
HAL Id: insu-00616338
https://insu.hal.science/insu-00616338

Submitted on 1 Sep 2011

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

The Messinian Salinity Crisis in the Dacic Basin (SW
Romania) and early Zanclean Mediterranean-Eastern

Paratethys high sea-level connection
Jean-Pierre Suc, Damien Do Couto, M.C. Melinte-Dobrinescu, Rodica

Macalet, Frédéric Quillévéré, Georges Clauzon, Istvan Csato, Jean-Loup
Rubino, Speranta-Maria Popescu

To cite this version:
Jean-Pierre Suc, Damien Do Couto, M.C. Melinte-Dobrinescu, Rodica Macalet, Frédéric Quillévéré, et
al.. The Messinian Salinity Crisis in the Dacic Basin (SW Romania) and early Zanclean Mediterranean-
Eastern Paratethys high sea-level connection. Palaeogeography, Palaeoclimatology, Palaeoecology,
2011, 310 (3-4), pp.256-272. �10.1016/j.palaeo.2011.07.018�. �insu-00616338�

https://insu.hal.science/insu-00616338
https://hal.archives-ouvertes.fr


1 
 

Palaeogeography, Palaeoclimatology, Palaeoecology (2011) 

doi:10.1016/j.palaeo.2011.07.018 

 

 

The Messinian Salinity Crisis in the Dacic Basin (SW Romania) and 

early Zanclean Mediterranean – Eastern Paratethys  

high sea-level connection   

 

Jean-Pierre Suc
a 

*, Damien Do Couto
a,b

, Mihaela Carmen Melinte-Dobrinescu
c
,  

Rodica Macaleţ
d
, Frédéric Quillévéré

e
, Georges Clauzon

e
, Istvan Csato

g
,  

Jean-Loup Rubino
h
, Speranta-Maria Popescu

i 

 

a, Institut des Sciences de la Terre de Paris (UMR 7193 CNRS), Université Pierre et Marie Curie, 4 place 

Jussieu, case 117, 75252 Paris Cedex 05, France 

b, Université d'Orléans, CNRS/INSU, Institut des Sciences de la Terre d'Orléans - UMR6113, Campus  

Géosciences, 1A rue de la Férollerie, 45071 Orléans Cedex 2, France 

c, National Institute of Marine Geology and Geoecology, 23-25 Dimitrie Onciul street, P.O. Box 34-51, 70318  

Bucharest, Romania 

d, National Institute of Hydrology and Water Management, 97 Bucuresti-Ploiesti Road, 013686 Bucharest, 

Romania 

e, Laboratoire de géologie de Lyon : Terre, Planètes, Environnement (UMR 5276 CNRS), Université Lyon 1, 

27-43 boulevard du 11 Novembre 1918, 69622 Villeurbanne Cedex, France 

f, C.E.R.E.G.E. (UMR 6635 CNRS), Université Paul Cézanne, Europôle de l’Arbois, BP 80, 13545 Aix-en- 

Provence Cedex 04, France 

g, Department of Geology, Collin College, 2800 Spring Creek Pkwy, Plano TX 75075, United States of America 

h, TOTAL, TG/ISS, CSTTF, Avenue Laribeau, 64018 Pau Cedex, France 



2 
 

i, Institut de Physique du Globe de Paris et Université Paris Diderot (Sorbonne Paris-Cité), UMR CNRS 7154, 1 

rue Jussieu, 75238 Paris Cedex 05, France 

 

*Corresponding author. Tel.: +33 6 82 14 35 26, +33 4 78 97 33 05 

 

E-mail address: jeanpierre.suc@gmail.com (J.-P. Suc).     

 

Abstract 

New field observations and fossil analyses complete and clarify the strong impact of the 

Mediterranean sea-level changes linked to the peak of the Messinian Salinity Crisis on the 

Dacic Basin in southwestern Romania. In addition to the Gilbert-type fan delta already 

evidenced along the Danube River in the area of Turnu Severin, a new Gilbert-type fan delta 

is described northward. Early Zanclean bottomset beds are evidenced and dated based on 

nannofossils at the junction of the two coalescing Gilbert-type fan deltas. A clear 

sedimentological, morphological and chronologic differentiation is established in the area 

between the Carpathians Late Miocene piedmont alluvial fans and the early Zanclean Gilbert-

type fan deltas. The early Zanclean age of the Hinova clays, where the bottomset beds of the 

Gilbert-type fan deltas are mostly developed, is confirmed by the occurrence of nannofossil 

markers of Subzone NN12b and a Bosphorian mollusk macrofauna. Early Zanclean inflow of 

Mediterranean marine waters into the Dacic Basin is also supported by the record of 

planktonic foraminifers. In the Dacic Basin, the Messinian Salinity Crisis resulted in the 

cutting of the Iron Gates by a Carpathians river. Fluvial erosion also affected the residual 

Pannonian Basin and probably catched the palaeo-Tisza River which contributed to the 

erosion of the Iron Gates and to the fluvial drainage of the partly desiccated Dacic Basin. 

Arguments are reinforced in favor of a marine gateway between the Mediterranean and Dacic 

Basin through the Balkans before and after the Messinian Salinity Crisis.  
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Highlights: > Two earliest Pliocene Gilbert-type fan deltas occur in the Turnu Severin area. > 

They are separated from the Late Miocene Carpathians piedmont by an erosional contact. > 

Messinian fluvial erosion cut the Iron Gates and impacted also the Pannonian Basin. > 

Earliest Pliocene Mediterranean marine inflows entered the Dacic Basin (Bosphorian). > A 

marine gateway crossed the Balkans before and after the Messinian Salinity Crisis.  

 

1. Introduction 

Up to the late nineties, the research on the relationships between the Mediterranean and 

Paratethys during the Late Neogene focused on the building of stratigraphic correlations 

(Seneš, 1973; Marinescu et al., 1998). This matter became crucial when Late Miocene and 

Early Pliocene marine nannoplankton influxes were discovered in the Eastern Paratethys (Fig. 

1a; Mǎrunţeanu and Papaianopol, 1995; Semenenko and Olejnik, 1995; Mǎrunţeanu and 

Papaianopol, 1998; Drivaliari et al., 1999; Clauzon et al., 2005; Snel et al., 2006). When 

compared to the already evidenced entrance of Paratethyan organisms into the Mediterranean 

known as the “Lago Mare” facies (Gignoux, 1950; Ruggieri, 1962; see for recent syntheses: 

Orszag-Sperber, 2006; Popescu et al., 2009; and references therein) such occurrences 

stimulated new research and the direction of water in- and outflows between the Paratethys 

and Mediterranean was intensely discussed (CIESM, 2008). In the area of Turnu Severin 

(Dacic Basin, SW Romania; Fig. 1), Clauzon et al. (2005) evidenced a Bosphorian Gilbert-

type fan delta, which was referred to the early Zanclean based upon Mediterranean 

nannofossils and magnetostratigraphy for its subaqueous portion and upon mammals and 

magnetostratigraphy for its subaerial portion (see also Popescu et al., 2006). An erosional 
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contact was observed between such a fan delta and the older rocks which, as a consequence, 

was referred to the Messinian Erosional Surface (Clauzon et al., 2005). 

The interpretation of the Turnu Severin deposits by Clauzon et al. (2005) has been questioned 

based on two lines of reasoning. (1) Jipa (1997) and Olteanu and Jipa (2006) interpreted them 

as a piedmont alluvial fan facies derived from the uplift of the Carpathians. (2) Krijsman et al. 

(2010) dated the marine influx from the Mediterranean as early Odessian (Early Pontian) and 

considered the Turnu Gilbert-type fan delta as pre-Meotian (see Table 1 for the compared 

standard and Eastern Paratethys chronostratigraphic scales). 

In this paper, we provide new data from this area (Fig. 2) in order to (1) better differentiate 

the Turnu Severin Gilbert-type fan delta from the Carpathian piedmont alluvial fans, and (2) 

clarify its age.  

 

2. Previous information on the Turnu Severin series 

Clauzon et al. (2005) proposed an early Zanclean age for the bottomset beds of the Turnu 

Severin Gilbert-type fan delta exposed at Hinova. The lowermost nannoflora from the thin 

coquina at Hinova (locality 7 in Figure 2, here called Hinova a) was studied in 1998 by M. 

Mǎrunţeanu and published in Clauzon et al. (2005). It contained Reticulofenestra minuta, R. 

pseudoumbilicus, R. minutula, R. doronicoides, Calcidiscus leptoporus, Coccolithus 

pelagicus, Helicosphaera kamptneri (Clauzon et al., 2005). Such an assemblage was 

considered to immediately postdate the Messinian Salinity Crisis (MSC) with respect to Raffi 

et al. (2006), but we did not unambiguously demonstrate the proposed earliest Zanclean age 

(Clauzon et al., 2005). This coquina level immediately overlies an oxidized thin yellow sand 

(Popescu, 2001). Respectively, 10 m and 15 m above, two additional samples provided a 

similar nannoflora associated with Sphenolithus abies, Amaurolithus primus and Nicklithus 

(ex. Amaurolithus) amplificus, the latter (highest occurrence at ca. 5.9 Ma; Raffi et al., 2006) 
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being considered as reworked by Clauzon et al. (2005). Palaeomagnetic analysis on four 

samples from the light grey sandy clays of the Hinova a section also yielded results consistent 

with the proposed earliest Zanclean age (Popescu et al., 2006). Table 1 provides the present-

day accepted standard chronostratigraphy for the last 15 Ma (Lourens et al., 2004) and its 

equivalent in the Eastern Paratethys (Vasiliev et al., 2004; Krijgsman et al., 2010). 

Krijgsman et al. (2010, p. 188) questioned this age on the basis of the geological maps of 

Turnu Severin (Savu and Ghenea, 1967) and Baia de Aramǎ (Nǎstǎseanu and Bercia, 1968) 

where these deposits are considered as pre-Maeotian (i.e. older than at least 8 Ma; Table 1). 

However, the bottomset beds of the Turnu Severin Gilbert-type fan delta are mapped as 

Pontian deposits (Fig. 2; Savu and Ghenea, 1967). Savu and Ghenea (1967) specify that 

between Bistriţa and Pd. Stîrmina (Fig. 2), (1) these Pontian deposits are constituted of Lower 

Pontian
1
 clays conformably overlain by Upper Pontian (Bosphorian) clays both with a typical 

mollusk fauna (Table 2), and (2) the Bosphorian clays are covered by thick whitish sands (80-

100 m). However, according to Marinescu (1978), only Bosphorian clays are exposed 

between Şimian and Bistriţa, i.e. very close to the Hinova a section (Fig. 2). Attribution by 

Krijsgman et al. (2010) of a Bosphorian age to the Hinova a section (Fig. 2) is challenged by 

the mollusk fauna identified by I. Papaionopol in 1998 with F. Marinescu and published in 

Clauzon et al. (2005) including the Bosphorian markers Limnocardium emarginatum, L. 

petersi, Dreissena rostriformis, Dreissenomya aperta, Phyllocardium planum planum (Table 

2). At Hinova, Clauzon et al. (2005) showed that the whitish sands are the foreset beds of the 

Turnu Severin Gilbert-type fan delta. The marine-continental transition of such a fan delta 

                                                           
1
 This Lower Pontian probably includes the Odessian and Portaferrian regional stages (Table 

1) as the mollusk fauna listing shows both Paradacna abichi (running from Odessian to 

earliest Bosphorian) and Congeria rhomboidea rhomboidea (marker of Portaferrian) (Table 

2). 
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occurs at an elevation of 220 m, marked by the lowermost lignite of the Late Neogene series, 

which is overlain by whitish sands of the topset beds. Northward, sandy foreset beds are 

replaced by alternating lignites – clays – sands magnetostratigraphically dated as Early 

Pliocene (Popescu et al., 2006).  

Savu and Ghenea (1967) did not extend the Bosphorian age of the Bistriţa – Pd. Stîrmina 

upper clays to the pebbly and sandy foreset beds exposed from Gura Văii to Turnu Severin 

probably because the concept of Gilbert-type fan deltas was not yet widely developed. They 

considered a pre-Maeotian age (Table 1) for the Gura Văii – Turnu Severin pebbly and sandy 

beds because they are similar to well-dated deposits northward in the region. Krijgsman et al. 

(2010) rejected the Bosphorian age of the Hinova upper clays and preferred a pre-Maeotian 

age for the whole Gilbert-type fan delta of Turnu Severin. They concluded that there was no 

marine influx from the Mediterranean into the Dacic Basin during the Bosphorian (Table 1). 

However, this conclusion is contradicted by the occurrence of Ceratolithus acutus (1) at 388 

m depth in the Ţicleni well (area of Tîrgu Jiu; Fig. 1b) in clays overlying Portaferrian deposits 

(Drivaliari et al., 1999; Popescu et al., 2006) and belonging to the lateral extension of the 

bottomset beds of the Gilbert-type fan delta of Turnu Severin (Clauzon et al., 2005), and (2) 

similarly in other sections from the northern Dacic Basin (Bădislava close to Rîmnicu Vîlcea, 

Valea Vacii close to Buzău; Fig. 1b; Mǎrunţeanu and Papaianopol, 1998; Snel et al., 2006).       

 

3. Piedmont alluvial fan and Gilbert-type fan delta deposits 

The studied region is at the foot of the southwestern part of the Carpathians Mountains 

where piedmont alluvial fans are frequent (Jipa and Olariu, 2009). Here also, the MSC is at 

the origin of a Zanclean Gilbert-type fan delta (Clauzon et al., 2005) as in many places around 

the Mediterranean. Accordingly, it is necessary to recall the respective characteristics of these 

nearby sedimentary constructions in order to establish their indisputable distinction.    
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An aggrading piedmont is a geomorphological entity which results from an alluvial fan 

made of subaerial deposits originating from erosion of a nearby, previously uplifted relief 

(Harvey et al., 2005). It is cone-shaped and opens out away from the mountain. Sediments are 

constituted by relatively unorganized, mixed coarse to fine grained elements (Fig. 3a) which 

were solely forced by the repeated detritic discharges caused by torrential floods. Hence, 

rounded or angular pebbles may be juxtaposed with sands and clays, as shown in Figures 4a-

b. 

A Gilbert-type fan delta (Gilbert, 1885, 1890) results from a strong subaerial erosion 

followed by a very fast rise in water-level then maintained by some stability. It is constituted 

by two superposed alluvial prisms (Fig. 3b): (1) the lower prism, downstream open, 

prograding in subaqueous conditions; and (2) the upper prism, upstream open, aggrading in 

subaerial conditions. Because of its subaqueous context of sedimentation, the lower prism is 

constituted by leached and sorted terrigenous elements: clayey particles are mostly deposited 

relatively far from the river mouth, whereas well-rounded pebbles concentrate just after the 

river outlet (Figs. 4c-d), gravels and sands being dominantly deposited in between (Figs. 4e-

f). The coarse to medium-size clastic material forms foreset beds (Fig. 3b), which are 

characterized by a sedimentary dip up to 25°. The reason for this characterization is the 

prograding process (often confused with a tectonic dip) with obvious sigmoid sedimentary 

patterns (Fig. 5), and which are constrained both by the available space and the river input. 

The fine clayey terrigenous material constitutes the bottomset beds where micro- and 

macrofossils may accumulate (Fig. 3b). The upper prism is made of almost uniformly mixed 

detritic material (pebbles to sands and clays) showing from place to place cross-bedded 

stratifications (Fig. 3b). It corresponds to the alluvial coastal plain of the river. 
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Despite their clear differences in deposit composition and organization, piedmonts (alluvial 

fans) and Gilbert-type fan deltas are often confused, especially when sedimentary dips of 

foreset beds are misinterpreted as resulting from tectonic tilting.  

  

4. New data on the Middle Miocene piedmont alluvial fans and Zanclean Gilbert-type 

fan deltas in the Turnu Severin area 

Piedmont alluvial fans stretch at the foot of the Carpathians Mountains. They are 

considered to be pre-Maeotian since beyond the Turnu Severin region and according to Savu 

and Ghenea (1967) they are directly overlain by Maeotian sediments. The age of the early 

development of such alluvial fans can be specified thanks to a Mediterranean nannoflora 

identified by M. Mărunţeanu in five clayey horizons that we sampled in 1998 at Dîlbociţa 

(locality 11 in Figure 2: 44°49’50.2”N, 22°44’41.3”E) close to Ilovăţ (i.e. just below the 

piedmont alluvial fan deposits; Figs. 6, 7). These samples yielded Calcidiscus leptoporus, 

Sphenolithus heteromorphus, S. moriformis, Discoaster deflandrei, Calcidiscus macintyrei, 

Reticulofenestra minuta, R. pseudoumbilicus, Helicosphaera kamptneri, and Coccolithus 

pelagicus, among other taxa. Co-occurring S. heteromorphus, C. macintyrei and D. deflandrei 

indicate a late Langhian – early Serravallian age (Zone NN5; Martini, 1971; Raffi et al., 

2006). Accordingly, the alluvial fan of the Carpathians piedmont deposited between ca. 14 to 

9 Ma with respect to the chronologies of Lourens et al. (2004) and Vasiliev et al. (2004), for 

the Mediterranean and Eastern Paratethys, respectively (Table 1). 

The thick foreset beds (Fig. 5a) of the Gilbert-type fan delta described by Clauzon et al. 

(2005) are exposed along the Danube River, especially on its left bank and at Kladusnica near 

Kladovo (locality 3 in Figure 2) in Serbia. This sedimentary complex at Gura Văii has an 

erosional base (44°40’7.1”N, 22°33’42.2”E; Figs. 7, 8) and shows a progressive passage from 

conglomeratic foreset beds to gravelly-sandy foreset beds (well-exposed at the abandoned 
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swimming pool of Turnu Severin: 44°37’58.1”N, 22°35’49.9”E). The latter is followed by 

bottomset beds that we observed at Brezniţa-Ocol (44°40’44.9”N, 22°36’57.4”E; locality 5 in 

Figures 2 and 7) and at Pd. Trestenic (44°40’36.2”N, 22°37’21.9”E; locality 6 in Figures 2 

and 7). In the area of Brezniţa-Ocol, the contact between the clayey bottomset beds and sandy 

forest beds is marked by water springs. Such a succession of facies indicates a Gilbert-type 

fan delta, which was necessarily built by a powerful river that had a similar course to the 

present Danube River downstream the Iron Gates. At Gura Văii (i.e. in the proximal part of 

the Gilbert-type fan delta) there is no doubt on the erosional contact between the pebbly 

foreset beds and a polygenic and heterometric breccia overlying the Cretaceous limestones 

(Fig. 8a, b). This breccia (Fig. 8c) is a coarse slope deposit of post-Sarmatian age as it overlies 

the Sarmatian fossiliferous limestones at Vărănic where it includes some reworked blocks of 

the Sarmatian carbonate. At Capătul Drumului (44°39’42.4”N, 22°34’34.9”E; locality 4 in 

Figure 2; Fig. 7), the pebbly foreset beds reach an altitude of 329 m and are nested within a 

series made of Cretaceous carbonates overlain by Sarmatian carbonates and the above-

mentioned breccias (highest altitude: 381 m). The Zanclean age of this Gilbert-type fan delta 

was deduced from the nannoflora found at Hinova a (locality 7 in Figure 2; Clauzon et al., 

2005). But the age of this locality was not robust enough because (1) the relatively long 

distance devoid of exposed Neogene deposits from Turnu Severin (15 km), and (2) the 

absence of unquestionable biostratigraphic marker. Sample 4 from the clayey bottomset beds 

exposed on a thickness of 4 m at Pd. Trestenic (Fig. 9a), i.e. fully within the Gilbert-type fan 

delta complex, yielded Discoaster brouweri, Reticulofenestra pseudoumbilicus, Sphenolithus 

abies, Coccolithus pelagicus, Ceratolithus larrymayeri, Calcidiscus leptoporus, C. 

macintyrei, Helicosphaera carteri, H. stalis and small reticulofenestrids. Ceratolithus 

larrymayeri (Plate 1, Fig. 3-4) has a very short range (5.34 – 5.1 Ma: Raffi et al., 1998, 2006). 

Its occurrence is therefore an unquestionable argument for dating the Gilbert-type fan delta 
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from the early Zanclean (Table 1). Hence, the erosional surface which separates the Gilbert-

type fan delta from older sediments, observed at Gura Văii and Capătul Drumului, is 

undoubtedly the Messinian Erosional Surface as proposed by Clauzon et al. (2005). 

   A new field investigation in the area allowed us to discover another Gilbert-type fan 

delta along the Topolnhiţa River, the foreset beds of which (Fig. 5b) are well-exposed on both 

banks between Baloteşti (locality 10; Figs. 2, 7) and Izvoru Bîrzii (locality 9; Figs. 2, 7). This 

Gilbert-type fan delta has also an early Zanclean age according to the nannoflora of Pd. 

Trestenic. The bottomset beds exposed in the area of Pd. Trestenic belong to the two 

coalescing Gilbert-type fan deltas. At Baloteşti, the Topolniţa Gilbert-type fan delta is clearly 

nested within the piedmont alluvial fan fed by the nearby metamorphic basement (Figs. 10a, 

b, c, d). Here, the distinct light grey sandy foreset beds of the Topolniţa Gilbert-type fan delta 

are pinned against the piedmont reddish heterogenous deposits through a clearly erosional 

contact (Figs. 10e), which is therefore considered as the Messinian Erosional Surface (Fig. 

10b). 

The associated power of two rivers springing from the Carpathians Mountains explains the 

long distance transport of clays and sands. South of Hinova, a second clayey section has been 

sampled (Hinova b: 44°31’45”N, 22°46’40.3”E; i.e. locality 8 in Figure 2). Three of the four 

samples yielded Reticulofenestra pseudoumbilicus, Amaurolithus sp., Coccolithus pelagicus, 

Calcidiscus leptoporus, C. macintyrei and small reticulofenestrids. Among these samples, 

sample 3 originates from the coquina level shown in Figure 9f. Sample 4 (Fig. 9f) yielded in 

addition Sphenolithus abies, Triquetrorhabdulus rugosus and Ceratolithus acutus (Plate 1, 

Figs. 1-2), which together indicate an age comprised between 5.345 and 5.279 Ma (Raffi et 

al., 2006) for these bottomset beds. The early Zanclean age of the two Gilbert-type fan deltas 

is thus reinforced. Constituted by Phyllocardium sp., Pontalmyra drobetica, P. sabbae and 

Congeria sp. (Fig. 9h), the mollusk macrofauna observed in this section (Fig. 9g) is 



11 
 

characteristic of the Bosphorian regional Substage (Table 2), which is in agreement with the 

early Zanclean age indicated by nannofossils (Table 1). The influx of early Zanclean 

Mediterranean marine waters into the Dacic Basin, already evidenced by nannofossils and 

dinoflagellate cysts at Hivona a (Clauzon et al., 2005), is then confirmed by the presence of 

marker nannofossils at Hinova b. It is also reinforced by the presence of small (<125 m) 

specimens of microperforate trochospiral planktonic foraminifera (Tenuitella-Tenuitellinata 

sp.; Plate 1, Figs. 5-6) in Hinova b samples. The co-occurrence of these small 

Globigerinitidae with the calcareous nannoplankton species S. abies, T. rugosus and C. acutus 

in sample 4 of the Hinova b section indicates that their presence in situ can be considered as 

normal and indicative of marine connections with the Mediterranean during the early 

Zanclean.  

 On the basis of all the available data in the area of Turnu Severin, it is now possible to 

propose a reconstruction of its evolution during the time-interval 12 – 5 Ma (Fig. 12). The 

uplift of the Carpathians Mountains caused the development of the piedmont alluvial fans by 

local rivers (Fig. 12a), the residual expansion of which is mapped on Figure 11. The 

Messinian Salinity Crisis (MSC) caused a huge erosion of the previously built piedmont 

alluvial fan and older rocks (Fig. 12b). In particular, the Carpathians Mountains were severely 

cut by two rivers especially one at the origin of the Iron Gates gorge (Fig. 12b). Then, the 

sudden return to marine conditions related to the reconnection of the Dacic Basin with the 

Mediterranean Sea (Popescu et al., 2009) forced the building of two coalescing Gilbert-type 

fan deltas (Fig. 12c). The seismic data published by Leever et al. (2010) confirm the erosional 

surface which impacted the Pontian deposits as a response to the Mediterranean Messinian 

drawdown. The ensuing Bosphorian sea-level rise was comparatively fast and resulted in a 

prograding sedimentary system manifested in the exposed sections (Gilbert-type fan deltas). It 

was unambiguously illustrated by Leever et al. (2010: fig. 3) as exactly the opposite of the 
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“transgressive system track” evoked by Krijgsman et al. (2010, p. 188 since the Bosphorian 

sediments are downlapping and not onlapping.    

   It is necessary to question again the Pontian stratigraphic continuity (including 

Portaferrian or not: see footnote 1) described by Savu and Ghenea (1967) in the area of 

Bistriţa – Pd. Stîrmina. At Hinova, within the concerned area, the clays observed in two 

localities (Hinova a and b) belong to the Bosphorian regional Substage. However, at Hinova a 

(locality 7 on Figures 2 and 11), the lowermost nannoflora provided by a coquina layer was 

reported to the Bosphorian (Clauzon et al., 2005), which overlies a yellow oxidized sand (20 

cm thick; Fig. 9d). We suggest here that this Bosphorian layer may have been deposited just 

after the peak of the MSC. Because of emersion, the MSC could be expressed by the thin 

yellow sand and probably some gap in sedimentation. Such a superposition of apparently 

conformable deposits where the Messinian desiccation phase is only expressed by a 

sedimentary gap and some detritic thin layers has been already evidenced: (1) in interfluvial 

palaeoconditions such as at Intepe (Dardanelles Strait; Melinte-Dobrinescu et al., 2009); and 

(2) in bottomset beds of Gilbert-type fan delta deposited in axial conditions such as at Cuevas 

de Almanzora (Vera, Andalusia; Clauzon et al., 2009). This latter context is in agreement with 

the observations and data from the Hinova area where the peak of the MSC is expressed by a 

gap corresponding to this slight sedimentological discontinuity (Fig. 9d), which might 

separate the Bosphorian sediments from the older (Odessian or Portaferrian) ones. 

Magneto- and cyclostratigraphy based on the pollen record yielded an age of ca. 5.38 Ma 

for the base of the Hinova a section, which contains Mediterranean nannofossils (Popescu et 

al., 2006). This age, consistent with the proposed age for the Bosphorian regional Substage 

(5.5 – 4.7 Ma: Krijgsman et al., 2010; Table 1), is in agreement with a reflooding of the 

Mediterranean Sea anticipating the base of the Zanclean Stage (Popescu et al., 2007, 2009; 
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Melinte-Dobrinescu et al., 2009; Bache et al., accepted) as defined by its GSSP (Van 

Couvering et al., 2000).     

 

5. Palaeogeographic inferences 

These results, which specify and complement those by Clauzon et al. (2005), provide new 

evidences for a more accurate palaeogeographic reconstruction of the Dacic Basin and nearby 

areas just before and after the MSC (i.e. for the time-interval 6 – 5 Ma; Fig. 13). 

Mediterranean marine waters transiently entered the Dacic Basin before and just after the 

peak of the MSC (5.60 – 5.46 Ma). The influx of Mediterranean waters during the 

Portaferrain regional Substage is characterized by the presence of the calcareous coccolith 

taxa Discoaster quinqueramus, Nicklithus amplificus and Triquetrorhabdulus rugosus among 

others (Subzone NN11b: ca. 6.9 – 5.9 Ma; Raffi et al., 2006) as shown at Valea Vacii (region 

of Buzău) at the foot of the southeastern Carpathians (Mǎrunţeanu and Papaianopol, 1998; 

Snel et al., 2006). An almost similar nannoflora was found at Bădislava (region of Rîmnicu 

Vîlcea) (Snel et al., 2006). The influx of Mediterranean waters during the Bosphorian regional 

Substage is characterized in the same sections by the presence of Ceratolithus acutus 

(Subzone NN12b; Mǎrunţeanu and Papaianopol, 1998; Snel et al., 2006). If one also considers 

the areas of Turnu Severin (Clauzon et al., 2005; this paper) and Tîrgu Jiu (Drivaliari et al., 

1999; Popescu et al., 2006), these two successive influxes should be considered to have 

impacted the entire Dacic Basin.  

Leever et al. (2010) considered that the early Zanclean re-connection between the Dacic 

Basin and the Mediterranean Sea was forced by the sea-level rise of the Black Sea over the 

Scythian sill (i.e. the Reni sill: Semenenko and Olejnik, 1995) north of the Dobrogea horst 

area. And yet, the oldest records of Mediterranean marine micro-organisms in the deep Black 

Sea at DSDP Site 380 (diatoms: Schrader, 1978; dinoflagellate cysts: Popescu, 2006; 
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calcareous coccoliths: Popescu et al., 2010) have been dated at 5.31 Ma (Popescu et al., 

2010), an age significantly younger than their record in the Dacic Basin (5.38 Ma at Hinova). 

Additional arguments contradict the often suggested presence of an almost continuous 

exchange gateway between the Mediterranean and Eastern Paratethys in the Istanbul region 

before and after the MSC (Popov et al., 2006), but support the presence of such a corridor in 

the Balkans (Clauzon et al., 2005; Popescu et al., 2009; Bache et al., accepted):  

- the absence of Paratethyan dinoflagellate cysts denoting surface-water exchanges in the 

early Zanclean in the Marmara Sea region (Melinte-Dobrinescu et al., 2009);  

- the pre-Zanclean GSSP reflooding of the Aegean Sea (Melinte-Dorbinescu et al., 2009) 

significantly before the entrance of Mediterranean microplankton into the Black Sea 

(Popescu et al., 2010);  

- the presence in the Thrace and Marmara region of two facing fluvial networks driving 

early Zanclean Gilbert-type fan deltas towards the Black Sea and the Marmara-

Mediterranean realm, respectively (Suc et al., 2009); 

- and the presence of well-dated early Zanclean Gilbert-type fan deltas in the regions of 

Skopje and Niš (Bache et al., accepted).    

The Zanclean Gilbert-type fan deltas in the area of Turnu Severin filled Messinian fluvial 

valleys, establishing the development of a very active erosional fluvial network as the result 

of the MSC. Northward, the palaeo-Topolniţa River probably drained the southeast side of the 

southern Carpathians Mountains. Southward of this area, due to the thick deposits at the outlet 

of the Iron Gates (revealed by the work done in building the Iron Gates Dam 1) (Clauzon et 

al., 2005), a Messinian river probably cut a large part of this gorge. It was a powerful river 

which drained only the southwestern side of the southern Carpathians Mountains (Fig. 13b) 

because the modern Alpine Danube did not exist at that time. Indeed, the Danube River 

reached the Vienna Basin in the Late Pliocene (Pfleiderer, 2008), which is consistent with its 
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appearance in the Dacic Basin at the early Romanian (Table 1) as reported by Jipa (2009). We 

propose a new two-step onset of the southern Romania fluvial network: (1) in the late 

Messinian, a peri-Carpathians river amplified and cut the Iron Gates as a consequence of the 

Mediterranean sea-level drop; and (2) in the early Romanian, this river was joined by the 

Alpine Danube.  

The development of an ancestor of the modern fluvial network in the Dacic Basin is 

consistent with the formation of a major erosional unconformity in the Pannonian Basin as a 

response to the MSC (Csato et al., 2007). The unconformity is evidenced on regional seismic 

profiles (Fig. 14); contrary to the proposal of Magyar and Sztano (2008), this unconformity 

was not controlled by faults but was generated by a major drop of the lake level. The 

Messinian erosion in the Pannonian Basin must have intensified the drainage by a fluvial 

network that we call paleo-Tisza. A connection from the Pannonian Basin toward the Dacic 

Basin may have been easily facilitated through two subbasins, the Makó Trough and Békés 

Basin (Fig. 14a). The palaeo-Tisza coming from the Pannonian Basin also contributed to cut 

the Iron Gates and to drain the partly desiccated Dacic Basin (Fig. 13b).  

The Messinian base level fall in the Pannonian Basin induced forced regression and 

subsequent normal regression by lowstand prograding units (Fig. 14b) that filled the basin 

fast. Seismic and well log data clearly indicate a dramatic basinward shift of facies. The 

Pannonian Basin also underwent a tectonic inversion, which uplifted the basin margins and 

caused a basinward tilting as demonstrated by the seismic sections. However, this was a 

relatively long process up to the present, and it probably started well after the Messinian (e.g. 

Hámor et al., 2001; Horváth et al., 2006). Therefore, this process could not create the sudden 

and drastic event represented by the Messinan unconformity. The Messinian erosion is also 

clear in the Dacic Basin (i) along the seismic profiles published by Leever et al. (2010) and 
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(ii) in wells showing a Maeotian hiatus, which roughly superposes the modern fluvial network 

(Clauzon et al., 2005: fig. 11). 

According to seismic data in the northwestern Black Sea, the palaeo-Tisza River did not 

flow into the Black Sea (Gillet et al., 2007) but probably into a remnant perched lake 

(Clauzon et al., 2005; Leever et al., 2010; Bache et al., accepted; Fig. 13). The sea-level fall in 

the Dacic Basin was directly driven by the Mediterranean sea-level drop which disrupted 

connection through the Balkans gateway during the time-window 5.60 – 5.46 Ma (Clauzon et 

al., 2005; Popescu et al., 2009; Bache et al., accepted). As a consequence, the Messinian Tisza 

River, the ancestor of the main tributary of the present-day Danube, provided the isolated 

Dacic Basin some water supply from the Pannonian Basin through the gorge of the Iron Gates 

(Fig. 13b).  

Very drastic environmental changes occurred in the region as a consequence of the almost 

complete desiccation of the Mediterranean Sea: 

- The Dacic and Pannonian basins, previously connected to the Mediterranean through 

the Balkans gateway (Fig. 13a; Popescu et al., 2009), were impacted by a sea-level fall, 

the intensity of which was controlled by the altitude of the palaeo-sill probably located 

in the region of Skopje (Bache et al., revised). At that time, the Dacic Basin was 

disconnected from the Black Sea when its water-level fell below the altitude of the 

Scythian sill (Fig. 13a, b). The huge sea-level drop which impacted the Black Sea was 

probably forced by the climatic increase in dryness resulting from the Mediterranean 

desiccation (Fig. 13b; Favre et al. 2007; Popescu et al., 2010)
2
. In the southernmost 

                                                           
2
 Although discussion of climate evolution is not within the scope of this paper, we must 

precise that such an increase in dryness during the peak of the MSC, both suggested by 

mammals (Agusti et al., 2006), pollen floras (Fauquette et al., 2006) and model simulations 

(Favre et al., 2007; Murphy et al., 2009; Schneck et al., 2010), amplified the xeric context 
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part of the Balkans corridor, the palaeo-Strymon River cut a deep canyon towards the 

Aegean Sea (Fig. 13b). At that time, another important river (probably the palaeo-

Maritsa River) crossed the entire Thrace Plain and cut a canyon toward the Black Sea 

in the area of Karacaköy (Fig. 13b; Gillet 2004; Suc et al. 2009). This fluvial canyon 

and its sedimentary filling by an early Zanclean Gilbert-type fan delta (Gillet 2004; Suc 

et al. 2009) are inconsistent with the idea expressed by Krijgsman et al. (2010: p. 189) 

of a Mediterranean – Paratethys marine gateway at this place. 

- When the Mediterranean reflooding occurred at 5.46 Ma (Bache et al., accepted), 

refilling of the Balkans gateway by Mediterranean marine waters caused the water-

level rise of the Dacic Basin without immediately passing the Scythian sill (Bache et 

al., accepted). Simultaneously, the Tisza, Topolniţa, Strymon and Maritsa palaeorivers 

developed Gilbert-type fan deltas (Fig. 13c). 

- Finally, when the continuously rising global sea-level driven by the ice melting passed 

over the Scythian sill (5.31 Ma), the connection was re-established with the Black Sea 

and the marine micro-organisms entered again the Black Sea (Fig. 13d; Popescu et al., 

2010; Bache et al., accepted). 

This scenario is inconsistent with that proposed by Leever et al. (2010) in which the sea-

level changes of the Black Sea controlled the water-level of the Dacic Basin and the 

Pannonian Basin overflowed into the latter because of the difference in their altitude. On the 

contrary, we propose a scenario controlled by the sea-level changes in the Mediterranean 

Basin through its direct connection with the Dacic Basin via the Balkans gateway (Fig. 13).           

 

6. Conclusion 

                                                                                                                                                                                     
which existed in the Mediterranean region before the MSC and persisted during the Pliocene 

(Suc and Bessais, 1990; Fauquette et al., 2006).     
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Sedimentological, morphological, and palaeontological arguments point to the existence of 

both piedmont alluvial fans of pre-Maeotian (Serravallian –Tortonian) age and Gilbert-type 

fan deltas of Bosphorian (Zanclean) age in the region of Turnu Severin. This study confirms 

that the MSC severely affected the Eastern Paratethys during the Bosphorian regional 

Substage. Mediterranean marine waters entered the Dacic Basin and the Black Sea twice: just 

before and just after the peak of the MSC. Two Zanclean Gilbert-type fan deltas were 

coalescing upstream Turnu Severin. The most developed Gilbert-type fan delta was 

constructed by a Carpathians river which, as a response to the MSC, cut the Iron Gates and 

catched the residual Pannonian Basin and the ancestor of the Tisza River. The water-level 

changes in the Pannonian and Dacic basins were not forced by those of the Black Sea but 

directly by those of the Mediterranean Sea through the Balkans gateway. The Mediterranean 

Zanclean marine waters entered the Dacic Basin ca. 70 kyrs earlier than the Black Sea. The 

fluvial network of the Balkans region was significantly influenced by the sea-level drop of 

both the Mediterranean and Black seas during the peak of the MSC. 

In conclusion, this study emphasizes once more how difficult it is to decipher the multiple 

aspects of the MSC. This difficulty results from an imprecise chronology due to such a short 

period of time and an insufficiently known palaeogeography, and persists despite recent 

significant advances. One of the most crucial aspects to be handled is the stratigraphic 

succession of channeled sedimentary complexes which are not controlled by the usual 

superposition of deposits. The high-resolution study of long sedimentary sections is essential, 

but it cannot alone elucidate the MSC, one of the core issues of the Cenozoic in the 

Mediterranean region.    
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Figure captions 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1.  Location map of the Turnu Severin studied area in the Dacic Basin. The map has been 

elaborated using GeoMapApp System http://www.geomapapp.org/, developed by 

Haxby et al. (2010).  

 a, Reconstructed map (in white) of the Paratethys just before the MSC according to 

Popescu et al. (2009) for the western part (Pannonian and Dacic basins) and Krijgsman 

et al. (2010) for the eastern part (Black Sea). The intra-Paratethysian gateways and the 

gateway between the Pannonian–Dacic basins and the Mediterranean are from 

Popescu et al. (2009). The grey box corresponds to Figure 1b. 

 b, Map of Hungary (Pannonian Basin) and southern Romania (Dacic Basin). Black 

box in the Dacic Basin: studied area in the Turnu Severin region.  

http://www.geomapapp.org/
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Fig. 2. Geological map of the area of Turnu Severin (from: Năstăseanu and Bercia, 1968; 

Savu and Ghenea, 1967; Milovanoviš et al., 1968) at scale 1/200,000. 

 Main geological units: a, Metamorphic basement; b, Jurassic (J) and Cretaceous (K); 

c, Middle Miocene; d, Late Miocene and Pliocene (Serbia: mpi, lower Congeria beds; 

pit, Pliocene gravels, sands and clays; Romania: p, Pontian clays; dc, Dacian sands 

and lignites); e, Pleistocene to Holocene (Serbia: qt, loess).  

 Localities: 1, Gura Văii; 2, Capătul Drumului; 3, Kladusnica; 4, Vărănic ; 5, Brezniţa-

Ocol; 6, Pd. Trestenic; 7, Hinova a; 8, Hinova b; 9, Izvoru Bîrzii; 10, Baloteşti; 11, 

Dîlbociţa (Ilovăţ).  
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Fig. 3. Compared organizations and sediments of a piedmont alluvial fan (from: Cojan and 

Renard, 1997) and a Zanclean Gilbert-type fan delta (from: Clauzon, 1990). 
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Fig. 4. Sedimentary facies of piedmont and Gilbert-type fan delta deposits in the study area. 

 Piedmont: a, Post-Badenian (Sarmatian?) piedmont at Dîlbociţa (Ilovăţ) (locality 11 in 

Figure 2; b, detailed view. 

 Gilbert-type fan delta: c, Conglomeratic foreset beds downstream Gura Văii (Fig. 2); 

d, detailed view; e, Sandy foreset beds at the abandoned swimming pool of Turnu 

Severin (Fig. 2); f, detailed view. 
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Fig. 5. Foreset beds of the Gilbert-type fan deltas in the area of Turnu Severin. 

 a, Conglomeratic to sandy foreset beds of the Gilbert-type fan delta between Gura Văii 

(NW) and Turnu Severin (SE) (Fig. 2); 

 b, Gravelly to sandy foreset beds of the Gilbert-type fan delta upstream Izvorul Bîrzei 

(locality 9 in Figure 2). 

 

 

 

 

 

 

 

 

Fig. 6. Dîlbociţa Neogene succession overlying the metamorphic basement. 

 For the piedmont deposits, see details in Figures 4a-b.   
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Fig. 7. GoogleEarth three-dimensional representation of the region westward Turnu Severin 

showing different terms of the Carpathians piedmont and the Tisza and Topolniţa 

Gilbert-type fan deltas. Vertical exaggeration x2. 

 Locality numbers: see Figure 2. 

 

 

 

 

 

 

 

 

 

 

Fig. 8. Cross-section in the quarry overhanging Gura Văii. 

 a, Photograph panorama; 

 b, Interpreted cross-section; 

 c, Detail of the breccias. 
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Fig. 9. Bottomset beds and their relationship with foreset beds. 

 a, Pd. Trestenic: location of sample 4 with nannofossils; 

 b and c, Hinova a; 

 d, Hinova a, focus on the discontinuity underlying the lowermost nannoflora published 

in Clauzon et al. (2005); 

 e,  Hinova a, foreset beds; 

 f, Hinova b, respective location of the coquina and sample 4 with nannofossils; 

 g and h, detail of the coquina. 
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Fig. 10. Cross-section at Baloteşti 

 a, Photograph panorama; 

 b, Interpreted cross-section; 

 c, View of the metamorphic basement; 

 d, Piedmont alluvial deposits; 

 e, Sandy foreset beds nested within the piedmont alluvial deposits.   
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Fig. 11. Cartographic relationship between the piedmont deposits and prograding sediments of 

the two coalescing Gilbert-type fan deltas. Same gathered geological maps and same 

legend as for Figure 2. 

 a, Revised mapping of the piedmont alluvial deposits; b, Messinian Erosional Surface 

where it has been observed; c, Expansion of the prograding sediments of the Tisza and 

Topolniţa coalescing Gilbert-type fan deltas.  
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Fig. 12. Three-dimensional reconstructed evolution of the Turnu Severin area for the time-

interval 10 – 5 Ma. 

 a, From ca. 12 to ca. 6 Ma (late Serravallian to early Messinian; Table 1), continuous 

building of the South Carpathians piedmont alluvial fan as a response to the uplifted 

relief; 

 b, At 5.6 Ma (late Messinian; Table 1), huge fluvial erosion by the palaeo-Tisza River 

(first cutting of the Iron Gates) and the Topolniţa River as a response to the 

desiccation of the Mediterranean Sea at the peak of the MSC; 
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 c, At 5.3 – 5 Ma (early Zanclean; Table 1), fast progradation of two coalescing 

Gilbert-type fan deltas, nested within the previously deposited piedmont alluvial fan, 

as a response to the recovered connection of the Dacic Basin with the Mediterranean 

Sea.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 13. Block-diagrams illustrating palaeogeographic changes considered in the Balkans – 

South Carpathians – Black Sea region with respect to the MSC (prior to 5.60 Ma to 
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post-5.31 Ma). Regional palaeogeographic maps from Popescu et al. (2009) and Bache 

et al. (accepted) have been used. 

 a, Before the MSC; b, During the peak of the MSC; c, At the time of the reflooding of 

the Mediterranean Basin (i.e. the Zanclean Deluge); d, When the Scythian sill was 

crossed by the rising sea-level of the Dacic Basin then reconnected with the Black Sea. 

 In blue, marine water environments; in green, brackish to fresh water environments. 

 

 

 

 

 

 

 

 

 

 

 

Fig. 14. a, Location of regional seismic sections and wells in the Pannonian Basin, Hungary, 

used in this study. The red lines indicate the location of seismic sections shown in 

Figure 14b. The Pannonian Basin was filling up from a NW-W and a NE fluvial 

transport system in the Late Miocene. These systems constituted the palaeo-Tisza. The 

contour map shows the depth of the Messinian unconformity surface constructed by 

correlations on the seismic sections and converted to depth by an averaged time-depth 

function in the basin. Palaeogeographic connections were probably established toward 

the Dacic Basin through the Békés Basin and/or Makó Trough.  
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b, Representative seismic sections (location is indicated by red lines in Fig. 14a). The 

seismic data clearly show a significant unconformity in the Messinian. The surface 

represents a major water level fall and erosion. As a result, the remainder of the basin 

was filled up fast by lowstand prograding units. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 1. Chronostratigraphic scales for the Mediterranean (Standard Stages) and Eastern 

Paratethys. 
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Table 2. Detailed Pontian mollusk fauna described by Papaianopol et al. (1995) in the region 

of Turnu Severin compared to records reported by Savu and Ghenea (1967) in the 

Turnu Severin geological map, to the Hinova a macrofauna from Papaianopol (in: 

Clauzon et al., 2005) and to that recently collected at Hinova b (this paper). 

 Strictly Bosphorian common taxa in bold characters.   
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Plate 1. Figs. 1-4. Microphotographs of significant biostratigraphic nannoplankton species 

(light microscope, crossed nicols, scale bar = 10 m). 

Figs. 1, 2. Ceratolithus acutus Gartner & Bukry 1974; Hinova b (sample 4). 

Fig. 3. Ceratolithus cf. larrymayeri Backman & Raffi 1998; Pd. Tristenic 

(sample 4). 

Figs. 4. Ceratolithus larrymayeri Backman & Raffi 1998; Pd. Tristenic 

(sample 4). 

Figs. 5-6. SEM microphotographs of two representatives of the planktonic 

foraminifera (Tenuitella-Tenuitellinata sp.) collected from Hivona b (sample 4), in 

umbilical (a) and spiral (b) views. Note the very small size of these specimens (scale 

bar = 20 m). 


