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ABSTRACT 
Geophysical surveys were conducted on the very unstable front part of the La Clapiè re landslide in the French Alps (Alpes 

Maritimes). The electrical resistivity survey was carried out to obtain, for the first time on this deep-seated landslide, 3D information 

on the slipping surface and the vertical drained faults. Moreover, we planned to follow within time (6 months) the evolution of the 

saturated zones (presence of gravitational water) and their percolation into the shearing zones. Our 4D results showed the importance 

of the complex water channelization within the slope and relation to geological discontinuities. 
 

Introduction 
The understanding of rupture processes involved in deep seated landslides is difficult for two main reasons. The first reason 

arises from the difficulty in estimating the mechanical and the hydrogeological behaviours of the whole mountain 

(heterogeneous structure with discontinuities) which is very different from rock samples studied in the laboratory. This is 

especially important in the upper part of the slope subject to weathering. The second reason items from the necessity of 

taking into account both the 3D geometry of the phenomenon and the geological discontinuities affecting the mountain slide. 

The geometry and the structure can be determined only by geotechnical and/or geophysical methods. Although the 

geotechnical methods allow one to obtain accurate data which locate precisely the substratum, they have high destructive 

consequences and provide relatively poor total information. Thus, a global interpretation of the structure of the landslide is 

not easy and sometimes impossible. This is why geophysical methods are employed such as the electrical resistivity 

tomography method. The main advantages are that it is possible to measure the soil response along continuous (or pseudo-

continuous) profiles at the soil surface. We obtained 2D and 3D imagery of the structure with an identification of different 

zones that can be associated with lithological and/or hydrological characteristics. Nevertheless, these profiles need validation 

points and/or supporting informations from several complementary approaches (hydrogeology, tectonics, etc.) or methods 

(seismic reflection and refraction, gravity). Some recent studies have shown that the resistivity method can reveal very 

important details of the weathered zone, hydrological system and geological structures of the studied area (Robain et al., 

1996; Ritz et al., 1999; Jongmans et al., 2000; Sumanovac and Weisser, 2001). However, this method has been rarely used on 

deep seated landslides because the surface topography can be very irregular and the studied area difficult to reach. 

The purpose of this work was to investigate whether the electrical resistivity tomography could provide accurate information 

on the weathered zones, the slipping surface, the major discontinuities and on the network of drainage in an unstable part of 

the La Clapière landslide (Alpes Maritimes, France). Even if numerous studies have been carried out on this site (hydrology, 

geology, tectonics, topography, etc.), no geophysical studies have been made (Follaci, 1987; Ivaldi et al., 1991; Guglielmi et 

al., 2000). This is why we decided to undertake, for the first time, such a study by applying this approach to the La Clapière 

landslide and more precisely to an active unstable part at the front of the landslide, Fig. 1. This area has been chose because it 

is more accessible than other unstable parts that we can observe on this landslide, for example, between elevations of 1500 

and 1720 m in the south-eastern upper part of the slope. Moreover, we propose to show in this article the possibility of 

carrying out a 3D acquisition of the landslide structure and of following evolution of resistivities through time. As shown in 

previous study (Lebourg et al., 2003) it is possible to refine the interpretation of the piezometric levels and the principal faults 

structures (drained faults) within a landslide. 

We will show in the first part the results of the interpretation of the electrical tomography in 2D and in 3D and this in 

correlation with hydraulic data and the geological interpretation. In the second part, data are presented on the temporal 

evolution of the fifth tomographic profile at three different times (4D measurements, example of profile number 6). 

 

Geographical, geological and hydrogeological setting 
The la Clapière landslide is a large unstable slope located in the South East French Alps, about 80 km North of Nice. This 

landslide, which mobilizes a huge volume (55 · 106 m3) of metamorphic bedrock (Follaci et al., 1999) is developed on the 

north side of the Tinee Valley and affects a mountain that rises to 3000 m, occurring  between 1100 and 1800 m of altitude 

(Fig. 1). A large rupture has been observed since the beginning of the last century: in 1936 the wrenching at the top of the 

landslide was already visible. In the 1970s, the movements became more continuous and the site has been monitored since 

1982 (Follaci, 1987, 1999 ). The slope of the unstable zone is about 37 _, but is not constant along the profile: the lower part 

of the slope is steeper than the higher part. The change of gradient corresponds to the limit of extension of quaternary 

glaciers, as frequently occurs in the alpine valleys. The slope can be separated into three entities: a stable internal zone where 

the foliation has a strong dip varying from 60_ to 80_ towards the interiors of the slope; a zone dipping towards N030_ 



approximately 200 m thick where foliation is gradually rotated to the horizontal, and the slipped zone where displacements 

towards the 

valley are important. The surface of the landslide is quite irregular because of numerous rock-fall accumulations, tilted 

terraces and internal cracks. In this area, the basement is composed of migmatitic paragneisses (Anelle Formation) and 

orthogneisses (Iglière Formation) having a strong Hercynian foliation. The _La Clapière_ slope itself is affected by a lot of 

tectonic discontinuities. The major fractures are subvertical N20 faults intersecting the whole slope far away from the active 

landslide and limiting several parallels, a few hundred metres wide, N20 faults. The displacements measured by the 

monitoring system have also on average a N20 orientation. Thus, it can be suggested that faults play the role of _guides_ 

localizing landslip deformations and the water drainage. The main sliding surface is partly outcropping at the foot of the 

slope. In the rest of the slope, its depth is thought to be approximately 100– 200 m but no geophysical study up to date has 

been devoted to confirm or to weaken this suggestion. Actually, several parts of the landslide are unstable. The more 

important is located at the south-eastern upper part of the slope, between elevations of 500 m and 1720 m. In this area we 

observe a compartment with an estimated volume of 5 millions m)3 which is sliding on a superficial rupture surface and 

actually overthrusting the remaining of the landslide. 

From the hydrogeological point of view, the area is characterized by several springs (perennial and temporary). Some of 

these springs outflow directly from the basement along faults with various orientations or in the weathered superficial 

formation. A study of the water chemistry (Guglielmi et al., 2000, 2003) suggests the presence of two main flowpaths in this 

landslide: (I) deep flow-through fractured gneiss and low permeability Triassic deposits pinched under the foot of the 

landslide, and (ii) flow through a more permeable fractured basement with a complex flow path. These differences in the 

landslide drainage can be correlated with the different mechanical behaviours: high speed sliding during snow melting period 

and slow speeds during low water periods (Follaci, 1999). The foot of the landslide is another very active area where a 

rotational landslide is taking place in the fluvioglacial deposits on top of the gneiss. This zone is structured by north–south 

faults, which are a local deviation of the major N20 faults, driving the landslide evolution (Figs 2 and 3).  

The hydrogeological behaviour of the rotational landslide (studied with ahydrogeochemical approach) shows the following 

general characteristics for the La Clapiè re: (i) the perennial springs which drain deep flow from the faults and which 

diverges in the fluvio-glacial deposits which have much higher permeability; (ii) the temporary springs which drain perched 

saturated zones in the fluvioglacial deposit (or moraine). 

The presence of the perched water table appears to be best developed after periods of high rain, but if these periods of high 

rain occurs during a period of snow melting, a connection is made between the two water sources, and the potential to trigger 

the instability becomes more important. 

 

Electrical prospecting and data acquisition 
The electrical resistivity tomography is a method widely applied to obtain 2D or 3D high-resolution images of the resistivity 

variation in a geological system (Griffiths and Barker, 1993; Lebourg and Frappa, 2001). Resistivity contrast analyses make 

it possible to highlight discontinuities: faults,  drainage channel systems and structural features. Drainage contrast induced by 

the lithology of the system (see geological settings), was measured by making a series of measurements over the entire site at 

regular time intervals.  

 

The electrical methods and experimental protocol 
The experiments measurement were undertaken with a multi-electrode 2D device, using 48 electrodes separated by 2 m. We 

used systematically a pole–pole and dipole–dipole array, with measurement frequency of 4 Hz for about 900 measurements 

for each profile. The 2D resistivity data were recorded using the Syscal R1 Plus imaging system (IRIS Instrument, France). 

The data are classically presented in the form of pseudo-sections (Edwards, 1977), which give an approximate picture of the 

subsurface resistivity. Inversion of the data is required to obtain a vertical true resistivity section through the underlying 

structure (Loke and Barker, 1996). The field data depicted as contoured pseudoresistivity sections were inverted with 

software program RES2DINV written by Loke (1997).Furthermore, the constraints provided by the topographical variations 

have been incorporated in the inversion processing. 

 

 

2D and 3D tomographic data and inversed models 
We obtained five parallel electrical tomographic profiles lines in 2D (with topography), of east–west orientation, with a 

spacing of 10–15 m (Fig. 4). The association of these five parallel profiles allows us to invert the data to obtain a 3D model 

of resistivity variations in and around the landslide studied. From these data the inversion software RES3D Inv (Loke, 1997) 

and Slicer Dicer 3.0 were used. Measurement of the evolution of the global resistivity variations was carried out between 

April 2003 and the middle of July 2003.  

 

Resistivity calibration 
The interpretation of electrical tomography profiles in terms of presence or absence of water requires an evaluation and 

calibration of resistivity values directly on rock samples. These field laboratory measurements allow us to distinguish 

different ranges of resistivity following the presence or absence of water. Our measurements give us the following 

indications. Morainic formations (dry or without water) are characterized by large resistivity variability (from about 500 X m 

to 3000 X m). With water the resistivity decreases strongly with increasing water content and is systematically lower than 50 

X m. The gneissic substratum is characterized by high resistivity values (higher than 5000 X m). The weathered zones of this 

formation show lower resistivity around 2000–3000 X m. 

 



2D results 
The five 2D-electrical transverse tomographic profiles obtained in this study are characterized by the same pattern of 

resistivity. An example is given in Fig. 5a,b. We observe from dipole–dipole array (Fig. 5a) a very large resistivity variability 

from 20 X m to 5500 X m with a vertical distribution in two zones. The first, between 0 and 2 m of depth shows resistivity 

values higher than 3000 X m, and below 15 m higher than 700 X m. The second, intermediate in depth (between 2 m and 14 

m depth) is characterized by very low resistivity (50 X m). This strong contrast can be associated with the presence of water 

and suggests a preferential circulation of water. The fact that this low resistivity zone is vertically limited by high resistivity 

could be interpreted as a perched watertable. Figure 5b also suggests the presence of vertical resistivity discontinuities that 

could be associated with drained faults. This suggestion is supported by a very good correlation between the interpreted 

geophysical data and the outcrop observations (Fig. 3). 

 

3D results 
The compilation of the five 2D profiles allowed us to obtain a 3D image of the study area (Fig. 6a,b). Figure 6a presents the 

same information previously presented as 2D results (large variability of the resistivity, vertical discontinuities,…). This 

allows the definition of a 3D structure of the landslide and gives information about the spatial distribution of the saturated 

zone. The data set presented in its entirety in Fig. 6a, was substracting all data more than 50 X m (Fig. 6b). Two significant 

features appear: the first one corresponds to the upper horizontal distribution whose extension covers the sliding surface. This 

can be interpreted (as was mentioned previously in the section on 2D results) as the _signature_ of the perched watertable 

and/or as the sliding surface of the studied landslide (with preferential fluid circulation). The second feature is associated with 

two vertical draining discontinuities intrasubstratum of which one is apparently less draining that the other. The western 

discontinuity is very well defined and borders the sliding surface. Hence vertical drained discontinuity seems to be a fluid 

conduit. The second contact is located slightly further away from the sliding surface (approximately 20 m). 

It is not possible to say if these two vertical discontinuities are connected at depth, but they probably contribute to the 

dynamic behaviour of this part of the landslide. Moreover, our results suggest a connection between the perched watertable 

and these draining faults. In order to verify the existence of this connection and assess how it evolves through time, resistivity 

measurements were carried out from April to July 2003 coupled with hydrogeological data. 

 

4D measurements, example of profilenumber 6 

Guglielmi et al. (2000) showed that based on chemical compositions of water it was possible to determine the origin of the 

water flowpath in the La Clapière landslide. Indeed, the change of water chemistry is the result of mass transfer between 

interstitial fluids and rockforming minerals. These mass transfers depend on several parameters involved in weathering 

processes (temperature, pH and Redox conditions, mineralogical composition, etc.), but also the residence time of water in 

contact with the mineral. Thus, during periods of low water flow rates, the water coming from the fractured aquifer has an 

important residence time, the interactions between water and rock are significant, and the signal is strong (Blavoux and 

Mudry, 1983). However, during a period of rain or snow melting, the consequent high flow rate results in low chemical 

signal (Table 1). The flow is concentrated in the main fractures of the rock mass. The residence time is smaller than the low 

water period and the interactions between rock and water are not sufficient to generate water with a strong chemical content 

in the springs (Mudry et al., 1994). On the _La Clapière_ slope, a part of this infiltrated water shows the foot of the landslide. 

It has been demonstrated that the sulphate content is a good marker of the infiltration periods in these instable areas 

(Compagnon et al., 1997; Guglielmi et al., 2000). 

We present here the evolution of one resistivity profile through time (no. 5) compared with the hydrogeological rate of flow 

which has been evaluated by recording the concentration of chemical contents in spring 15, with measurement every 2 days 

(Table 1 and Fig. 2). The time evolution of the water content records the piezometric level of the spring which is at the base 

of the slip. These data were used to obtain Fig. 7a. During the recording period, the three major hydrogeological states during 

the water content evolution were observed. The first one between 4 April 2003 and 19 May 2003 where the sulphate content 

is constant around 650 mg L-1. It corresponds to a low water period. Between 19 May 2003 and 4 July 2003 values decrease 

around 500 mg L-1, linked to the snow melting in the upper part of the slope (>1800 m). The dilution is important (end of the 

snow superficial storage) and is delayed by about 20 days between the infiltration period and its effect on the springs 

(Guglielmi et al., 2002). In the study area, this phenomenon creates a deep arrival of water and creates an increase of pressure 

in the landslide (Cappa et al., 2004). The last period is after the 5 July 2004 for which the values of the resistivity quickly 

evolve between 450 and 650 mg L)1; the decreases are correlate with the rain events localized on the sliding area, the spring 

dilution is quasi-instantaneous after the rain event (<1 day) because water fell directly on the sliding area and arrived quickly 

at the spring. These flows occurred in the upper part of the sliding zone and had little influence on the acceleration of the 

landslide (Cappa et al., 2004). The west fault is always a draining conduit, the resistivity variations are weak, maybe linked 

with a regular flow rate of deep water (a spring drains this fault and it is interpreted to be draining deep water). The east fault 

shows important decrease of resistivity 15 m under the surface. The flood records of 14 July 2003 created flows in the 

moraine during 4 days (the chemical record shows a dilution over a 4-day period). We propose that the area is draining 

superficial flow, infiltrating during the rain event. This remark is confirmed by the temporary spring position. Water flows 

into the moraine and creates a perched water zone. Today, the rotational landslide is not connecting with this drain, but might 

possibly do so in the future. A connection could occur in the future if the drain has an important water volume to evacuate 

(Fig. 4).  

 

Conclusion 
This study enabled us to carry out a 3D resistivity imagery of a landslide body by taking into account the topography. This 

study made it possible to highlight the sliding surface and the water draining systems of the studied zone. We observe the 

presence of two vertical _draining_ structures which feed the perched watertable and the sliding surface. Maximum 



displacements of the landslides generally follow the snow melt or after major episodes of rain. The temporal follow- up of a 

resistivity profile vs. hydrogeological data validate this observation. Broadly this study showed that resistivity measurements 

are a good indicator to evaluate the connection between the distribution and the temporal evolution of groundwater and 

geological structures. The comparison with hydrogeological data allowed us to evaluate the temporal evolution of this 

relation and determine the origin of the water in the soil. However, it is not possible to understand with these data the 

dynamics and the evolution of this landslide. We need 1-year period for this continuous geophysical acquisition. We can now 

start to rank the importance of different types of flow (deep water, perched water, etc.) contributing to the potential 

acceleration of the landslide, and overall model constrains on the stability of this zone. 
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Fig. 1 Location of the study area (Clapiere landslide). 
 



 
Fig. 2 Geological and geomorphological maps of Clapiere landslide and the study area (down part of Clapiere landslide). 
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Fig. 3 Cross-sections of the study area (down stage part of the Clapiere landslide). 

 



 
Fig. 4 Location of the five electrical profiles on the Clapiere landslide. 

 



 
Fig. 5 (a) 2D dipole–dipole array profile no. 5; (b) pole–pole array profile no. 5 of the 16 July 2003. Slip surface and/or perched 

watertable (long dotted lines); draining contacts (medium dotted lines); probable extension of the slip (short dotted lines). 

  



 

 

 
Fig. 6 Landslide limits (continuous feature); slip surface and/or perched watertable (long dotted lines); draining contacts (medium 

dotted lines). (a) 3D profile obtained from five 2D profiles; (b): same with values of very low resistivity (places probably saturated). 

 

 

 

 

 

 

 

 

Table 1 Measurements of the composition of the fluid at period of low water content,flood water content and the mean average from 

March to August 2003 

 



 

Fig. 7 Comparison of sulphate water content recorded as function of the time (of the 11 April and low profile of the 16 July) (a) in 

spring 15 with resistivity (log10 resistivity) profile no. 6 obtained at different time. In these profiles the dash line represents 

discontinuities. 

 

 


