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A commercial interface coupling liquid chromatography (LC) to a continuous-flow isotope 

ratio mass spectrometer (IRMS) was used to analyse δ
13

C of dissolved organic carbon (DOC) 

in natural waters. Stream and soil waters from a farmland plot in a hedgerow landscape were 

selected for application. Based on wet chemical oxidation of dissolved organics the LC-

IRMS interface allows on-line injection of small volumes of water samples, oxidation 

reaction to produce CO2 and gas transfer to the IRMS. In flow injection analysis (FIA) mode, 

bulk DOC δ
13

C analysis was performed on up to 100 µL aqueous sample in the range of 

DOC concentration in fresh waters (1-10 mg C.L
-1

). Mapping DOC δ
13

C spatial distribution 

at the plot scale was made possible by this fairly quick method (10 min for triplicate) with 

little sample manipulation. The relative contributions of different plot sectors to the DOC 

pool in the stream draining the plot were tentatively inferred on the basis of δ
13

C differences 

between hydrophilic and hydrophobic components. 
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Several methods coupling a dissolved organic carbon (DOC) analyzer to a continuous flow 

isotope ratio mass spectrometer (IRMS) have been developed.
[1,2,3,4,5,6]

 As for quantitative 

DOC analysis, two types of methodologies can achieve organic carbon oxidation to CO2:
1,2

 (i) 

High temperature combustion (HTC) systems with cryogenic trapping before transfer to 

IRMS.
4,5,6

 Refractory organic carbon may be better oxidized by HTC systems but isotopic 

values have to be corrected for a significant instrument blank depending on the volume of 

water injected and time of cryotrapping:
[4,5,6]

 (ii) Wet chemical oxidation (WCO) methods 

apply to larger sample volumes with variable persulphate reagent concentration in a closed 

reactor.
[1,2,3]

 Blank corrections also need to be accounted for, mostly depending on reagent 
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volumes.
[2,3]

 Both types of system can use reduction ovens and gas chromatographic 

separation before transfer to IRMS. The necessary complete purging of dissolved inorganic 

carbon (DIC) before DOC (more exactly non-purgeable organic carbon NPOC) analysis has 

to be done off-line by acid introduction in the sample before injection in HTC systems
[5,6]

 but 

can be conducted on-line before introducing the oxidation reagent in the reactor for WCO 

systems, allowing in this case both DIC and DOC carbon isotopic analysis.
[1,2,3]

  

In this work a commercial liquid chromatography (LC)-IRMS interface (LC IsoLink, 

Thermo Scientific, Bremen, Germany) was used to analyse the variation in DOC δ
13

C in 

stream and soil waters. The device, which was specially developed for on-line compound 

specific isotope analysis of water-soluble samples after LC separation
[7]

, can also be also used 

without column in bulk mode analysis for simple
[7]

 as well as for macromolecular 

compounds.
[8]

 In the field of complex raw samples the LC IsoLink interface has been already 

used for bulk carbon isotope ratio determination in alcoholic beverages.
[9]

 The main 

advantage of this method is that the water sample is injected into a continuous flow of mobile 

phase (ultrapure deionised water) and reagents mixed at the entry of a heated capillary reactor 

connected on-line to an open-split coupling and the IRMS via a liquid/gas (water/He) 

membrane exchanger and a gas-drying unit  (see Krummen et al.
[7]

 for a detailed description).
 

The field study selected as an example for application was a farmland plot in which 

several sectors had been previously distinguished for their different characteristics (redox 

conditions, ionic strength, dissolved metals, water-table depth).
[10]

 Factors controlling DOC in 

soils are complex and can be influenced by numerous parameters and processes such as 

substrate quality, decomposer community, adsorption in mineral soil horizons, pH, ionic 

strength, temperature, soil moisture, water fluxes and redox conditions
[11,12]

 Some of these 

factors may also control the variation in the isotope composition of organic carbon in soil 

profiles. Rather than direct isotope fractionation mechanisms for which evidence is 

lacking,
[13,14]

 the effects of selective sorption and/or preferential preservation of isotopically 

and chemically heterogeneous complex soil organic matter have been investigated, mostly 

through experiment.
[15,16,17]

 Mapping DOC δ
13

C in soil water at the plot scale can be a 

complementary approach to decomposition or sorption experiments but will involve 

managing a large number of water samples. The aim of the present work was first to test the 

applicability of the LC IsoLink interface to such a soil water field study. As soils account for 

the principal source of DOC in streams,
[18]

 the isotope composition of several organic 

fractions extracted from the water of the small creek draining the plot were compared to the 

soil water DOC obtained from the different sectors in the plot. Descriptions of the site, soil 
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horizons, and procedures of sampling or isolation of specific organic fractions (with XAD 

resins) preliminary to δ
13

C analysis will not be detailed in this paper. The objective was to 

describe the feasibility of analysing a large number of samples for DOC δ
13

C with small 

sample volumes at fresh water natural concentrations with a commercial LC-IRMS interface. 

 

MATERIALS AND METHODS 

Site and soil description and water sampling 

The site and field work have been detailed elsewhere.
[19,10]

 Briefly, the plot selected for the 

study is located on a hillside used as pasture in a hedgerow landscape. The soils are Planosols 

developed on altered gneisses and exhibit a stony horizon rich in Fe–Mn oxides overlaying a 

clayey B horizon supporting a seasonal water table in winter. Soil waters were collected 

below the water table from 80 cm depth to near the surface, free-flowing in auger-drilled 

holes. The volumes of water filling the auger holes were comprised between 0.1 and 2 liters. 

Landscapes marked by hedgerows (bocage landscape) are typically non-uniform areas in 

which the 3D distribution of soil horizons and anthropogenic structures (e.g. hedges, ditches 

or wheel ruts) affects the composition and circulation of water.
[20]

 Based on water solute 

composition the plot was found to be subdivided into four geochemical sectors
[10]

 (see Fig. 6 

at the end of the paper): (i) A sector lined by hedges characterized by a deeper water table, 

higher dissolved oxygen content and ionic strength; (ii) a sector with higher DOC 

concentrations (green grass symbol in Fig. 6) spatially correlated with shallow soil water 

levels enhancing contact  between soil solution and humic top soil horizons; (iii) a sector 

influenced by the upward infiltration of underground waters rich in reduced manganese in 

locations where the deep clayey B horizon is thinner or missing;
[21]

 and finally (iv) 2 anoxic 

Fe
2+

 and Mn
2+

 rich spots closed to the bank of the stream. Each sector may contribute 

differently to the chemical composition of the stream water.
 

 

Sample preparation 

Soil water subsamples for DOC analysis were filtered (0.45 μm) and acidified to pH 1-2 

either with concentrated nitric or phosphoric acid (but not HCl so as to preserve persulphate 

oxidation efficiency, see below). 

Separation of the different DOC fractions was made on larger volumes of water (about 7 

L) sampled in the stream draining the plot. Hydrophobic (HPO) and transphilic (TPH) acids 

were recovered by tandem XAD8/XAD4 adsorption chromatography.
[22]

 HPOacid and 
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TPHacid fractions were adsorbed at pH2 and then eluted in a small volume (50 mL) of basic 

solution (pH12) respectively from the XAD8 and the XAD4 resins (80 mL resin bed each). 

TPHacids are more hydrophilic than HPOacids. Other classically defined fractions
[22]

 either 

remained in solution in the water passing through the tandem columns (i.e. the most 

hydrophilic compounds HPI) or were retained on the XAD8 resin (i.e. the more hydrophobic 

neutral compounds HPOneutral). In addition, analytical separation using only a small XAD8 

column
23

 yielded 50% of the HPOacid and 30% of the HPI+TPH. 

 

DOC δ
13

C LC-IRMS analysis 

A system composed of an LC unit (Surveyor MS-pump with autosampler) coupled to a 

DeltaV-Advantage IRMS via a LC-IsoLink interface (all supplied by Thermo Scientific, 

Hanna-Kunath-Straße 11, Bremen, Germany) was used. Bulk analyses of DOC δ
13

C were run 

in flow injection analysis (FIA)
[8]

 mode (i.e. without column). Per mil (‰) deviations from 

the international standard Vienna Peedee Belemnite (VPDB) were calculated by the software 

Isodat (Thermo Scientific). δ
13

C standardization was done using IAEA (International Atomic 

Energy Agency) and USGS (US-Geological Survey) simple molecules and complex aquatic 

fulvic acids from IHSS (International Humic Substances Society). 

Mobile phase (MilliQ water brought to pH2 with H3PO4) and reagents (see Fig. 1 caption) 

were degassed under vacuum in a sonic bath and then permanently purged with He to prevent 

air regassing.
[8,9]

 The LC flow rate was fixed at 300µL/min considering its influence on the 

signal intensity and δ
13

C values.
8
 Flow rates were fixed at 50µL/min for the acid reagent and 

between 35 and 40 µL/min for the oxidant reagent to maintain the signal for O2 (m/z 32) at 

about 10 volts which is indicative of a sufficient level of oxidant through the reactor. The 

reactor temperature was set at 100°C. A sample volume up to 100 μL was routinely used to 

lower the detection limit to 0.5 mg C L
-1

. Acidified samples were manually purged with He 

(for DIC-CO2 elimination) in the autosampler 1.8 mL vials (during 3-4 min) prior to being 

place in the autosampler rack and injection. For organic concentrated fractions (HPOacid, 

TPHacid), 10 μL of sample diluted ten-fold with water were used. Each run started with 3 gas 

pulses for δ
13

C determination and ended with 2 for control; analysis of the sample in triplicate 

was completed in 10 minutes (Fig. 1). 

 

Precision and accuracy of the system 

δ
13

C values were calculated relative to pulses of CO2 analysed at the beginning of each run. 

Standard deviation (SD, 1) for triplicate analysis of standard solutions or water samples was 
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less than 0.1‰. The δ
13

C value of the CO2 monitor gas was repeatedly calibrated over a set of  

reference standard compounds dissolved in water. The set comprising both simple molecules 

and natural complex macromolecules ranged from -10.45‰ (sucrose IAEA-CH-6) to -27.6‰ 

(Suwannee River fulvic acid IHSS-1S101F).  Intermediate δ
13

C values may be found with 

sucrose IAEA-C6, -10.8‰; oxalic acid IAEA-C8, -18.3‰ and glutamic acid USGS-40, 

-26.39‰. The stability over time of the system was controlled by plotting the reference 

standard δ
13

C values versus measured values. In the example shown in Fig. 2, the maximum 

difference between targeted and measured values did not exceed 0.5‰. Least-squares linear 

regression of the data can be used to correct measured values within a 0.3‰ difference to 

standard values. 

 

Influence of acidification and purging - Reproducibility 

Purging DIC before analysis is an obligatory step when measuring measure DOC δ
13

C in 

natural waters.
[1]

 In view of the principle of in-flow injection of the water sample in the 

mobile phase on-line the reactor and the gas exchanger, a simple method consisted in 

acidifying and purging samples before injection (NPOC treatment). Depending on the 

alkalinity of the samples, 1 or 2 drops of concentrated phosphoric acid or nitric acid (Merck 

Suprapur®) were used per 5 mL of water sample. The influence of purging time was tested on 

MilliQ solutions of Suwannee River fulvic acid and K-biphtalate (Merck Standard compound 

for elementary analysis used for DOC quantification) and a natural soil water sample, all 

acidified with phosphoric acid (Fig. 3). Purging was done manually in the 1.8 mL 

autosampler vials with a flux of He (derived from the reagents and mobile phase purging 

lines) introduced with a stainless steel syringe needle through the vial septum. As shown in 

Fig. 3, the influence of dissolved CO2 was smaller in the case of the MilliQ solutions than for 

natural water but still remained substantial. A purging time of 3 to 4 minutes was considered 

sufficient. Mean values and SD for the 3 min purging time range (1 min for K-biphtalate) 

are also given in Fig.3. The mean δ
13

C value (-27.58 ± 0.05‰, 1) found for the river fulvic 

acid solution along the 3 to 10 min purge time range conformed to the value given by the 

IHSS (-27.6‰). Assays with unacidified or acidified but unpurged fulvic acid solution, beside 

having a less negative mean δ
13

C value, also had a larger SD, likely due to variable levels of 

contamination by CO2. Duplicate tests with nitric acid did not significantly change the mean 

values and SD. On the contrary, an alteration in the peak shape and more negative values 

were found when HCl was used, due to an incomplete oxidation of organic carbon in the 

reactor. The interference of halides in WCO methods has been overcome in large volume 
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reactor systems by adding larger quantities of persulphate.
[2,3] 

This interference seems 

however to be an obstacle when analysing low DOC saline waters with the LC interface used 

in this work. The potential effects of adding acid in samples were commented on by De 

Troyer et al.
[6]

 who concluded that the NPOC treatment was acceptable for HTC δ
13

C 

analysis. The long term storage of acidified rich DOC samples should however be avoided 

because of the possible flocculation of macromolecular substances. This will increase the risk 

of plugging the on-line filter set at the entry of the LC interface reactor and of losing a 

fraction of the sample DOC pool, potentially resulting in biased δ
13

C values. 

 

Linearity - Background and blank levels - Quantification of DOC 

Using benzoic acid solutions, Krummen et al.
[7]

 in the original publication on the LC IsoLink 

interface found the
 
linearity of the system to range from 200 to 2000 ng C. Dilution series of 

the same solutions used above (Fig. 3) were analysed to confirm the compatibility of the 

method with the concentration range and the type of organic matter found in natural waters. 

As shown in Fig. 4, mean δ
13

C values were within about ±0.1 SD for the range 1-10 mg 

DOC/L (i.e. 100-1000 ng C). The mean values for the soil water sample and the stream fulvic 

acid were not distinguishable from Fig. 3 runs. The value calculated for K-biphtalate by this 

run was less negative (-26.3‰ against -26.8‰) but the mean value was still within a 0.3‰ 

SD. 

With the water mobile phase used in this study a m/z 44 low background between 60 and 

70 mV was maintained. The pulse intensity of the CO2 monitor gas was set around 2 V (1750 

mV in Fig. 1) by fixing gas pressure at the LC IsoLink interface entry gauge. Over the years, 

many factors may cause variation in the intensity of the system signal
[8]

 (e. g. new filament, 

source focussing, adjustment of the open split units and He flows) which can be monitored by 

fixing the reference gas entry pressure. Unlike HTC systems, the mobile phase and reagents 

continuous flow principle of the LC interface generates no instrument blank. Injection of 100 

µL of degassed acidified MilliQ water gave however a blank signal around 1±0.5 Vs (equal to 

about 0.1 mg DOC/L), mostly attributable to the acid introduced into the samples. No blank 

correction of δ
13

C values was considered necessary from a concentration limit of 1 mg 

DOC/L.  Under that limit the signal intensity (area in Vs) appears too small to give a correct 

calculation of δ
13

C values in accordance with linearity evaluations. 

Solutions of either K-biphtalate or benzoic acid (IVA Analysentechnik, Meerbusch, 

Germany) were used as DOC standards for calibration with no difference in the concentration 

(mg C/L) versus IRMS peak area (Volt·sec) relations. Calibration may however vary over the 
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years by more than 50% and needs to be checked daily. DOC quantification down to 0.25 mg 

C/L was possible with a precision (SD) of   0.02 mg/L and an standard error of about 0.1 mg 

C/L (n = 10). Comparison with quantification using a high temperature catalytic total organic 

carbon (TOC) analyzer (Shimadzu TOC 5000A) is shown in Fig.5 for part of the whole 

sample set. Considering the delays between the two quantification runs and the multiplicity of 

subsamples, the 1 mg C/L standard error concordance indicates no systematic error in DOC 

concentrations obtained by LC-IRMS. A recent better-controlled interlaboratory comparison 

test (LC IsoLink-IRMS; ISTO versus Shimadzu TOC 5000 LGE/IPGP; Laboratoire de 

Géochimie des Eaux / Institut de Physique du Globe de Paris) on stream waters from the 

Amazonas-Rio Negro River system was conducted with only a 0.25 mg/L standard error in a 

2-8 mg/L DOC range (unpublished results). 

 

APPLICATION TO NATURAL WATER  

Mapping DOC δ
13

C in soil waters at the plot scale 

Results are shown in Fig. 6 and Table 1. Values fell in a narrow range, between -27.4 and 

-29.9‰ averaging as a whole -28.7 ± 0.6‰ (1σ, n=70). The soil water δ
13

C values were only 

averaged to compare to stream water values and to separate domains in the plot. Actually the 

spatial distribution of the values (although not large enough to be analysed statistically) does 

not appear to be uniform. A cluster with the more negative values is distinguishable 

overlapping previously defined sector (ii), where higher DOC concentrations were assumed to 

be linked to upper levels of the water table and an enhanced contact between water and 

organic top soil layers
[10]

. 

 

Comparison with the stream waters draining the plot 

Both the δ
13

C of bulk stream DOC (-28.8 ± 0.4‰, n=3) and the XAD4 TPHacid fraction 

(-28.5‰), matched the plot average soil water value (-28.7 ± 0.6‰). However the more 

hydrophobic XAD8 HPOacid fraction (-30.0‰) was found to be 1.5‰ more negative, being 

therefore closer to the set of values found in the sector (ii) (green grass symbol in Fig. 6). The 

more negative δ
13

C signature of hydrophobic fractions had already been documented for 

example in forest soils by Kaiser et al.
[16]

 who found a difference of about 3‰. This general 

characteristic of hydrophobic fractions was attributed to the larger contribution of compounds 

derived from lignin that are depleted in 
13

C. 
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The comparison between the TPHacid and HPOacid δ
13

C in the stream and the spatial 

DOC δ
13

C distribution in the plot suggests that the different areas in the plot may contribute 

differently to the stream DOC pool. Well-aerated and drained hedgerow banks may produce 

more hydrophilic and transphilic organic fractions (less negative δ
13

C values) whereas more 

poorly drained places may supply a more hydrophobic pool (more negative values). This 

hypothesis agrees with the higher ionic strength and more oxic conditions prevailing in the 

proximity of hedgerows
[10]

, which are factors known to enhance flocculation and sorption of 

the more hydrophobic dissolved humic substances
[11,12]

 and thus to influence DOC δ
13

C 

evolution through soil profiles.
[15,16,24]

 

To ascertain this, analysis of the hydrophobic and hydrophilic pools of the soil waters 

should be carried out. The off-line extraction and concentration of organic fractions by XAD 

resins are however highly time- and sample-consuming while on-line LC-IRMS methods are 

opening up new perspectives. The application of LC-IRMS coupled size exclusion 

chromatography (SEC) to the XAD resin fractions analysed in this study,
[25]

 although 

potentially a promising tool for discriminating dissolved substances on a molecular weight 

and stable carbon isotope basis, did not answer the question. The on-line analytic separation 

of hydrophilic and hydrophobic fractions on small volumes
[23]

 would be a better approach 

provided that it is adapted to LC-IRMS constraints. Temperature programmable LC 

capabilities
[26]

 should preferably be explored. 

 

Conclusions and recommendations 

Although the above discussion requires further work to be conclusive, the LC IsoLink 

interface was shown to be a useful high-sensitivity tool for the reproducible and accurate 

IRMS on-line determination of δ
13

C values of DOC in fresh waters. The technique allows 

large sampling and a fast field survey in a comparable approach to that developed by 

Jochmann et al.
[9]

 in another domain. Analysis in triplicate takes only 10 mn and consumes 

small sample volumes (a few mL, 100µL single injection) of natural water just filtered and 

acidified. Accurate δ
13

C determination was possible down to 1 mg DOC/L and DOC 

quantification down to 0.25 mg C/L with a precision (SD) of  0.02 mg/L and an standard 

error of about 0.1 mg C/L. Comparison with the HTC TOC analyzer did not reveal any 

systematic error in DOC evaluation by this WCO-based interface. Compared to other existing 

HTC or WCO methods, a further advantage of the LC-IRMS is that there is no need to apply 

blank corrections for δ
13

C calculations. Extreme care should be taken during the purge step 
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prior to injection since experience has proved that an uncontrolled He flow deficiency during 

manual purge was certainly the main cause of failed analysis. The use of an automatic 

sampler with a gas sparging option (as in most commercial TOC analyzers) would be a 

significant improvement. The main drawback of the WCO principle of the LC-IRMS 

interface would concerns the analysis of low DOC saline solutions owing to only partial 

oxidation of organic compounds in the on-line reactor.  
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Table 1. δ
13

C composition relative to VPDB 

Sample 
13

C (‰) 

Soil Water DOC (average, n=70) -28.7 ± 0.6 

Soil water DOC (maximum) -27.4 

Soil water DOC (minimum) -29.9 

Bulk Stream DOC (average, n=3) -28.8 ± 0.4 

Bulk TPHacid (stream) -28.5 

Bulk HPOacid (stream) -30.0 
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Figure captions 

 

Figure 1. Triplicate DOC δ
13

C flow injection analysis (FIA). Run starts with 3 monitor gas 

pulses for δ
13

C calculation and ends with 2 for control. Traces of m/z 44, 45 and 46 (two later 

amplified) are indicated. Full loop injection 100 µL. Sample preparation: filtration, 

acidification, gas purge. Mobile phase: MilliQ water pH 2 with H3PO4, 300 µL/min; T reactor 

100°C; reagents: H3PO4 1.5M 50µL/min; Na2S2O8 0.4M 40µL/min. Triplicate analysis in 10 

min. 

 

Figure 2. Accuracy of the system. Calibration of the δ
13

C value of the CO2 monitor gas over a 

set of  reference standard compounds dissolved in water. Stability over time of the system was 

controlled by plotting the reference standard δ
13

C values versus measured values. The set of 

reference materials ranged from -10.45‰ (sucrose IAEA-CH-6) to -27.6‰ (Suwannee River 

fulvic acid IHSS-1S101F). Intermediate δ
13

C values correspond to sucrose IAEA-C6, -

10.8‰; oxalic acid IAEA-C8, -18.3‰ and glutamic acid USGS-40, -26.39‰. Standard 

deviations for triplicate were less than the mark size. The difference between targeted and 

measured values did not exceed 0.5‰. Least-squares linear regression of the data can be used 

to correct measured values within a 0.3‰ difference.  

 

Figure 3. δ
13

C values as a function of He purge time for three different solutions: Suwannee 

River fulvic acid IHSS-1S101F, K-biphtalate and a natural soil water sample. Symbols and 

error bars represent mean ± standard deviation (SD) for triplicates. The mean δ
13

C values for 

the  3 min purging time range (1 min for K-biphtalate) are also given. 

 

Figure 4. Linearity. δ
13

C values against DOC concentrations for dilution series of the three 

different solutions as in Fig.3.  

 

Figure 5. Comparison between DOC determinations by LC-IRMS flow injection analysis 

(FIA) and HTC Shimadzu TOC Analyzer. The solid line indicating the trend (and the 

correlation coefficient) between the two sets of data did not significantly diverge from the 1:1 

line (dotted). In view of the delays between quantification runs and the multiplicity of 

subsamples, the ±1 mg C/L standard error (n = 63) indicates no systematic error in DOC 

estimation by LC-IRMS (see text). 
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Figure 6. Spatial distribution of soil water DOC δ
13

C in the plot. Most of the more negative 

values ( -29.3‰) overlapped sector (ii) in the central zone of the plot (green grass symbol), 

while less negative values were generally found along hedgerows. Black contour lines refer to 

soil surface elevation in metre above sea-level. Abscissa and ordinate tick intervals : 10 

metres. 
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Figure 1 
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Figure 2 
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Figure 3 
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Figure 4 
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Figure 5 
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