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ABSTRACT 

A hydrogeophysical study was carried out by a water controlled injection within a landslide situated on an active 

part of the La Clapière landslide foot (Alpes Maritimes, France). Coupling of both real-time geophysical and 

hydrological follow ups allowed the representation and quantification of the surface water drainage in space and 

time within the slipped  mass. Thus, 30% of the injected water is quickly drained by a complex slipping surface 

meanly situated at 10-m depth. The transit time between injection and outflow of the water allowed an 

overloading of about 10 m3 (i.e. 10 tons) comparable with classical rain events in the area. This weight and the 

associated interstitial pressures increase have not led to any movements asking for the origin of the water 

volumes which could induce destabilizations. This experiment enabled an accurate redefinition of the internal 

slope structure and the understanding of the dynamics of the slipped mass with a surface hydraulic request. 

 

Introduction 
The principal driving force of slope movements is generally considered to be gravity, with the main triggering 

factor being the increase of pore pressures by the presence of water contained in fractures (Terzaghi, 1950; 

Noverraz et al., 1998). The localization of the main flow paths and saturated zones is thus a fundamental 

stage of the slope evolution before and after failure. Various methods are classically employed in order to locate 

and study water in sliding and non-sliding rock masses. 

1 Geological and morphological field studies allow the determination and the localization of mechanical 

discontinuities (faults, fractures, etc.) and lithological discontinuities guiding the water drainage (Lebourg and 

Fabre, 2000; Guglielmi et al., 2005).  

2 Hydrogeological studies allows the determination of the origin of hydrous flows and their relationships to the 

release and the acceleration of movements (Bonzanigo et al., 2001; Tullen, 2002; Cappa et al., 2004; Onda et al., 

2004; Guglielmi et al., 2005). 

3 Electrical surveying can be used to determine the depth and geometry of sliding surfaces (Bogoslowsky and 

Ogilvy, 1976; McCann and Forster, 1990; Caris and Van Asch, 1991; Godio and Bottino, 2001; Lapenna et al., 

2003; Lebourg et al., 2003; Bichler et al., 2004), and the localization of water flow paths (French and Binley, 

2004). 

These methods are frequently coupled for landslide studies (Caris and Van Asch, 1991; Maquaire et al.,2001; 

Agnesi et al., 2005). In order to better approach the dynamical process involved in landslides, we need to 

understand the evolution in time of the groundwater flow circulation versus spatial displacements. At this time, 

specific and uncoupled data acquisition does not allow for carrying out a real dynamic relation between them. 

For the comprehension of landslides, only a small number of laboratory studies have linked the dynamical 

relation between different methods of investigation (Tohari et al., 2000; Wang and Sassa, 2003; Moriwaki et al., 

2004). 

A first hydrological/geophysical study has been performed in a secondary landslide located at the toe of the La 

Clapière landslide to demonstrate the spatio-temporal repartition of water in the unstable slope and its effect on 

landslide acceleration (Lebourg et al., 2005). This study highlighted the geometrical relations between the main 

water flow paths and the slope structure and allowed the definition of two types of water circulation: spatially 

distributed in the form of drains and perched watertable. It also showed the relations between tectonic structure, 

drainage and slope activation. The temporal geophysical monitoring carried out between March and July 2003 

on this slide showed the relative importance of these two main water flowpaths in the slope at the scale of a 

month. 

Nevertheless, this follow up raises two problems for the comprehension of the landslide dynamics: 

1 We have no active control on external conditions (precipitations, snow melting, etc.): this monitoring is 

qualified as passive. 

2 The monitoring yields information about the slope response to the water supply but not the response of the 

landslide itself. 

Those problems are first related to the lack of coupling of the methods employed and second to the spatial and 

temporal acquisition constraints. Therefore, a new experiment on the secondary landslide has been aimed to 

establish a link between these passive methods and the principal active parameter in slopes stability, water. This 



experiment has consisted in developing a methodology for a controlled injection of fluid at the secondary 

landslide head combined with a:  

1 natural and artificial hydrological tracing (Mudry, 1990; Dzikowski, 1995; Guimera and Carrera, 2000; 

Sawada et al., 2000; Tullen, 2002);  

2 time-lapse geophysical survey (Descloitres et al., 2003; French and Binley, 2004; Guérin et al., 2004; Lebourg 

et al., 2005); 

3 real-time geodetic monitoring using an accurate precision tacheometer (Gunzburger et al., 2005). Our 

objectives are first to establish a dynamical link between these investigation methods and second, to show the 

possibility of carrying out a hydrological assessment in correlation with the imaged structure of a landslide and, 

if possible, to approach the necessary conditions for triggering a movement. 

 

Geological and Hydrogeological Settings, The La Clapière landslide 
The La Clapière landslide is a large unstable slope which has been monitored since 1982 (Follacci, 1987, 1999) 

and is located in the south-east French Alps, about 80 km north of Nice (Fig. 1a). This landslide, which 

mobilizes a huge volume (55 · 106 m3) of metamorphic bedrock (Follacci, 1987), is located on the NE side of 

the NW-SE flowing Tinée river, near the town of Saint-Etienne de Tinée (France). Elevation of surrounding 

crests and peaks reach 3000 m. From the geological point of view, the studied zone is situated in the Upper 

Tine´e valley which represents the northwestern part of the Argentera external Massif and limits the 

metamorphic basement from its welded and uncoupled sedimentary cover (Faure-Muret, 1955). The whole La 

Clapiere slope is occupied by two mica gneisses of the Variscan Argentera-Mercantour massif (Bogdanoff and 

Ploquin, 1980) and can be separated into three entities (Cappa et al., 2004): 

1 A stable internal zone where the foliation has a strong dip varying from 60_ to 80_ towards the interiors of the 

slope. 

2 A 200-m wide transitional zone dipping towards N030_ where foliation is gradually rotated to the horizontal 

and showing several lines of evidence for incipient instability (extension cracks, toppled blocks). 

3 A slipped zone where displacements towards the valley are important. The surface of the landslide is quite 

irregular because of numerous rockfall accumulations, tilted terraces and internal cracks. The La Clapière slope 

is affected by three families of faults: N10–30_E; N90_E and N110–140_E (Ivaldi et al., 1991). The major 

fractures are subvertical N020 faults intersecting the whole slope far away from the active landslide. The 

displacements measured by the 2D French equipment ministry monitoring system (Follacci, 1999) have also on 

average a N20 orientation showing the guiding role of faults localizing landslide deformations. 

The geometry of the sliding surface is difficult to understand. Its depth is thought to be approximately 100– 200 

m but no geophysical study has been devoted to confirm this until now.  

From the hydrogeological point of view, the area is characterized by several springs (perennial and temporary). 

Some of these springs flow directly out from the basement along faults with various orientations or in the 

weathered superficial formation. A study of the water chemistry (Guglielmi et al., 2000; Binet et al., 2004; Binet, 

2006) suggests the presence of two main flowpaths in the landslide slope: 

1 deep flow through fractured gneiss and low permeability Triassic deposits pinched under the foot of the 

landslide; 

2 a more superficial flow through a more permeable fractured basement with a complex flow path guided 

inparticular by the internal deformation of the landslide. Differences in the slope drainage have been correlated 

with different scenarios and mechanical behaviours of the landslide by Cappa et al. (2004): sliding accelerations 

occurduring snow melting period and slow speeds during low water-level periods (Follacci, 1999). 

 

The studied secondary landslide 

The foot of the landslide is an active area where a rotational landslide(Table 1) occurred in 1995 in the fluvio-

glacial deposits overlying the gneiss (Fig. 1b). This zone is cut by N170 dextral faults which continue through 

the Tinée River alluviums (Lebourg et al., 2005) and divide the entire unstable rock zone. In particular, one of 

those faults corresponds to the East limit of the studied landslide as it shifts fluvio-glacial deposits, and therefore 

gives, in the superficially slipped part, a sufficient sediment thickness to allow a slide movement. The 

displacement recording systems show the advancing foot following a N170 direction which demonstrates the 

guiding played by these faults. 

The hydrogeology of the zone, studied with hydrogeochemistry (Binet et al., 2004) and imaged by 3D 

geophysical surveying (Lebourg et al., 2005), shows various types of springs draining the slope. A significant 

share of water comes from a deep tectonically guided subsoil drain, with which comes to mix surface waters, 

fallen on the slide surface, and drained partly high. A significant part of the water is drained by the spring 15 

(S15, Fig. 1) located at the foot of the small landslide. This geometry with a perched watertable and a spring at 

the foot of the landslide is similar to the observations carried out on a regional scale (Guglielmi et al., 2002). The 

interest of the studied zone is then, to present at reduced scale, some mechanisms similar to those existing on a 

large scale at the La Clapière landslide level (Cappa et al., 2004); namely a toppling zone strongly fractured and 



highly draining. In the case of the secondary landslide, the toppling movement affecting the gneissic substratum 

is confirmed by the displacement measurements taken during a 1-year period on this landslide (Binet et al., 2004; 

Binet, 2006). Toppling was not observed in surface because of the contrasting tills granular mechanical 

behaviour that leads to a more diffuse deformation. However, the origin of the deformation is different for the 

two movements in the case of:  

1 the entire La Clapière landslide, it is the consequence of generalized slope deformation on a long time scale 

(Bigot-Cormier et al., 2005);  

2 the encased slip, it is the result of the deformation induced during the overall movement of the La Clapière 

landslide on a much more reduced time scale (Binet et al., 2004). 

 

Experimental Protocol: Method and Processing 
The studied site was also selected because of its relatively small size. This slide is sufficiently significant not to 

be a simple superficial landslide but to reflect larger-scale mechanisms. It is therefore sufficiently small for us to 

be able to place a large number of sensors and measurement devices relatively easily (Fig. 2).  

 

Injection protocol 

The choice of the injection zone on the principal sliding surface was carried out with the objective of testing the 

permeability of principal fractures, and to inject water into the slipped mass. We dug a 4-m length trench 1-m 

wide and 1-m high. The pumping tests were carried out outside the slipped zone in order to not chemically 

pollute the site with the Tinée river water. The height of the injection zone is 43 m above the Tine´e River and 

the constant flow of 2.23 ± 0.15 L s)1. The injection lasted 5 h. 

 

Hydrological acquisition dispositive 

Temporal monitoring of the spring response to the injection (S15, Fig. 3) draining the landslide foot allows a 

study of the hydrogeologic characteristics of the slope. At the time of the injection there is no sign of the 

presence of a perched watertable (prolonged low water level). The flow was manually measured once per hour at 

all the water exit points (S15, S16, S17, Fig. 1) present at the foot of the slope in order to do a hydrological 

statement. All the data are presented in Binet (2006) and Binet et al. (in press). An artificial tracing was carried 

out, simultaneously 

with the water injection (2.23 L s)1 during 5 h) in the main trench of the landslide. A total of 150 g of fluorescein 

was injected into the first 15 min of the injection (from 9 h and 30 min to 9 h and 45 min). Monitoring of the 

water fluorescein concentration was then carried out. The calculation of the restored fluorescein flow as well as 

the fluorescein restitution curve through time yields information about the transportation of water in this slope 

(channeled flow, diffuse, response time, etc.). These measurements were carried out at the Besanc¸on laboratory 

with a luminescence spectrometer LS30 from Perkin Elmer (Wellesley, MD). Results and interpretations are 

discussed in the following sections. 

 

Geophysical acquisition, calibration and processing 

We installed a line of 48 electrodes (profile), with 3 m spacing between each electrode, within the landslide (Fig. 

2) in a longitudinal arrangement (from top to bottom). The profile has an overall length of 141 m. The 2D 

resistivity data were recorded using the Syscal R1 Plus imaging system (IRIS Instrument, Orle´ans, France). The 

transept installation required some modifications compared with traditional profiles because we are on a mass 

whose movement can be significant; indeed we systematically left 1 m of free cable between each electrode so as 

to prevent possible differential movements. The type of selected survey takes into account several geometrical 

and temporal constraints. Indeed, the grid must be sufficiently precise in order to image the structures correctly; 

it must also be sufficiently deep to exceed the sliding surface, estimated to be at a depth of between20 and 30 m 

(Lebourg et al., 2005). Coupling accurate measurement and a sufficient investigation depth imply a significant 

number of measurements. Moreover, carrying out a great number of measurements takes time, hence electrical 

properties of the slope may fluctuate between the first and last acquisition of a profile. To satisfy those 

equirements, we carried out a pole–dipole survey using 48 electrodes plus an injection pole and we have limited 

the duration of acquisition to 30 min, which corresponds to a maximum of 768 measurements. The measurement 

density is stronger in the higher part of the profile (3-m horizontal resolution, 1-m vertical resolution down to 15-

m depth and 2-m vertical resolution from 15- to 41-m depth) to reach the best precision of surface water 

circulation. 

The measurement sequences were made in the downstream direction so that the start of each profile is carried 

out in the injection zone. The installation of the profile was made 2 months before the beginning of the injection 

to determine the most hydraulically stable period to begin the injection and to acquire a basic profile as stable as 

possible. 

 

Resistivity calibration 



The interpretation of electrical tomography profiles in terms of presence or absence of water requires an 

evaluation and calibration of resistivity values directly on rock samples. Our measurements give us the following 

indications: 

1 Morainic formations (dry or without water) characterized by large resistivity variability (from about 200–3000 

Xm). We observe a strong correlation between water content and measured resistivities. With increasing water 

content, resistivities decreases strongly and are systematically lower than 100 Xm. 

2 The gneissic substratum is characterized by high resistivity values (higher than 3000 Xm). The weathered 

zones of this formation show lower resistivity: (1) 200 Xm for saturated weathered gneisses and(2) around 3000 

Xm for dry weathered gneisses. 

 

Data processing 

The field data depicted as contoured pseudoresistivity sections (Edwards, 1977; Griffiths and Barker, 1993), 

were inverted using the software RES2DINV written by Loke (1997). In order to limit as much as possible the 

error related to the inversion of the electric tomography data, we carried out the same treatment for each batch of 

gathered data: 

1 each data whose resistivity exceeds 7000 Xm (maximum resistivity measured on samples) and each data 

including a non-negligible factor of quality is systematically withdrawn from all the data files before inversion; 

2 the inversion is carried out with the same parameters for each profile;  

3 the profiles are recorded at the end of four iterations in order to guarantee the quality of the measurements. A 

total of 14 electrical profiles were performed during this study. Only five of them were selected in order to reach 

the best measurements and quality of interpretations (Table 2). We also selected those because they correspond 

to the significant periods of slope response to the injection: profiles 1 (Pd1) and 3 (Pd3) (during the injection) 

and the post-injection profiles 8 (Pd8) and 9 (Pd9). 

 

Geodetic monitoring dispositive 

The routine tacheometrical follow up of secondary landslide has now existed for more than 1 year (Binet et al., 

2004). We thus used and supplemented the devices already in places (14 targets, Fig. 2) in order to follow the 

deformations which the water injection could have induced. Two concrete pillars were built on an alluvial terrace 

of the southwest bank Tinéeriver, to be used as station. Measurements are taken from one of them (Fig. 2). For 

the calibration, the second concrete pillar is installed on the alluvia considered as stable. One carries out an 

indirect levelling on short ranges: 150 m of distance. The traditional corrections are applied for the data 

processing (Milles and Lagofun, 1999). The absolute precision of taken measurements and the effectiveness of 

the corrections are tested on the reference target. During the week of the experience, after corrections of 

atmospheric changes and calibrations, the precision reach by the geodetic system correspond in ±0.2 mm with 

100 m for a measurement in x and y and ±0.5 mm in altitude. 

 

Results 
Hydrological results 

Injected volume, transit time and refund rate The water injection on the summit escarpment of the slide lasted 

288 min by maintaining a constant flow of 2.23 ± 0.15 L s)1. Total volume injected is thus 38.6 ± 2.6 m3. The 

transit time between the beginning of the injection and the water arrival to the S15 is 78 min. In the same way, 

we observe, from flow measurements that the spring recovers the initial flow rate 140 min after stopping the 

pump (Fig. 3). Flow measurements on S15 allow recovering 11.6 m3 of injected water, which correspond to 30% 

of the injected water. In the same way, part of the water injected is arisen by various discharge system of very 

low flow while another part could be lost in the Tinée alluvia. 

The course of part of the water injected on the surface remained very shallow as it is arisen twice in the 

landslide, on the level of each great wrenching, to lose a few meters further in the following sliding surface. The 

slope water was thus drained by zones of high permeability contrasts corresponding to the sliding surfaces. The 

sliding surfaces play the role of drains with a fast transfer of water injected.  

 

Fluorescein concentration  

Fluorescein was injected during the first 15 min in order to track the first part of the water injection. The 

recovery rate of S15 was about 15% of the total 30% recovered injected water for all the springs (Fig. 3). This 

rate is weak compared with the covered distance (about 100 m); it can be explained by the complexity of the 

sliding surface and by the many points of injection/reinjection observed on the ground. Nevertheless, we observe 

a fast and synchronous fluorescein response to the increase in the spring flow. First, the concentration increased 

to 3200 lg L)1 in 1 h and 30 min, then decreased to values lower than 500 lg L)1 in 12 h, this shape of the 

fluorescein curve is characteristic of a preferential drainage (Miyazaki,1993). In this granular material, the water 

drain is interpreted as the sliding surface, which confirms the observations of the flows. On the second part of the 

curve, we observe a significant variation (300 lg L)1) which corresponds to the delayed arrival of the tracer. The 



moraine matrix is relatively permeable; part of the water can infiltrate under the slipped zone and join the water 

of the fractures underneath (deep watertable). This second circulation is supported by the presence of fluorescein 

in piezometer 1 (Fig. 2) and validates the link between the slope water and the alluvia. 

 

Interpretations 

The acquired hydrological data highlights the draining role of the fractures and the sliding surface, even in a 

relatively permeable material like the fluvio-glacial deposits. The transfer times of water injected within the slide 

is very short (78 mn) and water pressures very quickly evacuated. However, part of the water was infiltrated 

under the slip or was stored before joining S15, under the slipped zone. The water which followed this path 

arrives partly at the source the second day (second restitution peak, Fig. 3) or passes directly in the Tinée alluvia 

(piezometer 1). 

The next part of this paper describes evidence for the existence of these two underground flowpaths (double 

fluorescein peak, Fig. 3); and the visualization of the ground water distribution by electrical tomography in order 

to locate the escapes or storage zones of water in this slope. Temporal geophysical response of slope Electrical 

tomography results The first profile Pd0 (Fig. 4a), performed before the injection, is taken as the reference 

profile. Figure 4(b) represents the geometric accuracy of the inverted profiles after calculation. 

This profile can be broken into three distinct zones (Fig. 4a): 

1 zone 1: has resistivity values higher than 500 Xm. This zone is characterized by substratum outcrops and 

slipped fluvio-glacial material; 

2 zone 2: has a highly variable resistivities between 40 and 500 Xm. This is the signature of a saturated zone in 

the form of a perched watertable including weathered gneisses and fluvio-glacial deposits which can only be 

distinguished by the surface geological mapping (Lebourg et al., 2005). The discharge system of this watertable 

is marked by S15; 

3 zone 3: has resistivity values higher than 500 Xm interpreted from geological observations to be the gneissic 

substratum (Lebourg et al., 2003, Jomard et al., 2005). 

To quantify and observe the consecutive variations of resistivity to the water injection, we propose to show 

results in the form of inversed matrices subtraction (Fig. 5), where X and Y are the coordinates of the 

measurement points on the profile, q the associated resistivity value, t the acquisition hours and t = t1 - t2 

(Eq. 1)  

This representation has the advantage of showing in a simple way the positive or negative variations of 

resistivity. The subtraction of the Pd1 profile to the reference profile Pd0 presents the evolution of the 

resistivities 1 h after the beginning of the injection. 

The volume of infiltrated water at this moment is approximately 8 m3. Ground observations and hydrological 

measurements show that the injected water is already flowing to the slope base (flow increase of S15 and 

fluorescein peak). Saturation zones are clearly defined in the upper part of the profile and confined to the sliding 

area. The thickness of these does not exceed 15 m. The drainage is superficial and effective implying the 

presence of a succession of strong permeability contrast surfaces. The correlation of water springs with the 

mapped sliding surfaces shows that the drainage is carried out through the slip surfaces. The assumption of the 

simple rotational slip is thus not valid (Lebourg et al., 2005). A more complex sliding surface geometry where 

the water exits on sliding surfaces toe and re-injects on sliding surfaces head (Figs 5 and 6) should be 

considered. The correlation with the profiles subtraction results is very good and allows the quality validation of 

the profiles carried out. The subtraction of the Pd3 profile to the basic profile Pd1 yields the evolution of 

resistivities starting from the acquisition of the first profile. We found the same characteristics of superficial 

drainage with an increase of the medium saturation characterized by a continuous decrease of the resistivities. 

This profile also shows a localized strong fall of resistivity towards the depth resulting in the loss of part of the 

water injected. This indicates a vertical variation of the permeability, which could be associated with a 

geological discontinuity. 

The subtraction of the Pd8 profile to the basic profile Pd0 yields the evolution of the resistivities 1 day after the 

end of the injection. The flow of S15 returned to the normal and the profile shows, by an increase of resistivities, 

that the superficialsaturation is finished. However, indepth saturation, although less significant, is always present 

and tends to be diffused towards the downstream side. Indeed, this diffusion corresponds to the second 

fluorescein increase observed the day after the injection to S15. Water is diffused by gravity and mixes with the 

watertable feeding S15 without increasing the flow. 

Subtraction of the Pd9 profile to the basic profile Pd0 presents the final evolution of the water-injected 

dissipation within the lower saturated zone. 

 

Interpretations 

Geophysical tomography is used to follow the two flows highlighted by hydrological measurements through 

time. The surface flow is carried out in a section not exceeding 10-m thickness. Water accumulations are 

significant on re-injection and exit points observed on the ground during the experiment. These zones correspond 



to the sliding surfaces of the landslide. The increase in superficial saturation through time is followed by an 

indepth loss of injected water. While the surface zone is quickly drained by the sliding surface, the water 

infiltrated towards the depth is spread slowly, by gravity, in the deep watertable (deeper than 20 m). 

 

Discussion and Conclusion 
The hydrogeophysical acquisition provides coherent information, by acquisition and correlation of two 

complementary signals, about the draining properties of the unstable rock mass in space and time. With this 

hydrogeophysical approach, we highlighted information on the geometry and the dynamics of the slip. The first 

highlighted structure is the failure slip surface; this surface guides the flow of the injected water. This sliding 

surface is at maximum 10-m depth, is not continuous and appeared as a succession of upstream failure surfaces 

(Fig. 6). These results are not in agreement with those published by Lebourg et al. (2005) who suggested the 

presence of a continuous sliding surface between 20- and 30-m depth in the case of a simple rotational landslide. 

According to our observations and measurements (Figs 4 and 5),Lebourg et al. (2005) should have imaged the 

deep watertable present within the slope. However, the presence of an existing shrouding continuous failure is 

not excluded (Fig. 6) butthe obtained single fluorescein peak (Fig. 3) and the correlation of accurate geophysical 

data (Fig. 5) with surface observations argue against its existence. The in-depth loss of water, observed by 

tomography and leading to the second fluorescein peak implies the presence of a lower permeability zone 

towards the depth. Surface observations and tacheometrical measurements (Binet et al., 2004; Binet, 2006) 

demonstrate the presence of toppled trenches within the gneissic bedrock perpendicular to the line of greater 

slope (Fig. 6). Those toppled structures could be at the origin of the studied slip (Binet et al., 2004; Binet, 2006). 

These trenches are also observed on a large scale on the whole of the slope of La Clapière giving the mobilized 

rock formations much more permeable by creation of pores and open fractures (Cappa et al., 2004). This 

permeability increase because of the formation of trenches can explain the rather fast in-depth loss of water, its 

temporary storage and its slow diffusion by gravity in the deep watertable. view and its possible relationship to 

the actuation of the slipped mass are given below. The injection shows that failure surfaces are used as draining 

surfaces and then as short-cut for the deep watertable alimentation. Indeed, 30% of injected water was quickly 

drained by S15. Seventy per cent of remaining water was thus shared between the other discharge system S16–

S17, the alluvia (piezome´tres 1-2-3) and the mix within the deep watertable. This mix, not leading to an 

increasing flow to S15 (Fig. 3) can thus represent only one relatively low infiltrated volume. Superficial 

infiltrations, shortcut by surface fractures and the sliding surface, thus do not seem to allow the increase of the 

deep watertable level. We have tried through this experiment to induce a movement of the landslide to quantify 

the contribution of water and thus the slope saturation necessary to its actuation. But the tacheometrical follow 

up carried out during the injection was not able to detect a movement on any of the 14 targets laid out on the 

slope. The only recordedmovement, following the slope axis, maximum 0.0129 m on target 11 which is situated 

outside the landslide, corresponds to the daily average movement of the La Clapière Landslide (Follacci, 1999). 

The injected water on the failure surface of the landslide was drained too fast to cause a sufficient pore water 

pressures increase in the slope and thus, to allow a perceptible acceleration of this landslide. This injection 

experiment indicates that the water flowing on the sliding surface cannot be the cause of a movement of the 

slipped mass in the short term. Which conditions could be at the origin of accelerations and movement of the 

landslide? In the short-term movements consecutive to moderate rain events cannot be caused by the water 

drained on the sliding surfaces. Thus, the origin of these movements must be the consecutive overloading due to 

water infiltration in the slipped volume. Indeed, taking into account the landslide surface (<2500 m2) and mean 

precipitation values of 10 mm m)2 (Cappa et al., 2004) the volume of water reaching the landslide surface will 

not exceed 25 m3. With an estimated permeability of the geological material of 1.9 · 10)5 m s)1 (Binet, 2006; 

Binet et al., in press) and without taking into account the average slope angle, the duration of the rain and the 

evapotranspiration, the infiltrated water and then the consecutive overload should not exceed 17 m3. In the same 

way, the water stored in the landslide during the injection before recovering the first flow on S15 is about 10.4 

m3 (2.23 L s)1 during 78 min). The volumes and the consecutive overload in both cases (injection and 

precipitations) are comparable. As any movement was recorded by the geodetic monitoring, the overload 

consecutive to a moderate rain event on the studied landslide does not seem to be able to lead to a movement, in 

the case of the already existing landslide. In the medium term exceptional precipitations on long periods (up to 

200 mm m)2 in 1 h were recorded during the millennial flood of the Var in 1994) or more probably the water felt 

in the overall slope and drained in depth by fractures and faults (Lebourg et al., 2005) in rising periods (snow 

melt or rains onto the massif), will represent volumes definitely more significant. Those volumes could be at the 

origin of more significant overloads in one hand and of the increase of the deep watertable in the other hand, 

both could participate to the actuation of the landslide. Those mechanisms also characterize the reaction of the 

overall slope of La Clapière (Cappa et al., 2004). The renewal of this hydrogeophysical experiment in high-level 

period of the deep watertable or by sprinkling on the slipped volume coupling numerical stability models will be 

a next stage with an aim of answering the assumptions that this injection will have enabled us to advance. 

 



Acknowledgements 
This work was supported by the PACA Region, the French INSU SAMOA project and RELIEF Project (French 

Ministry of Research). We acknowledge Christopher Wibberley for his English review and comments. 

 

 

References 
Agnesi, V., Camarda, M., Conoscenti, C., Di Maggio, C., Diliberto, I.S., Madonia, P. and Rotigliano, E., 2005. A 

multidisciplinarymultidisciplinary approach to the evaluation of the mechanism that triggerd the Cerda landslide 

(Sicily, Italy). Geomorphology, 65, 101–116. 

Bichler, A., Bobrowsky, P., Best, M., Douma, M., Hunter, J., Calvert, T. and Burns, R., 2004. Three-dimensional 

mapping of a landslide using a multigeophysical approach: the Quesnel Forks landslide. Landslides, 1, 29–40. 

Bigot-Cormier, F., Braucher, R., Bourles, D., Guglielmi, Y., Dubar, M. and Stephan, J.-F., 2005. Chronological 

constraints on processes leading to large active landslides. Earth Planet. Sci. Lett., 235, 141–150. 

Binet, S., 2006. L’hydrochimie, marqueur de l’évolution a` long terme es versants montagneux fracture´ s vers 

de grands mouvements de terrain (Vallée de la Tineée, Alpes Maritimes et versant de Rosone, Grand Paradis, 

Italie). PhD thesis, 312 pp. University of Besançon, Besancon. 

Binet, S., Jomard, H., Lebourg, T., Guglielmi, Y., Bertrand, C., Mudry, J., Charmoille, A. and Quenardel, J.M., 

2004. Apport des Méthodes électriques 3D à L’étude du Comportement d’un pied de Versant: interaction entre 

un Mouvement Superficiel et Profond (La Clapière; Alpes Maritimes). In: AGAP Qualite´, Eau et Géophysique, 

Lyon,September 2004. 

Binet, S., Jomard, H., Guglielmi, Y., Lebourg, T., Tric, E., Bertrand, C. and Mudry, J., in press. Experimental 

analysis of groundwater flow through a landslide slip surface using natural and artificial water chemistry tracers. 

Hydrologic. Processes (in press). 

Bogdanoff, S. and Ploquin, A. 1980. Les gneiss et migmatites du massif de l’Argentera (Alpes-Maritimes): 

apport de deux coupes ge´ochimiques. Bull. Soc. Géol. Fr., 29, 353–358. 

Bogoslowsky, V.A. and Ogilvy, A.A., 1976. Geophysical methods for the investigation of landslides. 

Geophysics, 42, 562–571. 

Bonzanigo, L., Eberhart, E. and Loew, S., 2001. Hydromechanical factors controlling the creeping Campo 

Vallemaggia landslide. In: Symposium of landslides, Causes, Impacts and Countermeasures, Davos, pp. 9–12. 

Cappa, F., Guglielmi, Y., Soukatchoff, V.M., Mudry, J., Bertrand, C. and Charmoille, A., 2004. 

Hydromechanical modeling of a large moving rock slope inferred from slope levelling coupled to spring long-

term hydrochemical monitoring: example of the La Clapiere landslide (Southern Alps, France). J. Hydrol., 291, 

67–90. 

Caris, J.P.T. and Van Asch, Th. W.J., 1991. Geophysical, geotechnical and hydrological investigations of a 

smalllandslide in the French Alps. Eng. Geol., 31, 249–276. 

Cruden, D.M. and Varnes, D.J., 1996. Landslide types and processes. In: Landslides: Investigations and 

Mitigation, chapter 3 (A.K. Turner and R.L. Schuster, eds), pp. 36–71. Transportation Research Board, National 

Research Council, Washington, DC, Special Report 247. 

Descloitres, M., Ribolzi, O. and Le Troquer, Y., 2003. Study of infiltration in a Sahelian gully erosion area using 

timelapse resistivity mapping. Catena, 53, 229–253. 

Dzikowski, M., 1995. Convolution a débit variable a partir de reponses de tracages artificiels dans les milieux 

poreux ou karstiques; the´orie et mode` le: convolution in time-dependent system from artificial tracer tests 

responses in porous or karst systems; theory and modeling. J. Hydrol., 164, 287–303. 

Edwards, L.S., 1977. A modified pseudosection for resistivity and IP. Geophysics, 42, 1020–1036. 

Faure-Muret, A., 1955. Etudes Geologiques sur le Massif de l’Argentera-Mercantour et sur ses Enveloppes 

Sédimentaires. Mem. Carte Ge´ ol., Paris, France. 

Follacci, J.P., 1987. Les mouvements du versant de la Clapie`re a` Saint-Etienne de Tinée (Alpes Maritimes). 

Bull. Lab. Ponts Chausse´es, 150–151, 39–54. 

Follacci, J.P., 1999. Seize ans de surveillance du glissement de la Clapière (Alpes Maritimes). Bull. Lab. Ponts 

Chaussées, 220, 33–51.French, H. and Binley, A., 2004. Snowmelt infiltration: monitoring temporal anspatial 

variability using time-lapse electrical resistivity. J. Hydrol., 297, 174–186. 

Godio, A. and Bottino, G., 2001. Electrical and electromagnetic investigation for landslide characterisation. 

Phys. Chem. Earth, 26, 705–710, 

Griffiths, D.H. and Barker, R.D., 1993. Two-dimensional resistivity imaging and modelling in areas of complex 

geology. J. Appl. Geophys., 29, 211–226. 

Guérin, R., Munoz, M.L., Aran, C., Laperelle, C., Hidra, M., Drouart, E. and Grellier, S., 2004. Leachate 

circulation: moisture content assessment by means of a geophysical technique. Waste Manage., 24, 785–794. 

Guglielmi, Y., Bertrand, C., Compagnon, F., Follacci, J.P. and Mudry, J., 2000. Acquisition of water chemistry 

in a mobile fissured basement massif: its role in the hydrogeological knowledge of the La Clapière Landslide 

(Mercantour massif, southern alps, France). J. Hydrol., 229, 138–148. 



Guglielmi, Y., Vengeon, J.M., Bertrand, C., Mudry, J., Follacci, J.P. and Giraud, A., 2002. Hydrogeochemistry: 

an investigation tool to evaluate infitration into large moving rock masses (case study of the La Clapie`re and 

Séchilienne alpinelandslides). Bull. Eng. Geol. Environ., 61,311–324. 

Guglielmi, Y., Cappa, F. and Binet, S., 2005. Coupling between hydrogeology and deformation of mountainous 

rock slopes: insights from La Clapie`re area (alpesMaritimes). C. R. Acad. Sci., 337, 1154– 1163. 

Guimera, J. and Carrera, J., 2000. A comparison of hydraulic and transport parameters measured in low-

permeability fractured media. J. Contam. Hydrol., 41, 261–281. 

Gunzburger, Y., Merrien-Soukatchoff, V. and Guglielmi, Y., 2005. Influence of daily surface temperature 

fluctuations on rock slope stability: case study of the Rochers de Valabres slope (France). Int. J. Rock Mech. 

Mining Sci., 42, 331–349. 

Ivaldi, J.P., Guardia, P., Follacci, J.P. and Terramorsi, S., 1991. Plis de couverture en échelon et failles de second 

ordre associés à un décrochement dextre de socle sur le bord nord-ouest de l’Argentera (Alpes-Maritimes, 

France). C. R. Acad. Sci. Paris, 313, 361–368. 

Jomard, H., Lebourg, T., Binet, S., Tric, E. and Hernandez, M., 2005. Water Injection in a Landslide: Real Time 

Hydrochemical and Geophysical Study, pp. 24– 29. EUG Assembly, Vienna. 

Lapenna, V., Lorenzo, P., Perrone, A. and Piscitelli, S., 2003. High resolution geoelectrical tomographies in the 

study of Giarrossa Landslide (Southern Italy). Bull. Eng. Geol. Environ., 62, 259–268. 

Lebourg, T. and Fabre, R., 2000. Glacial Tills Instability on Mountainsides, Influence of the Geomorphologic 

Inheritance and the Heterogeneity, for Forecasting the Behaviour of Slope Movements. VIII International 

Symposium on Landslides, Cardiff, 26–30 June 2000, pp. 887–892. 

Lebourg, T., Tric, E., Guglielmi, Y., Cappa, F., Charmoille, A. and Bouissou, S., 2003. Geophysical Survey to 

Understand Failure Mechanisms Involved on Deep Seated Landslides. EGS–AGU–EUG Joint Assembly, Nice. 

Lebourg, T., Binet, S., Tric, E., Jomard, H. and El Bedoui, S. 2005. Geophysical survey to estimate the 3D 

sliding surface and the 4D evolution of the water pressure on part of a Deep Seated Landslide. Terra Nova, 17, 

399–406. 

Loke, M.H., 1997. RES2DINV Software User’s Manual. University Sains Malaysia, Penang. 

Maquaire, O., Flageollet, J.C., Malet, J.P., Schmutz, M., Weber, D. and Klotz, S., 2001. Une approche 

multidisciplinaire pour la connaissance d’un glissementcoulee dans les marnes noires du Callovo-Oxfordien 

(Super Sauze, Alpes de Hte Provence, France). Rev. Fr. Geotech., 95–96, 15–32. 

McCann, D.M. and Forster, A. 1990. Reconnaissance geophysical methods in landslide investigations. Eng. 

Geol.,29, 59–78. 

Milles, S. and Lagofun, J., 1999. Topographie et Topome´trie Modernes, Techniques de Mesures et de 

Représentation. Eyrolles, Paris. 

Miyazaki, T., 1993. Water Flow in Soils, 312 pp. Marcel Dekker, New York. Moriwaki, H., Inokuchi, T., 

Hattanji, T., Sassa, K., Ochiai, H. and Wang, G. 2004. Failure processes in a full-scale landslide experiment 

using a rainfall simulator. Landslides, 1, 277–288. 

Mudry, J., 1990. Les courbes flux chimique débit et le fonctionnement des aquifères karstiques. J. Hydrol., 120, 

283–294. 

Noverraz, F., Bonnard, C., Dupraz, H. and Huguenin, L., 1998. Grands Glissements de Versants et Climat. 

Rapport Final PNR 31, 314 p. Vdf Hochschulverlag AG an Der ETH Zu¨ rich, Zurich.  

Onda, Y., Tsujimura, M. and Tabuchi, H. 2004. The role of subsurface water flow paths on hillslope 

hydrological processes, landslides and landform development in steet mountains of Japan. Hydrol. Processes, 18, 

637–650. 

Sawada, A., Uchida, M., Shimo, M., Yamamoto, H., Takahara, H. and Doe, T.W., 2000. Non-sorbing tracer 

migration experiments in fractured rock at the Kamaishi Mine, Northeast Japan. Eng. Geol., 56, 75–96. 

Terzaghi, K., 1950. Mechanism of Landslides: Application of Geology to Engineering Practice (Berkey 

Volume), pp. 83–124. Geological Society of America, New York, NY. 

Tohari, A., Nishigaki, M. and Komatsu, M., 2000. Laboratory experiments on initiation of rainfall-induced slope 

failure with moisture content measurements. In: International Conference on Geotechnical and Geological 

Engineering, (GeoEng 2000) Australia, Vol. 2. 

Extended abstract, pp. 56, (selected as Award Papers), Melbourne. 

Tullen, P., 2002. Méthodes D’analyses du Fonctionnement Hydrogéologique des Versant Instables, 192 + 

annexes pp. 

Ecole Polytechnique Fédéral de Lausanne, Lausanne. 

Wang, G. and Sassa, K., 2003. Pore-pressure generation and movement of rainfall- induced landslides: effect of 

grain size and fine-particle content. Eng. Geol., 69, 109–125. 

 

  



FIGURES AND TABLES 
 

 
Fig. 1 Localization and topography of the La Clapie`re landslide (a) and detailed map of the studied secondary encased 
landslide (b) in the slope toe (from Lebourg et al., 2005). 
  



 
Table 1 Landslide geometrical characteristics 
 

 
Fig. 2 Localization on the secondary landslide of the geophysical survey array (141 m), the hydrological acquisition 
device and the tacheometric sensors used for the injection experiment. 
  



 
Fig. 3 Hydrological data obtained on S15 (see Fig. 2). First graph presents the injected and recovered water flow, 30% of 
the injected flow exits in S15. Second graph shows the evolution of fluorescein concentration with two of line dilution 
peaks (>500 lg L)1, strong grey mark). The injection duration is highlighted by the smooth grey mark. 
 
 
 
 
 

 
Table 2 Selected geophysical survey profiles (see Figs 2, 4 and 5). 
  



 
Fig. 4 (a) Reference profile made before the injection. Zones 1 and 3 correspond tounsaturated zones and zone 2 to a 
perched saturated zone with an exit point on S15.(b) Localization of inversion blocks edges for all the acquired profiles 
(note that a block can contain several measurement points). It shows the geometric accuracy evolution of inverted 
profiles with depth increase. 
 



 
 
Fig. 5 Inverted matrices subtraction of selected profiles (see Table 2). Dti is the elapsed time between the acquired 
profile and the injection start. Red parts correspond to a relatively increasing resistivity and blue part to a relative 
resistivity decrease (water flow path). No dimension or value is given because of the different relative resistivity response 
of geological formations to the water solicitation. 
 



 
 
Fig. 6 Conceptual sketch of slope geometry after geological and hydrogeophysical interpretation. The landslide occurred 
within the glacial deposits. The movement is controlled by basement toppling (Binet et al., 2004; Binet, 2006) which 
imply a diffuse deformation in tills. 


