, mixtures of chert, basalt and limestone appear 

within one single block (Fig. 5f), and this close association is a clear evidence for pre-

melange syntectonic sedimentation. Modern analogues of these features can be found at sites 

of oceanic mantle denudation, such as the Gorringe Bank in the Atlantic Ocean (Lagabrielle 

and Auzende, 1982). 

Olistostromes and broken formations are often closely associated with ophiolitic mélange 

stripes; they contain intrabasinal dismembered strata, and exotic blocks as well. Various-sized 

limestone lenses are irregularly distributed along the strike of the Dalabute fault (XBGRM, 

1966; Guo et al., 2002; Fig. 5g). This thin-bedded limestone is highly recrystallized, but 

contains remnants of crinoids and Devonian to Carboniferous rugose corals as well (XBGRM, 

1966). The limestone also locally contains gabbro phacoids associated with sandstone, 

conglomerate and breccia (Fig. 5h), that contain a significant amount of pyroxene, feldspar 

and gabbro fragments (Fig. 5i). The occurrence of mafic clasts argues for syn-tectonic 

sedimentation to have occurred prior to accretion. A detailed structural study of this limestone 
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will be provided in the next section. The sedimentary mélange also contains phacoids of 

greywacke and turbidite, similar to those of the coherent sedimentary units. 

The age of the Dalabute mélange is uncertain since its matrix remains undated. Poorly 

preserved radiolarian fossils in chert blocks indicate a Middle Devonian age (Feng et al., 

1989). Sm/Nd and U-Pb isotopic ages of 395  12 Ma and 391  7 Ma, respectively have 

been obtained on blocks of oceanic gabbro (Zhang et al., 1993; Gu et al., 2009). An E-MORB 

leucogabbro yields a zircon U-Pb age of 302  2 Ma (Liu et al., 2009). This age is very close 

to that of alkaline plutons that obviously postdate mélange emplacement (Geng et al., 2009). 

Since no information on the sampling location of this leucogabbro is available, this rock could 

be a boulder within the mélange, or alternatively a dyke or a sill that crosscuts it. Therefore, 

this date must be considered with caution and will not be used in our discussion. 

 

3.3.2. The Karamay mélange 

 

This stripe of mélange, also called Baijiantan mélange or Baikouquan (Zhu et al., 2008), 

that crops out at the boundary of the Junggar Basin is partly hidden by Mesozoic sediments 

(Fig. 2b). Thus, the breadth of the band is possibly underestimated. Geometrically, the 

Karamay mélange lies below the sedimentary stack; a configuration similar to that of 

Dalabute mélange (Feng et al., 1989). The matrix of the mélange consists of highly sheared 

serpentinite, which encloses various-sized blocks of harzburgite, metagabbro, basalt and chert 

(Fig. 5j, 5k and 5l). Mafic rocks display both OIB and MORB geochemical affinities (Zhu et 

al., 2007; Zhang et al., 2011b). Metamorphic mineral assemblages representative of pressure 

up to 27 kbar are preserved within dolomitic marble and garnet amphibolite blocks (Zhu et 

al., 2008). Exsolution textures in two-pyroxenes lherzolite lenses also attest for high-grade 

metamorphism and deep burial (Zhu and Xu, 2007). 
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The formation of the Karamay Mélange is not well time-constrained. Zircons extracted 

from a gabbro yield two U-Pb ages at 415  8 Ma and 332  14 Ma (Xu et al., 2006), but the 

significance of these ages is uncertain. Based upon regional correlation, and in agreement 

with Geng et al. (2009), and Zhang et al. (2011a), we consider that the Late Silurian-Lower 

Devonian age may come from inherited grains, whilst the Visean age represents the 

crystallization age of gabbro. Zhu et al. (2007) also provide a zircon U-Pb age of 517 Ma on a 

pillow basalt of the OIB type; however, this data will not be considered since it is based on 

one single and highly discordant individual age, only. 

 

3.4. Magmatic and tectonic features of the West Karamay Unit 

 

High-Mg diorite dykes, dated at 3211 Ma, by 
40

Ar-
39

Ar method, were likely formed by 

partial melting of the mantle metasomatised by slab-derived fluid/melt (Yin et al., 2010). The 

calk-alkaline plutons of Baogutu porphyry copper belt intrude the West Karamay unit and 

consist in diorite porphyry stocks that document Late Carboniferous arc magmatism (Shen et 

al., 2009). 315-310 Ma adakites also crop out in the Baogutu area, and a slab melting origin is 

forwarded (Tang et al., 2010). Many circular plutons intrude the West Karamay Unit (Kwon 

et al., 1989; Fig. 2b). The oldest intrusion is dated at 305  5 Ma, but many ages stretch from 

300 Ma to 280 Ma (Kwon et al., 1989; Han et al., 1999; 2006; Chen and Jahn, 2004; Su et al., 

2006; Geng et al., 2009). Recently, diorites with adakitic affinity were interpreted as the result 

of the partial melting of a subducted slab (Geng et al., 2009). An alternative origin of these 

magmas could be a partial melting of the mafic juvenile lower crust consistent with the 

Permian post-accretionary episode (Jahn et al., 2000). However, the slab melting 

interpretation (Geng et al. 2009) does not contradict the post-accretionary setting 

hypothesized for the Late Carboniferous to Permian magmatism, since subduction related 
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magmas can be retained in the crust during a residence time of several millions years (Wang 

et al., 2009). Alkaline magmatism persists until the Late Permian, with the emplacement of a 

doleritic to basaltic dyke swarm (Qi, 1993; Li et al., 2004; Han et al., 2006; Xu et al., 2008; 

Zhou et al., 2008b). 

The West Karamay Unit is divided into two parts by the NE-SW trending Dalabute fault 

(Fig. 2b). This sinistral fault affects post-accretionary plutons, but estimate of its offset is not 

available. Strike slip faulting continued in Early Mesozoic time and intensely disturbed the 

primary Palaeozoic geometry (Allen et al., 1995; Xu et al., 2009). Cenozoic tectonics also 

reactivated most tectonic discontinuities (Avouac et al., 1993); however, this reactivation 

remains weak in West Junggar, compared to Tianshan. 

 

4. New structural evidence for transpression  

 

Within the West Karamay Unit, the deformation is irregularly expressed, depending on the 

lithology and observation scale. 

 

4.1. Mega scale structures of the West Karamay Unit 

 

Mega scale structures are obviously visible on satellite scene (available at 

https://zulu.ssc.nasa.gov/mrsid/ and http://maps.google.com/; Fig. 6a). Lineament analysis 

reveals two types of linear structures within the sedimentary series of the West Karamay unit 

(Fig. 6b). Type 1 lineaments draw kilometre-scale undulations and tens of kilometres wide S-

shaped features (Fig. 6a and b) that are interpreted as mega scale drag-folds with vertical 

axes. Type 2 lineaments display a regular pattern, with two principal directions. To the 

northwest of the Dalabute Fault, the trend is N100°E, whereas to the southeast of the fault, the 

https://zulu.ssc.nasa.gov/mrsid/
http://maps.google.com/
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average direction is N75°E. Such a constant distribution pattern suggests that the type 2 

lineaments represent the slaty cleavage trend developed in the turbidites. 

Field investigations confirm our interpretation of the mega scale structures. At outcrop 

scale, the bedding S0 shows a persistent vertical or steep dip, but a frequently changing strike 

(Fig. 2a; 6c), consistent with the folds with vertical axes inferred from satellite imagery (Fig. 

6a). The pervasive slaty cleavage in fine-grained sedimentary rocks displays a constant 

attitude, which depends upon the location (Fig. 2a; 6d). To the north of Dalabute Fault, the 

cleavage trend is ca. N110°E, whilst, to the south of the fault, its average trend is ca. N70°E, 

fully consistent with satellite observation (Fig. 6a; 6b). 

Although folds with vertical axes are common geologic features, they may generate 

through different mechanisms (Reutter et al., 1991; Fig. 7). They may form by tilting or 

refolding of preexisting upright or recumbent folds (Fig. 7a; 7b). However, the lean by 90° of 

the whole region would require large detachment structures that are totally lacking in West 

Junggar. Moreover, there is no progressive change from gently to steeply plunging fold axes. 

Alternatively, wrench tectonics could directly generate folds with steeply dipping axes (Fig. 

7c). Drag folds with oblique to vertical axes appear in brittle or ductile wrench shear zones 

(Ramsay, 1967; Sanderson, 1979, Berthé and Brun, 1980; Carreras et al., 2005). The 

steepening of the sedimentary series requires a preliminary deformation stage, which is 

locally documented in the Karamay Unit (Wu and Pan, 1991; Zhang et al., 2011a; Fig. 3e). A 

continuum between compression and transpression can also be envisaged and will be 

discussed later in this paper. 

It is worth to note that, on satellite scenes, circular plutons neatly crosscut the two types of 

lineament (Fig. 6a; 6b), thus clearly demonstrating that Late Carboniferous magmatism 

postdates the folding. Moreover, near the Dalabute Fault, both bedding and cleavage deflect 

and progressively become tangent to this NE-SW trending fault (Fig. 6e; 6f). 



 17 

 

4.2. Mesoscale and microscale structures in the West Karamay Unit 

Since West Junggar rocks do not record significant crust thickening, there is also no 

evidence for any ductile deformation and high-grade metamorphism. However, our structural 

investigations reveal that limestone olistoliths, silicified siltstone, well-sorted turbidite, or 

mafic magmatic rocks record a pervasive deformation restricted to a ca. 4-5 km wide band 

along the Dalabute Fault. 

 

4.2.1. Polyphase ductile shearing within limestone olistoliths 

Several hundred of metres to kilometre-scale massive limestone blocks, which crop out 

along the northern side of the Dalabute fault zone (XBGRM, 1966; Guo et al., 2002), draw 

asymmetric S-shaped drag folds (Fig. 8a). The well-defined vertical planar fabric represents 

both bedding and foliation (Fig. 8b). This S0-1 surface is deformed by three types of folds. 

Upright or slightly recumbent folds are rarely observed (Fig. 8c). Folds with vertical axes are 

generally tight or isoclinal (Fig. 8d) and develop a vertical axial plane cleavage striking 

N80°E (Fig. 8e). Multi-scale (from centimetre to several metres) second-phase gentle to open 

folds with similarly steeply plunging axes refold the early folds (Fig. 8a; 8f; 8g). An 

horizontal mineral/stretching lineation (L1) develops on the S0-1 surface (Fig. 8h). 

Limestone blocks are often associated with gabbro and gabbroic sandstone lenses (Fig. 5h; 

5i). The sigmoidal shape of these metre-scale phacoids indicates sinistral shearing. Though 

mafic rocks are too strong to experience ductile deformation, they developed a rough vertical 

foliation. This planar fabric is deflected at the block boundary, in agreement with a sinistral 

shearing along a N60°E direction. Microscopic observation in thin sections perpendicular to 

the foliation and parallel to the lineation (i.e. in the horizontal plane) of limestone and mafic 

sandstone show asymmetric clasts of calcite, quartz or epidote that indicate a left-lateral 
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shearing (Fig. 8i; 8j). The sinistral kinematics of the clayey shear bands that develop in 

sandstone corroborates this interpretation (Fig. 8k). 

Both sinistral and dextral asymmetric fold limbs appear in limestone (Fig. 8f; 8g). S-

shaped open folds, sheared along N30°E and N80°E directions, are distributed along the fold 

long limb (Fig. 8f). In contrast, open to gentle Z-shaped drag folds appear with a north-south 

trend and indicate a dextral sense of shear (Fig .8g). Such a geometry is consistent with a 

conjugate fault configuration (Riedel, 1929). Considering the N50°E sinistral shearing along 

the Dalabute Fault, slightly oblique secondary faults with sinistral kinematics may develop 

along the N°30-N40°E and N°70-80°E directions (R and P-type, respectively, Fig. 8f). The 

highly oblique dextral faults along the N-S direction may correspond to antithetic shear zones 

(R’-type; Fig. 8g). The kinematic indications observed around the Dalabute Fault therefore 

attest for a bulk sinistral shearing. 

 

4.2.2. Evidence for folds with vertical axes in turbidites. 

Ductile fabric and kinematic indicators generally lack in massive greywacke, whilst they 

are widespread in turbidite. In mudstone, a penetrative slaty cleavage (S1) develops and 

generally erases or transposes the sedimentary bedding (S0). In contrast, in coarser-grained 

well-sorted turbidites, the relationships between sedimentary and tectonic fabrics clearly 

appear. Both S0 and S1 are steeply dipping, and make an angle that vary from 0° to 90° in the 

limbs and hinge, respectively (Figs. 9a; 9b and 9c). These metre- to hectometre-scale 

structures are consistent with the megascale folds with vertical axes, inferred from 

observation of satellite scenes (Fig. 6a; 6b). The cleavage trend remains relatively constant 

throughout the West Karamay Unit, except in the vicinity of the Dalabute fault zone, where it 

has been reoriented parallel to the fault (Fig. 6e). Therefore, the regional cleavage may be 
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related to the large-scale folds with vertical axes. Metre-scale isoclinal folds with vertical axes 

also develop in siliceous siltstone of the turbidite series (Fig. 9d and 9e). 

 

5. Discussion 

 

These new structural data raise fundamental questions about the timing and origin of the 

deformation. In this section, we discuss these two points and, on the basis of preexisting data, 

we propose a possible scenario for the West Junggar Palaeozoic evolution in the frame of the 

Central Asia geodynamics. 

 

5.1. The West Karamay Unit: a single Carboniferous accretionary complex 

 

New investigations in West Junggar led us to reconsider the nature and origin of the West 

Karamay Unit. Dalabute and Karamay ophiolitic mélanges probably formed by off scrapping 

oceanic crust materials and bathyal sediments from the lower oceanic plate. Both MORB and 

OIB-like components of the mélange (Zhang et al., 1993; Wang et al., 2003; Zhu et al., 2007; 

Lei et al., 2008; Gu et al., 2009; Liu et al., 2009; Zhang et al., 2011b) argue for an oceanic 

basin (e.g. oceanic crust and seamounts). Pre-subduction features, such as ophiolitic detritism, 

are commonly preserved, but the initial oceanic stratigraphy is completely disturbed (Fig. 5f; 

Feng et al., 1989). Rheologically contrasted oceanic materials generate the disrupted aspect of 

the mélange and allow strain partitioning (Fig. 5a; 5b; 5d; 5j; 5k). Serpentinite is especially 

ductile, even at a low temperature, and may accommodate the bulk of deformation both by 

plasticity and protrusion processes (Saleeby et al., 1984). Boulders of high-strength rocks 

such as gabbro, basalt, and chert, generally preserve their initial magmatic or sedimentary 

structure, and are only deformed at their boundaries (Fig. 5b; 5d; 5j; 5k). However, at high 
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strain rates, phacoids (lens-shaped boulders) are not uncommon. The local occurrence of 

high-grade rocks (eclogite and blueschist; Feng et al., 1989; Zhu and Xu, 2007; Zhu et al., 

2008), in spite of an overall greenschist facies, is probably due to the syntectonic exhumation 

of the deepest parts of the West Karamay Unit, favored by the ductile flow of serpentinite 

matrix. 

Turbidites, greywacke mass flows and olistostrome formations geometrically overlie the 

mélange. Although folded and faulted, sedimentary rocks remain coherent, as suggested by 

type 1 lineaments observed in the satellite images (Fig. 6a). Broken formations, slumps and 

occurrence of allochthonous limestone boulders suggest a syntectonic sedimentation 

developed in an unstable margin. Andesite, pyroxene and plagioclase clasts that are 

widespread in greywacke, turbidite, and mass-flow deposits as well, argue for a nearby 

volcanic-arc source. Finally, the occurrence of one single detrital population of Late 

Carboniferous age within sandstone samples of the West Karamay Unit, demonstrates one 

single and local magmatic-arc source (Fig. 4c). 

The association of turbidites, greywacke, mass-flows and ophiolitic mélange in the West 

Karamay Unit suggest that they formed in an acccretionary complex. Buckman and 

Aitchinson, (2004), Xiao et al. (2008), and Geng et al. (2009) already proposed this 

interpretation, and considered that the Karamay Unit was a combination of three separate 

terranes. They distinguished, i) to the west, the Kulumudi terrane, interpreted as a Devonian 

accretionary wedge, ii) the Karamay terrane, to the east, corresponding to accreted 

Carboniferous oceanic material, and iii) the Sartuohai terrane equivalent to the Dalabute 

mélange and laying in-between the two aforementioned terranes. The Karamay mélange was 

not included in this tectonic analysis. Recently, Zhang et al., (2011a; 2011b) have suggested 

that the eastern and western domains represent two separate accretionary complexes formed 

along two opposite subduction zones. All these models assume that the Dalabute Fault was a 
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major terrane boundary. Our field investigations reveal that the same lithological succession 

is exposed on both sides of the Dalabute Fault. Moreover, evidence of opposite senses of 

subduction is unclear, since the transcurrent deformation erased most of the initial structure. 

Furthermore, the available geochronological data do not confirm the existence of two 

diachronous accretionary complexes; conversely, the eastern and western domains of the fault 

appear genetically and chronologically related. Detailed mapping several tens of years ago, 

already established a similarity of the sedimentary rocks on both sides of the Dalabute Fault 

(XBGRM, 1966). Presently, our lithological, chronological and structural knowledge does not 

allow us to distinguish the Dalabute and Karamay mélanges, since blocks are similar in age 

and nature, and display identical tectonic structures. Finally, the apparent difference between 

Dalabute and Karamay mélanges is only due to the present geometry on both sides of the 

Dalabute Fault (Fig. 10), as discussed in the next section. Therefore, in contrast with 

Buckman and Aitchinson (2004) and Zhang et al. (2011a), we consider only one single West 

Karamay Unit, made of sedimentary series and ophiolitic mélange. 

 

5.2. Timing of the deformation 

 

New U-Pb geochronology on detrital zircons indicates a Late Carboniferous maximum age 

of deposition of turbidites and greywackes (Fig. 4c; 11; Zhang et al., 2011a; Choulet al., 

unpublished results); however, sedimentation may have started earlier, possibly as soon as 

Middle or Late Devonian (XBGRM, 1966; Feng et al., 1989). Since structures in limestone 

boulders are similar to that of turbidites, the deformation obviously took place after 

olistostrome accumulation; thus, all the structures described above result from the same 

tectonic event. Although transcurrent tectonics is prominent throughout the West Karamay 

Unit, an earlier stage of compressive tectonics is locally preserved (Feng et al., 1989; Wu and 
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Pan, 1991; Zhang et al., 2011a). In agreement with these authors, in several places such as 

Sartuohai or Baijiantan, we recognize thrusts and folds that contributed to place the strata into 

an upright position. Then, various-scale folds with steep axes deformed upright strata under 

ductile, low temperature rheological conditions. Firstly, isoclinal to tight folds are 

accompanied by the development of a vertical E-W axial plane cleavage and a shallow 

dipping lineation (Fig. 8d; 8d), and asymmetrical clasts and intrafolial folds indicate a 

sinistral sense of shear (Fig. 8i; 8j). Asymmetrical open or kink-like folds commonly follow 

the early synfolial folds, and developed during the last increments of ductile shearing (Fig. 8f; 

8g). 

Alkaline plutons, dated at ca. 300 Ma (Han et al., 2006; Geng et al, 2009) postdate both the 

compressive and the transcurrent structures (Fig. 6a) that appeared after ca. 305 Ma, which is 

the age of the youngest deformed turbidites. Such a short interval argues for a deformation 

continuum between the compressional and transcurrent events. 

The geometry of the early synfolial folds, the shallow dipping lineation, and the secondary 

folds (Fig. 8f; 8g), suggest accommodation of movements along a major wrench shear zone, 

precursor of the Dalabute Fault, whilst the present fault is only a result of minor reactivation 

in brittle conditions (Fig. 8a). Brittle faulting probably occurred during Permian time, since 

the Late Permian conglomerate and sandstone that crop out along the fault valley, display 

evidence for syn-tectonic sedimentation such as tilted blocks (Zhao et al., 1990; Allen et al., 

1995). Permian palaeomagnetic data from remagnetised turbidites sampled on both sides of 

the fault do not reveal any relative block motion (Choulet et al., in press). This means that 

either the remagnetisation is younger than faulting, or, alternatively, that fault motion was not 

large enough to be recorded by palaeomagnetic investigation. Therefore, the two domains of 

the Karamay Unit, lying on both sides of the Dalabute Fault, initially formed a single 

continuous domain, and Dalabute and Karamay mélanges originally formed one single belt, 
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overlain by disrupted sediments. The present-day offset between the two mélanges can be 

estimated at ca. 110 km (Fig. 10); this bulk value includes the Permian displacements, and 

possible younger reactivations, as well (Gu et al., 2009). 

In summary, two tectonic events may be distinguished in the Karamay Unit (Fig. 11). 

From 340 Ma to 305 Ma, oceanic material derived from the Devonian Junggar Ocean was 

scraped-off and accreted in the wedge. Meanwhile, magmatic-arc rocks intruded the Early 

Palaeozoic substratum or erupted upon it. The accretionary complex was also intruded by 

320-300 Ma diorites with adakitic affinities (Geng et al., 2009; Tang et al., 2010; Yin et al., 

2010). These authors propose that ridge subduction might have provoked the “unzipping” of 

the divergent plate boundary (Thorkelson, 1996) and the opening of a slab window 

(Dickinson and Snyder, 1979). In response, asthenosphere upwelling triggered slab melting, 

and generated adakitic magma (Kay et al., 1993) in the fore-arc region (Marshak and Karig, 

1977; Delong et al., 1979; Hole et al., 1991). Eroded volcaniclastic material fed the fore-arc 

basin and the accretionary wedge, where they formed syntectonic turbidites and mass-flow 

deposits. The occurrence of sub-contemporaneous upright folds and folds with vertical axes 

during the 305-300 Ma interval suggests transpression coeval with oblique accretion in the 

West Karamay Unit. The 305-300 Ma period also represents the transition from accretion to 

post-accretion setting. During this period, both alkaline and calk-alkaline magmatic rocks are 

recorded (Geng et al., 2009; Fig. 10), but no evidence of a Permian subduction can be found 

in the sedimentary and tectonic records, as well (Feng et al., 1989; Buckman andAitchinson, 

2004). Permian brittle transcurrent tectonics coexists with molasse deposition and alkaline 

magmatism (Fig. 10). In contrast with Tianshan and Altai regions, where Permian post-

accretion plutons display the features of synkinematic intrusions, controlled by strike-slip 

shear zones (Laurent-Charvet et al., 2003; Wang et al., 2009; Pirajno, 2010), West Junggar 
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plutons do not present fabrics related to a syntectonic emplacement. This may infer either a 

post-kinematic intrusion, or, alternatively, shallow level emplacement. 

The lack of continuity of the West Karamay Unit and Dalabute Fault along strike prevents 

any accurate calculation of the bulk offset. A series of NW-SE trending strike-slip faults 

hinders the relationship between the West Karamay Unit and the Early Palaeozoic Mayila 

Unit. In addition, the connection between the West Karamay Unit and the Early Palaeozoic 

basement is also unknown, since the deeper parts of the accretionary complex have not been 

exhumed yet. 

 

5.3. Oblique subduction driven by oroclinal bending 

Transpression within an accretionary complex evokes oblique subduction (McCaffrey, 

1992). Decoupling of oblique plate convergence into a normal component and a shear 

component could explain the coexistence of compressive and transcurrent tectonics. Such 

tectonics features are documented in South America or New Zealand (Reutter et al., 1991; 

Henderson, 1987). These authors recognized en-echelon fault systems and vertical folds that 

superimposed on compressive episodes in connection with oblique subduction. Considering 

these analogues, we suggest that the West Karamay Unit also formed during oblique 

subduction.  

This interpretation raises the issue of oblique subduction inception. Oblique subduction 

may result either from a changing lower plate vector, or, alternatively, from a modification of 

the geometry at the boundary between the upper and lower plates (McCaffrey, 1992). 

Constraints are not available to check the first option, since the oceanic domains completely 

disappeared by subduction. The second option could account for the development of an 

oblique convergence in West Junggar. The West Junggar magmatic arc and the accretionary 

complex can be extended westward into the Kazakh orocline (Fig. 1b). A complex evolution 
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of this megastructure is documented by the palaeomagnetic data obtained in the three 

segments of the orocline (Abrajevitch et al., 2007; 2008; Levashova et al., 2003; 2009). Since 

Late Devonian time, the convergence of Tarim and Siberia caused a bending of the NW-SE 

trending Middle Devonian active margin (Abrajevitch et al., 2008). In response to this 

buckling, the magmatic arc segmented into three parts that formed the Kazakh orocline (Fig. 

12). These three segments rotated around a vertical axis during the tightening that led to the 

closure of the Junggar Ocean. A continuous subduction until the Late Carboniferous 

eventually closed the internal oceanic domain (Abrajevitch et al., 2008). 

In order to relate this geodynamic scenario with the structural observations and to explain 

how oroclinal bending controlled the development of the tectonic features, we propose a 

comparison with Cenozoic to modern active margins. According to Beck et al. (1994), the 

association of an oblique subduction with the convex shape of Western North America plate 

toward the Pacific Plate has strongly favoured the lateral displacement since at least Mesozoic 

times. In contrast, the oceanward concave shape of the South American plate characterized 

the configuration of the Bolivian orocline that inhibited or at least limited sideways 

transports. However, oblique slip was accommodated by internal transpression in the 

accretionary complex and in the magmatic arc (Reutter et al., 1991; McCaffrey, 1992). In 

comparison, until the Late Carboniferous (ca. 305 Ma; Fig. 12), West Junggar, affixed to the 

bend structure of the Kazakh orocline, constituted its easternmost extension. The horseshoe 

shape, deduced from the available palaeomagnetic data, suggests an oceanward concave 

active margin (Abrajevitch et al., 2008; Fig. 12). Since relative rotations of the arms, at the 

lithosphere scale can reach several tens of degrees, the subduction vector with respect to the 

plate margin changed during the Late Devonian and Carboniferous. During this period, ridge 

subduction likely occurred, and the resulting slab window probably enabled emplacement of 

adakitic magma in the fore-arc region (Geng et al., 2009; Tang et al., 2010; Yin et al., 2010). 
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The “unzipping” of the ridge during subduction can also facilitate transcurrent deformation in 

the overriding plate (Thorkelson, 1996). Since no lateral displacements in the upper plate are 

documented, we propose that the concavity of the subduction zone with respect to the oceanic 

plate generated a transform margin, and a configuration similar to the Bolivian Orocline 

(Beck et al., 1994). In response, folds with vertical axis developed in West Junggar (Fig. 12). 

Since the Ob-Zaisan Ocean (that originally separated West Junggar and Siberia during the 

Palaeozoic) closed in Late Carboniferous time (Windley et al., 2007), the northern segment of 

the orocline was at that time, affixed to Siberia. This probably played the role of a buttress 

(Beck, 1991) and hindered the localization of the transcurrent deformation along strike-slip 

faults. 

During the latest Carboniferous (ca. 305-300 Ma), subduction partly ended around the 

orocline, which had reached ca. fifty per cent of the present curvature only (Abrajevitch et al., 

2008). The additional fifty per cent of buckling are supposed to be due to large-scale Permian 

block rotations along major shear zones (Van der Voo et al., 2006; Abrajevitch et al., 2008; 

Wang et al., 2007; Choulet et al., in press; Fig. 12). This transcurrent episode partly 

dismembered the horseshoe. At that time, West Junggar was separated from the northeastern 

segment of the orocline by the Chingiz-Alakol-North Tianshan fault. The resulting Permian 

counterclockwise rotation of West Junggar with respect to Kazakhstan probably increased the 

obliquity of the convergence and modified the shape of the active margin (Choulet et al., in 

press; Fig. 12). The new Permian convex shape of the convergence zone towards the Junggar 

microcontinent may have initiated transcurrent displacements along the Dalabute Fault, and 

duplication of the accretionary complex (Fig. 12). 

In this study, we have considered that the basement of the Junggar basin was a 

microcontinent, but we do not want to speculate much about its nature. Many hypotheses 

have been proposed, like a trapped oceanic basin (Hsü, 1989; Carroll et al., 1990), a 
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Precambrian crust (Wu, 1987; Chen et al., 2002), or a Palaeozoic juvenile crust (Chen and 

Jahn, 2004; Hu et al., 2000). Here, we assume that the Junggar microcontinent is a composite 

consolidated tectonic block and not a Precambrian craton. However, our results can suggest 

an alternative origin for the Carboniferous magmatic arc-rocks and accreted materials, drilled 

below the Mesozoic infill of the Junggar basin (Zheng et al, 2007). Until now, these rocks 

were hypothesized to belong to an arc-accretionary complex system, independent of the West 

Karamay Unit (Zhang et al., 2011a; 2011b) that collided with the West Junggar margin. 

Alternatively, based on our observations in the West Karamay Unit, we suggest that the units 

hidden below the Junggar basin are equivalent to the West Karamay and Barliek Units, and 

therefore, are fragments of the same Late Palaeozoic subduction-accretion complex. The 

present-day geometry is related to major Permian strike-slip faults, such as the Dalabute Fault 

that transported magmatic-arc rocks and accreted units along the margin. This model is in 

agreement with that of Wang et al. (2003) who proposed that West Junggar results of the 

lateral imbrication of a shredded single Palaeozoic active margin. However, our observations 

only document Carboniferous and Permian “Sunda-style” tectonics, and there is no evidence 

for such a similar continuous tectonics since the Early Palaeozoic. 

This article only focuses on the prominent tectonic features of the accretionary complex, 

and we did not consider the tectonic response of the magmatic arc to oblique convergence. 

However, the thermal softening of the lithosphere in the magmatic arc region probably 

favoured transcurrent deformation of the upper plate (Beck, 1983).  

 

6. Conclusion 

 

This study emphasizes the role of the transcurrent tectonics that affected West Junggar 

during the Late Palaeozoic. The tectonic structures at various scales include folds with 
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vertical axes and strike-slip faults that can be interpreted as the tectonic response of the 

accretionary complex to the forces acting at the boundary between the West Junggar and 

Junggar oceanic plates. The geometry and kinematics indicators suggest an oblique slip of the 

lower oceanic plate. Ridge subduction, traced by the adakitic rocks also supports oblique 

geometry. Non-frontal subduction directly results from the formation of the Kazakh orocline 

that provoked the bending of the subduction zone and subsequent block rotations. This 

specific tectonic setting controlled the style of deformation and strain partitioning, with two 

consecutive episodes of folding and strike-slip faulting. 

These tectonic events have deeply altered the original geometry of the accretionary 

complex, and reorganized the West Karamay unit. The ca. 100 km lateral displacement is 

responsible for the partial duplication of the accretionary complex, the thickness of which is 

probably overestimated. 

In West Junggar, and in Central Asia as a whole, the production of juvenile crust accounts 

for vertical growth of the continents (Jahn et al., 2000; Jahn, 2004; Han et al., 2006). 

Nevertheless, as suggested by Xiao et al. (2010), the continental crust growth in the Altaids is 

a combination of both lateral and vertical processes. Vertical addition of mantle-derived 

magmas contributed to the formation of the juvenile continental crust, but lateral transport by 

strike-slip faults of this newly formed crustal material reorganized the primary tectonic 

pattern formed during accretion. Although the geological data gathered during the last two 

decades are not consistent with one single long-lived subduction, the collage model proposed 

by Sengör et al. (1993), which emphasized the importance of the lateral tectonic transport, 

remains still valid for the Late Palaeozoic evolution of the Altaids. 
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Figure captions 

Table 1: La-ICPMS U-Pb detrital zircon data. *: Degree of discordance. 

Figure 1: a) location of the Altaids including major cratons and orogenic belts of Eurasia. b) 

structural map of western Altaids, modified after Windley et al. (2007) and Charvet et al. 

(2007). The Devonian to Carboniferous Kazakh orocline lying on the pre-Devonian 

Kazakhstan microcontinent is the major structure of this region. The nature of the 

microcontinent in the core of the orocline, below the Junggar basin is still controversial, and a 

discussion on this topic is beyond the scope of this paper. Major faults are also represented. 

BOLE: Bole Block, CANTF: Chingiz-Alakol-North Tianshan, CKF: Central Kazakhstan 

Fault, DF: Dalabute Fault, IGSZ: Irtysh-Gornotsaev Shear Zone, MTF: Main Tianshan Fault, 

NNTL: Nalati-Nikolaiev Teconic Line, TTF: Talas-Fergana Fault. 

Figure 2: a) map of West Junggar Mountains, showing the different tectonic units. Two pairs 

of Late Palaeozoic accretionary complexes and magmatic arcs overlie an Early Palaeozoic 

substratum, itself formed by arc magmatism and accretion. The location of samples described 

in this article is also presented. b) structural map of the West Karamay Unit. This unit is in 

fault contact with the surrounding Barliek, Mayila and Tangbale units. The West Karamay 

unit is an accretionary complex that comprises Early to Late Carboniferous sedimentary rocks 

(turbidite series and mass-flow greywacke deposits) and ophiolitic mélanges. The NE-SW 

trending Dalabute fault separates the unit in two parts. c) geological section across Barliek 

magmatic arc end West Karamay accretionary complex. P: Permian, Mz-Cz: Mesozoic and 

Cenozoic sedimentary rocks. 

Figure 3: Photographs of turbidites and greywackes from the West Junggar sedimentary units. 

a: turbidites made of decimetre-scale alternation of medium to coarse-grained volcaniclastc 
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sandstone (45.9808°N; 85.3093°E), b: microphotographs of lithic, feldspar and quartz clasts 

within turbidite sandstone (45.7233°N; 84.4516°E), c: fine-grained andesite clast frequently 

appearing within  turbidites (45.7233°N; 84.4516°E), d: syn-sedimentary load casts structures 

of sandstone-siltstone beds in turbidites (45.8675°N; 84.6934°E), e: upright fold in the 

turbidites (45.8702°N; 85.2176°E), f: microphotograph of greywacke showing plagioclase, 

amphibole and pyroxene clasts within a clayey matrix (45.7214°N; 84.4593°E), g: andesite 

clast with well-expressed fluidal texture in  greywacke mass-flow deposit (45.7214°N; 

84.4593°E). 

Figure 4: a: cathodoluminescence image of representative detrital zircon grains from sample 

DJ155, showing grain and spot numbers, and 
206

Pb/
238

U for each analysed spot, b: Concordia 

plot of U-Pb isotopic ratios from zircons of sample DJ155, c: relative probability diagrams for 

detrital zircons of samples DJ155, 08YY-02 (Zhang et al., 2011) and DJ15 (Choulet et al., 

unpublished results). 

Figure 5: Photographs of the main lithologies represented within ophiolitic and sedimentary 

mélanges. a: pyroxenite block within a serpentinite matrix of the Dalabute mélange, near 

Sartuohai (45.9847°N; 84.9155°E), b: phacoidal blocks of basalts and gabbro, 

metamorphosed into the greenschist facies, southwest of Sartuohai (45.8698°N; 84.6832°E), 

c: pillow basalt block, northwest of Sartuohai (46.0895°N; 84.8138°E), d: roddingitized dyke 

within the Dalabute ophiolitic mélange, along the Dalabute River (45.8609°N; 84.7275°E), e: 

metric block of red chert within the serpentinite matrix, near Sartuohai (45.9067°N; 

84.7743°E), f: mixture of red shale and fine-grained green rocks (probably hyaloclastic 

basalt), west of Karamay (45.9847°N; 84.9155°E); this facies denotes  pre-accretion but syn-

tectonic sedimentation upon the oceanic plate (45.7915°N; 84.5622°E), g: decimetre-scale 

lenses of limestone within the turbiditic sequence, north of Karamay (45.6937°N; 84.8486°E), 

h: round-shaped block of undeformed gabbro within a strongly deformed limestone lens, west 
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of Karamay (45.7199°N; 84.4619°E), i: microphotograph of gabbroic sandstone, exposing 

plagioclase (plg), pyroxene (px) and epidote (ep) angular clasts in a fine-grained matrix of 

quartz and clay, West of Karamay (45.7199°N; 84.4619°E), j: photograph of horizontal 

surface, showing vertically dipping schistose serpentinite matrix that supports chert and 

greenstone boulders, Karamay mélange, north of Karamay (45.9595°N; 84.2975°E), k: 

sigmoidal block of basalts within the Karamay mélange (45.9595°N; 84.2975°E), l: round-

shaped block of gabbro within the serpentinite matrix of the Karamay mélange (45.9595°N; 

84.2975°E). 

Figure 6: a: satellite map of southeast of West Junggar Mountains (Landsat 7 image 

downloaded from https://zulu.ssc.nasa.gov/mrsid/mrsid.pl), b: interpretative map of 

lineaments, with the 2 major trends. Type 1, which is marked by small undulations 

corresponds to the bedding. Type 2 lineaments display regular N110°E and N80°E trending 

directions, to the north and to south of Dalabute Fault, respectively. Type 2 linear trend 

corresponds to the cleavage, c: stereoplot of field measurements of the bedding of the 

turbidites. Though a preferred NE-SW trending direction is visible, the bedding is variable in 

trend but constantly dips vertical, d: stereoplot of the cleavage of the turbidite, deduced from 

field measurements on both sides of the Dalabute Fault. In average, the vertically dipping 

cleavage is trending N75°E, to the southeast of Dalabute Fault, and N100°E to the northwest 

of the fault, e: detailed satellite photograph of the northermost part of the West Karamay unit 

(located in fig. 6b), f: interpretative map of fig. 6e, showing the vertical folds in turbidite. The 

deflection of the bedding close to the Dalabute Fault is in agreement with a sinistral 

kinematics. 

Figure 7: schematic diagrams showing the three possibilities to generate folds with vertical 

axes. a: 90° rotation of  the fold axis of a preexisting upright fold. b: 90° rotation of both 

axial plane and fold axis of an early recumbent fold. c: drag folding along a shear zone (e.g. 
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the Dalabute sinistral strike-slip fault) that induces rotations around a vertical axis of both 

axial plane and fold axis of a preexisting upright fold. 

Figure 8: photographs of structures within limestone olistoliths along the Dalabute Fault. a: 

Aerial photograph of a deformed limestone lens located in fig. 6b (45.6928°N; 84.4101°E). 

The general trend of the ribbon is NE-SW and parallels the Dalabute Fault (DF), but, locally, 

draws S-shaped drag fold consistent with sinistral kinematics along the fault, b: vertically 

schistosed beds of limestone representing a S0-1 fabric (45.7199°N; 84.4619°E), c: upright to 

NW verging fold inside limestone (45.7199°N; 84.4619°E), d: horizontal surface exposing 

isoclinal fold with vertical axis (45.7084°N; 84.4412°E), e: stereoplot showing the vertical 

axis of the folds and vertical dip of the N80°E trending cleavage within the limestone, f: S-

shaped drag fold indicating Riedel P-sinistral shears (45.6928°N; 84.4101°E), g: subsidiary Z-

shaped drag fold indicating Riedel R'-dextral shears (45.6928°N; 84.4101°E). The geometric 

configuration of S and Z-shaped drag folds is consistent with a NE-SW sinistral strike-slip 

fault, h: horizontal lineation supported by the vertical cleavage of limestone (45.7084°N; 

84.4412°E), i: microphotograph of a sigmoid clast of an altered feldspar (fd, 45.6928°N; 

84.4101°E), j: microphotograph of a deformed crinoid fragment made of calcite (cc, 

45.6928°N; 84.4101°E), k: clayey shear bands indicating (45.5747°N; 84.2464°E). The i, j 

and k pictures show microstructures documenting sinistral kinematics. 

Figure 9: a, b and c: field photographs showing the geometric interactions between the 

bedding (S0) and the cleavage (S1), with parallel (a), oblique (b) and perpendicular 

intersections (c), respectively, from northwest of Karamay (45.7777°N; 84.5174°E). The 

distribution in map of these structures display folds with vertical axes of several metres 

amplitude. In fig. 8b, the penetrative character of the S1 cleavage depends on the lithology. d 

and e: examples of 10 cm-scale isoclinal folds with vertical axis developed in silicified 

siltstones (45.3978°N; 83.4024°E). 
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Figure 10: a: 3D diagram of the West Karamay unit and surrounding units. Upright and 

vertical folds, and thrust deform the accretionary complex. These structures are postdated by 

the Late Carboniferous plutons. Transcurrent events marked by strike-slip fault affected the 

region, during the Permian. The 110 km of displacement along the Dalabute fault is estimated 

by the present offset of the two mélange belts. 

Figure 11: synoptic chart of the major episodes of magmatism, deformation and 

sedimentation that affected West Junggar during Carboniferous and Permian. The 

Carboniferous is marked by syn-accretion sedimentation, and is accompanied by a continuous 

deformation, and magmatism in the arc and fore-arc regions. The Late Carboniferous to 

Permian stage is characterized by moderate continental erosion, alkaline magmatism and 

transcurrent brittle deformation. Hachures in boxes correspond to periods where age 

assignment is uncertain. 

Figure 12: tentative reconstruction of the Late Paleozoic evolution of West Junggar in the 

regional frame of Central Asia. The time-evolution in Kazakhstan and northwestern China is 

based on palaeomagnetic data (Van der Voo et al., 2008; Choulet et al., in press). 

Carboniferous closure of the Junggar Ocean by oroclinal bending lead to buckling of the 

active margin (1); subsequent relative rotation of a part of this margin give an oceanward 

concave shape of the margin and induced obliquity of the subduction zone. Ridge subduction 

may also be implicated in this process (2). Such a configuration may have favoured 

continuous deformation inside the upper plate and impeded large transcurrent displacements. 

In Late Carboniferous (305 Ma), oceanic domains have almost disappeared by subduction, 

and in response to the buckling of the margin, large transcurrent faults started to develop (3); 

this led to the destruction of the orocline and induced opposite relative rotations of West 

Junggar and North Kazakhstan ribbon margins (4). During the Permian (280 Ma), the 

counterclockwise rotation of West Junggar modified the geometry of the oblique convergent 
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zone that turned into a convex shape toward Junggar (5); it may favour the initiation of strike-

slip faults and lateral displacement of units within West Junggar. The continuous transcurrent 

faulting throughout Central Asia (6) probably kept up this "Sunda style tectonics". KZK: 

Kazakhstan, NTS: North Tianshan, WJG: West Junggar. Faults abbreviations are the same as 

in figure 1b. 
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