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Abstract 

This study focuses on linear anthropogenic landforms of decametric width on cultivated 

hillslopes and their relations to soil thickness variability. The 16 ha study area shows a rolling 

topography supported by Cretaceous chalk of the SW Parisian Basin, France. Two types of 

landforms were identified: lynchets, similar to those described as soil terraces occurring on 

downslope field parts in other contexts, and undulations, linear, convex landforms that cut 

across fields. Accurate DEM construction and a detailed soil thickness survey were performed 

all over the study area. Soil samples were classified considering their location on specific 

types of anthropogenic landforms. The Classification Tree (CT) method was applied to assess 

whether lynchets and undulations can be discriminated through morphometric attributes 

(slope, curvature, profile curvature and planform curvature) and soil thickness (CTsoil) or 

through morphometric attributes only (CTtopo). The CT application establishes predictive 

classification models to map the spatial distribution of lynchets and undulations over the 

whole study area. The validation results of the CTsoil and CTtopo applications show model 

efficiencies of 83% and 67%, respectively. Both models performed well for lynchets. Errors 

arise mainly from difficulties in unequivocally discriminating gently convex undulations and 

undifferentiated surfaces, especially when soil thickness is not accounted for. Mean values of 

soil thickness are 1.08, 0.62 and 0.45 m in lynchets, undulations and undifferentiated areas, 

respectively. The general shape of the thickened soil is characteristic to each type of 

anthropogenic landform. Multi-temporal mapping of field border networks shows that 

undulations are linked to borders that were removed during the latest land consolidation. 

Lynchets are associated with current field borders. Lynchets and undulations, which cover 

39% of the study area, define topographic indicators of human-induced soil accumulations. 

The method involves perspectives for efficiently mapping and quantifying the 

anthropogenically modified spatial variability of soil thickness on agricultural hillsides. 

1. Introduction 

The thickness and horizonation of soil cover result from the interaction of soil forming 

processes through parent-rock weathering and erosion or accumulation of matter at the soil 

surface (e.g., [Jenny, 1941] and [Huggett, 1997] ). Accordingly, the thicknesses of the A and 

B horizons, as well as solum thickness are important diagnostic features for soil classification 

schemes (e.g., FAO, 1998). Moreover, soil properties such as water storage capacity and 

carbon content are sensitive to thickness variations ( [Van Wesemael et al., 2000] , [Yoo et 



al., 2006] and [Follain et al., 2007] ). Soil thickness variation has a direct impact on crop 

quality and yields on cultivated land ( [Power et al., 1981] , [Christensen and McElyea, 1988] 

and [Kosmas et al., 2001] ). Recording soil thickness in agrarian landscapes, therefore, 

appears to be important for soil mapping. 

Soil thickness is strongly linked to landscape morphology. Slope gradient is a major factor for 

soil development because it affects soil stability against gravity-induced movements (soil 

creep, landslide and debris flows) and controls rill and interrill erosion ( [Gerrard, 1981] , 

[Vandaele et al., 1996] and [Chaplot and Le Bissonnais, 2000] ). The notion of landscape is 

predominated by the assumption of spatial heterogeneity that includes patterning or 

structuration ( [Turner et al., 2001] , [Farina, 2006] and [Bolliger et al., 2007] ). Meeus et al. 

(1990) defined agricultural landscapes as areas where ―management is manifest and the 

interaction of such factors as soil conditions, elevation, use, management and history are 

visible in the landscape and are expressed in its form and layout‖. Few contiguous fields or 

several hundred hectares dedicated to agricultural practices can define an agricultural 

landscape. Landscape morphology primarily depends on natural parameters: tectonics, 

lithology and climate (Derruau, 1962). In addition to natural factors, human activities can 

significantly affect geomorphology. Anthropogenic deforestation often induces a significant 

increase in soil erosion ( [De Moor et al., 2008] and [Macaire et al., 2010] ). Landscape 

fragmentation by field border networks has also important effects on the spatial variability of 

soil erosion ( [Van Oost et al., 2000] , [Follain et al., 2006] and [Szilassi et al., 2006] ). The 

spatial variability of tillage erosion is affected by field geometry as soil translocation by 

tillage implements occurs exclusively within field limits. Field borders act then as barriers to 

soil matter fluxes for tillage translocation, and also to fluxes for water translocation when 

borders are vegetalised ( [Dabney et al., 1999] , [Govers et al., 1999] , [De Alba, 2003] , [Van 

Dijk et al., 2005] and [Knapen et al., 2008] ). This leads to the formation of anthropogenic 

landforms that relate to local soil erosion/accumulation such as ridges-and-furrows, 

headlands, and lynchets that are frequently found in Western Europe (Callot, 1980, [Hooke, 

1988] , [Zadora-Rio, 1991] and [Houben, 2008] ). These features can be unintentional or 

intentional, when they are used for soil and water conservation systems (ridges-and-furrows 

and lynchets) or as biodiversity conservation systems (headlands) ( [Taylor, 1975] , [Corbet, 

1995] and Bellemlih, 1999). 

In soil science and geomorphology, lynchets provide an example of an anthropogenic 

landform resulting from agricultural practices. Lynchets are also known as terraces, soil banks 

or fence lines. They are locally called ―rideaux‖ in northern France and Belgium. A lynchet is 

predominantly shaped by the progressive accumulation of soil material by water and/or tillage 

translocation upslope of a field border ( [Bollinne, 1971] , [Papendick and Miller, 1977] , 

[Van Dijk et al., 2005] and [Follain et al., 2007] ). This leads to the creation of a gentler slope 

than in the upslope field area and an associated break-in-slope below the field border. 

Depending on the slope gradient upslope and the degree of development of the lynchet, the 

break-in-slope can range from several decimetres to a few meters height ( [Papendick and 

Miller, 1977] and [Salvador-Blanes et al., 2006] ). Moreover, the benching effect tends to be 

amplified by erosion downslope of the break-in-slope ( [Van Oost et al., 2000] and [Follain et 

al., 2007] ). Although lynchets are of decametric width, they may store an important 

proportion of soil material on cultivated hillslopes because of their frequent occurrence in the 

landscape (Macaire et al., 2002). 

Previously cited studies suppose that the lynchets could reflect different degrees of 

development and quantities of accumulated soil material depending on their morphometric 



attributes. Whereas relief was demonstrated as a useful and dominant predictive variable on 

the spatial distribution of soils and associated thicknesses (e.g., [Huggett, 1975] , Bourennane, 

1997, [Heimsath et al., 1999] and [King et al., 1999] ), few studies linked mathematically the 

morphologies of the anthropogenic features to their associated soil thicknesses. The easy 

acquisition of elevation data for large-scale areas makes its use very common for soil 

mapping ( [Odeh et al., 1994] , [Gessler et al., 1995] , [Isambert et al., 1997] and [Grinand et 

al., 2008] ). 

The objective of this paper is to assess whether different types of anthropogenic landforms 

can be discriminated by their morphometric attributes and soil thicknesses. We proceeded to 

obtain accurate elevation records and conducted a detailed soil thickness survey with two 

different sampling strategies on anthropogenic landforms and undifferentiated surfaces. We 

developed a method to classify soil samples considering their location on or outside of 

specific types of anthropogenic landforms. We then executed predictive modelling of the 

belonging of a sample to the different types of anthropogenic landforms or surrounding 

undifferentiated surfaces using Classification Tree (CT) analysis (Breiman et al., 1984). 

Results were analysed to assess the statistical relevance of morphological and soil thickness 

differences between types of anthropogenic landforms and with undifferentiated surfaces. 

Finally, we examined the influence of landscape fragmentation on the anthropogenic 

landforms and the convenience of using this method for soil quantification and mapping. 

2. Materials and methods 

2.1. Study area 

2.1.1. Location and physiographical settings 

The field study was carried out on a 16 ha southeast-facing hillslope located near the village 

of Seuilly within the Quincampoix catchment (southwestern Parisian Basin, 47°08.31′N, 

0°10.97′E; Fig. 1). The elevation of the study area ranges from 37 to 80 m, and the slope 

length is approximately 750 m. This hillslope has a rolling topography that is representative of 

the Upper Cretaceous formations of the southwestern Parisian Basin bedrocks. The studied 

hillslope is composed of the following sedimentary bedrocks from thalweg to crest: Upper 

Cenomanian sandy marl, Lower and Middle Turonian white chalks, and Upper Turonian 

yellow sandy limestones (Alcaydé et al., 1989 and Bellemlih, 1999). The main soils observed 

in this area are calcaric Cambisols, epileptic calcaric Cambisols and colluvic Cambisols 

(Boutin et al., 1990, [FAO, 1998] and Bellemlih, 1999). 

Modern land-use consists of cultivated cereals and oil-producing crops (maize, wheat, barley, 

sunflower and rape). Vineyards, orchards and pastures covered over 30% of the study area 

until the beginning of the last century. The field border network has evolved remarkably since 

1836 but has not changed since the last important land consolidation occurred at the end of 

the 1960s (Fig. 2). 

2.1.2. Characteristics of the anthropogenic landforms in the study area 

Lynchets and undulations are two types of linear anthropogenic landforms that have been 

identified in the study area. Their axes are predominantly oriented at right angles to the main 

slope direction. 



Fig. 3a,c show the geometrical characteristics of a typical lynchet. It is characterised by two 

morphological components separated from one another by a field border, i.e., its axis. The 

first morphological component corresponds to a gentle slope extending a few decametres 

upslope of the axis. This gentle slope becomes gradually higher to connect to the upslope field 

area and tends to become close to zero when reaching the field border downslope. The second 

component is a few-meters wide break-in-slope located downslope of the axis. Breaks-in-

slope can locally be more than 2 m high and create sharp discontinuities in the studied 

hillslope. Some augerings were carried out in the study area during a previous study 

(Bellemlih, 1999). These augerings show soil thickening in the lynchets: soil thicknesses 

ranged from 75 to 130 cm in lynchets compared to 40 cm to > 1 m in surrounding areas. 

2.1.2. Characteristics of the anthropogenic landforms in the study area 

Lynchets and undulations are two types of linear anthropogenic landforms that have been 

identified in the study area. Their axes are predominantly oriented at right angles to the main 

slope direction. 

Fig. 3a,c show the geometrical characteristics of a typical lynchet. It is characterised by two 

morphological components separated from one another by a field border, i.e., its axis. The 

first morphological component corresponds to a gentle slope extending a few decametres 

upslope of the axis. This gentle slope becomes gradually higher to connect to the upslope field 

area and tends to become close to zero when reaching the field border downslope. The second 

component is a few-meters wide break-in-slope located downslope of the axis. Breaks-in-

slope can locally be more than 2 m high and create sharp discontinuities in the studied 

hillslope. Some augerings were carried out in the study area during a previous study 

(Bellemlih, 1999). These augerings show soil thickening in the lynchets: soil thicknesses 

ranged from 75 to 130 cm in lynchets compared to 40 cm to > 1 m in surrounding areas. 

2.2. Data acquisition 

2.2.1. Topography 

Two DGPS (Trimble ® ProXRS) were used as a base and a mobile recorder, respectively. 

Coordinates (accuracy in x and y: a few millimetres) and elevations (accuracy in z: 

approximately one centimetre) of 1550 points were obtained by data post-treatment. Four 

digital elevation models (DEMs) were produced independently on a 2-m grid, i.e., one DEM 

for each area delineated by lynchet breaks-in-slope (noted 1 to 4 in Fig. 1). The partitioning of 

the dataset into four subsets was added to the mapping procedure to avoid levelling of the 

lynchets when computing the DEMs. This virtual levelling would indeed imply a weak 

predictive power of the morphometric attributes derived from the DEMs. Finally, slope, 

profile curvature, planform curvature and curvature were derived from each DEM. The 

curvature was calculated using an algorithm developed by Zevenbergen and Thorne (1987). 

2.2.2. Soil thickness 

Soil thickness was measured by manual augering and defined as the summation of A and B 

horizons, i.e., the depth of the upper saprolite limit. Differentiation between B and C horizons 

was relatively easy because C horizons are white and the transition is sharp. As proposed by 

Follain et al. (2006), two sampling schemes were established to consider short-distance 

variability of soil thickness, especially the variability associated with linear anthropogenic 



landforms ( [Bollinne, 1971] , [Macaire et al., 2002] and [Salvador-Blanes et al., 2006] ). The 

two sampling schemes were defined as follows:Sampling Σ502 soil augerings were carried 

out on the nine most relevant linear landforms observed in the study area, i.e., three lynchets 

and six undulations (L1 to L3 and U1 to U6 for lynchets and undulations, respectively; 

Fig. 4a). The augerings were conducted regularly along transects that were either longitudinal 

or perpendicular to the landform axes (Fig. 4a). Longitudinal transects correspond to landform 

axes where one augering was performed every 8 m (Fig. 4b). A perpendicular transect crosses 

each longitudinal transect every 40 m. There is one augering every 4 m along the 

perpendicular transects. 

 

Sampling Δ232 additional soil augerings were performed to precise the variation of soil thickness all 

over the study area. A point was sampled randomly in each square of a 25 × 25 m grid over the whole 

study area (Fig. 4a). 

Both sampling schemes represent a total of 734 points. Twenty percent of the observations 

(148 points) were randomly selected to constitute the validation set. The remaining 80% of 

the dataset (586 points) was used as the calibration set. Then, these 586 points were used to 

estimate soil thickness over the entire study area using ordinary kriging (e.g., [Goovaerts, 

1997] and [Chilès and Delfiner, 1999] ). The estimation of soil thickness, named STh1, was 

performed over a 2-m regular grid considering the short-distance variation of soil thickness 

within lynchets and undulations. 

2.3. Expert classification method 

The expert classification method consists of attributing each sampling point to one of the 

three predefined classes. Class 1 contains all points located on identified lynchets. Class 2 

corresponds to points located on identified undulations. Finally, class 0 is ―a class by default‖ 

that contains points located on undifferentiated surfaces. The expert classification was based 

on sample location and landform variation in close neighbourhoods. Datasets of sampling Σ 

and sampling Δ were treated separately. 

2.3.1. Sampling Σ classification 

The sampling scheme Σ was constructed using longitudinal and perpendicular transects 

located on the studied linear landforms (Fig. 4). Points sampled along longitudinal transects, 

i.e., along the landform axes, were automatically classified in class 1 for those located on 

lynchets and in class 2 for those located on undulations. 

Fig. 5 presents an illustration of the expert classification for the perpendicular transects. Areas 

located downslope of breaks-in-slope were not considered as parts of lynchet landforms. 

Thus, points sampled downslope of lynchet axes along perpendicular transects were 

automatically attributed to class 0 (Fig. 5a). For the perpendicular transects located upslope of 

a lynchet axis and the whole perpendicular transects located on undulations, we defined the 

points of connection between linear anthropogenic landforms and the surrounding relief (Cf. 

Section 2.1.2). Then, samples located between the axis of the landform and points of 

connection were placed in class 1 for lynchets and class 2 for undulations. Points located 

between connections and transect extremities were placed in class 0, corresponding to 

undifferentiated surfaces. 



2.3.2. Sampling Δ classification 

Sampling Δ was dispatched all over the study area (Fig. 4a). For each point close to a lynchet 

or an undulation, a topographic cross-section perpendicular to the feature axis and crossing 

the point was extracted from the DEM using ArcGIS 9.3 ®. The classification method was 

similar to the one applied to points placed along perpendicular transects of sampling scheme Σ 

(Section 2.3.1). All points located on undifferentiated surfaces were attributed to class 0. 

2.4. Statistical analyses 

2.4.1. Principle of the Classification Tree (CT) method 

This subsection briefly presents the Classification Tree (CT) method used for the main 

objective of this study. The convenience of this approach compared to discriminant analysis 

or logistic regression lies in its non-parametric character (no assumption is required regarding 

the distribution of the used variables). Several studies have already shown that the CT method 

is useful for soil attribute prediction and mapping (e.g., Lagacherie, 1992, [Shatar and 

McBratney, 1999] and [McBratney et al., 2003] ). For a thorough presentation of the CT 

method, readers should refer to books such as those by [Breiman et al., 1984] and [Steinberg 

and Colla, 1995] . 

A CT corresponds to a model that predicts the class belonging of an object from values of one 

or more predictor variables (categorical and/or continuous). The tree is built from a 

calibration dataset; the class belonging and the predictor variables are known for each object 

of the set. A decision algorithm that partitions into increasingly homogeneous subdatasets is 

applied to this calibration dataset. At each successive partition, the decision algorithm 

automatically determines the splitting predictor variables and their values to minimize the 

variance between the parent dataset and its child subdatasets. When partitioning is achieved, 

each object from the calibration dataset has been sent to a terminal subdataset assigned to one 

of the predefined classes (several terminal datasets can be assigned to the same class). Thus, 

the built tree or ‗classification model‘ consists of a rules-structured classifier. Decision rules 

follow one another in a fixed order and are based on values of the chosen predictor variables. 

We applied the Classification And Regression Tree (CART) algorithm developed by Breiman 

et al. (1984) that generates a binary decision tree. Data are partitioned into a series of 

descending left and right sub-datasets. This partitioning is recursive; thus, a defined predictor 

can be used in more than one decision rule. 

2.4.2. Applications of the Classification Tree method 

Here, we first applied the CART algorithm (R Development Core Team, 2010) to the 586-

point calibration dataset. This set was previously classified into the three predefined classes 0, 

1 and 2 through our expert method (Section 2.3). The predictor variables were the 

morphometric attributes (slope, curvature, profile curvature and planform curvature) and the 

soil thickness measured in the field. The resulting tree was called ‗CTsoil‘. In order to validate 

this classification model (CTsoil), we proceeded to the mapping of lynchet and undulation 

landforms all over the study area based on the decision rules of the model. For this purpose, 

each raster layer corresponding to morphometric attributes and soil thickness (STh1) was 

previously computed over the same regular 2-m grid. Then, we implemented the decision 

rules of CT soil into ArcGIS 9.3 ® and applied them for classifying each cell of the 2-m grid 

into one of the predefined classes 0, 1 or 2. When values of the predictor variables did not 



correspond to any criteria imposed by CTsoil, the relative cell was automatically classified into 

class 0. Once the map was computed, the validation of the CTsoil model was carried out 

through the validation dataset. A class was attributed to each point of the validation dataset 

according to the map and compared with the initial expert classification. 

For the purpose of spatial extrapolation beyond areas where soil thickness variable is 

unavailable, the CART algorithm was tested using only morphometric attributes as predictor 

variables. This application could constitute a practical tool for the identification and mapping 

of anthropogenic landforms when soil thickness is unknown or partially known in an area. 

The resulting classification model was referred to as ‗CTtopo‘. The methodology for the 

validation of the model was similar to the one applied to CTsoil. 

2.5. Quantification of soil material stored in anthropogenic landforms 

We quantified the soil material potentially stored in the anthropogenic landforms revealed by 

the most efficient classification model amongst CTsoil and CTtopo. We applied a method 

substracting the estimation of soil thickness that does not include soil material stored in the 

anthropogenic landforms (STh2) to the estimation of actual soil thickness (STh1). We took the 

following steps for this purpose: 

(i)  STh2 was computed over the study area using only soil thickness measurements at points 

belonging to expert class 0. 

(ii)  A third raster layer was calculated as follows: SThst = STh1 − STh2. It represents the storage 

soil thickness ti for a given cell of the regular 2-m grid. 

(iii)  The total volume of soil material stored in each type of landform was calculated separately using 

Eq. 1 

 

where i is the ith cell for a given landform type, n is the total number of cells of a given landform type, 

ti is the storage soil thickness for the i-th cell given by SThst (m), and ea is the cells elementary area (2 

× 2 m). 

3. Results 

3.1. Variability of the predictor variables within the study area 

Table 1 summarises statistics of morphometric attributes and measured soil thicknesses for 

the total 734 sampled points distributed over the entire study area. Slope shows a mean value 

of 5.3% with respective minimum and maximum values of 0.16% and 11.9%. The three 

different types of curvature present mean values close to null. Curvature presents a wider 

range of values from − 1.00 to 1.18 m
− 1

 when compared to profile and planform curvatures. 

Ranges of profile and planform curvature values are very distinctive; profile curvature varies 

from − 0.97 to 1.03 m
− 1

, and planform curvature varies from − 0.32 to 0.47 m
− 1

. As observed 

in field, data reflect that the most important short-distance variations of slope gradient are 

oriented towards the maximum slope direction, perpendicularly to the axes of studied lynchets 

and undulations (Fig. 6). 



Soil thickness measured in the field ranges from 0.22 to 2.23 m for the total dataset (Table 1). 

The mean measured value is 0.62 m with a standard deviation (SD) of 0.33 m. From the 

calibration dataset of 586 points, soil thickness was estimated over the entire study area by 

ordinary kriging. The spatial autocorrelation of soil thickness, quantified through the semi-

variogram, is quite strong (Fig. 7). A pure nugget (sill = 0.01 m
2
) plus a Gaussian model 

(range = 35 m and sill = 0.05 m
2
) and a spherical model (range = 150 m and sill = 0.03 m

2
) 

were nested to the experimental variogram. A cross validation was used on the original data to 

validate the variogram models. The mean error is defined as: 

 

where z*(xi) is the estimated value at xi, and z(xi) is the measured value at xi. 

R appears close to zero (− 0.00117 m). The ratio of the mean squared error to the kriging variance is: 

 

where σ²k(xi) is the theorethical estimation variance for the prediction of z*(xi). 

The ratio is close to unity (1.01628). The short-distance variability of soil thickness appears to 

be predominantly associated with all the lynchets, L1, L2 and L3, and undulations, especially 

U2, U4, U5 and U6 (Fig. 8a). 

3.2. Variability of the predictor variables in each expert class 

Table 2 presents summary statistics of morphometric attributes and soil thicknesses for each 

class and their respective size in the total dataset. The total dataset contains 734 points 

distributed in the following three classes: class 0 (389 points), class 1 (139 points) and class 2 

(206 points). Classes 1 and 2, which are dedicated to the linear landforms of interest, 

represent 19% and 28% of the total dataset, respectively. 

According to the summary statistics (Table 2), class 0 presents the largest range of slope 

values (from 0.84% to 11.9%) and the highest mean slope value (approximately 6%). Mean 

values for each of the three curvatures calculated on undifferentiated surfaces (class 0) are 

null, with an SD value of 0.1 to 0.2 m
− 1

. Class 1 presents the lowest mean slope value 

(2.62%) with a minimum and a maximum of 0.16% and 9.35%, respectively. Its mean value 

for planform curvature is null, as observed for classes 0 and 2. The profile curvature of class 1 

appears mainly concave with a mean value of 0.18 m
− 1

 (SD = 0.2 m
− 1

). Class 2 shows the 

highest minimal slope value (2.37%) and a mean slope value of 5.73%. The ranges of values 

for the three curvatures are the lowest in this class. Profile curvature varies from − 0.28 to 

0.33 m
− 1

. 

The lynchets (class 1) present the most important mean measured value of soil thickness (1.08 

m), and the largest range of soil thickness values (from 0.45 to 2.23 m; Table 2). The soil 

thickness variability appears higher perpendicularly to lynchets than along their axes. Solum 

systematically becomes thicker from the upslope to the downslope of a lynchet. A vertical 

section in this type of landform presents a soil accumulation with an approximated right-angle 

triangle shape (Fig. 8b). According to Table 2, soil thickness in classes dedicated to 



undifferentiated surfaces and undulations (Classes 0 and 2) does not exceed 1.3 m. Class 2 

shows higher minimal and mean soil thickness values than class 0. Mean values for classes 0 

and 2 are 0.45 and 0.62 m, respectively. Soil also presents a particular evolution in 

undulations. A vertical cross-section in an undulation shows a slight convex lenticular 

thickening (Fig. 8c). 

The Tukey HSD method was applied on the 734-point dataset (Table 3). This statistical test 

was used to find which ranges of values are significantly different from one another for a 

given predictor variable. The ranges of values related to classes 0, 1 and 2 are statistically 

different one from another for each of the following predictor variables: soil thickness, profile 

curvature and curvature. The classes 0 and 2 exhibit similar ranges of values for slope and 

planform curvature. 

3.3. Classification Tree results 

3.3.1. The Classification Tree CTsoil 

The overall prediction performance of the CT method is more than 80% when applied to 

morphometric attributes and soil thickness values of the pre-classified calibration dataset 

(Table 4). The confusion matrix shows that the resulting regression tree CTsoil performs well 

for classes 0 and 1. Classes 0 and 1 have 87.5% and 85.0% of their respective points correctly 

classified. Approximately three-fourth of the misclassified points from class 0 are classified in 

class 2. Concerning class 1, the main errors of the model appear to involve class 0. In class 2, 

24.0% of points are incorrectly classified; they are all allocated to class 0 by the model. The 

most important risk of confusion during the application of the CTsoil model then involves 

classes 0 and 2. 

Table 5 presents validation results for the CTsoil model performed through the validation dataset and 

the mapping of lynchets and undulations over the study area based on the decision rules of the 

concerned model (Fig. 9a). According to the validation procedure, 83.1% of the points from the 

validation dataset are correctly classified. Classes 0, 1 and 2 have 80.0%, 92.3% and 79.5% of their 

points correctly classified, respectively. The classification model CTsoil appears significantly relevant. 

Among points misclassified from the original class 0, confusions with classes 1 and 2 are almost 

equivalent. Six points are allocated to class 1, and eight points are allocated to class 2. Concerning 

class 2 (undulations), three-fourths of the misclassified points are confused with class 0 by the CTsoil 

model. Confusion between classes 0 and 2 appears to be the most important. This confusion explains 

why these classes present less efficient classification results than class 1. 

The mapping of the studied landforms based on the decision rules of CTsoil is shown in 

Fig. 9a. The three lynchets, L1, L2 and L3 (class 1), and five of the six sampled undulations, 

U1, U2, U4, U5 and U6 (class 2), are detected and mapped using the CTsoil model. 

Unfortunately, some cells located in U3 are mapped as belonging to either class 1 or 0. A 

fourth linear lynchet landform, L4, is detected along the downslope site border. Three pseudo-

linear areas (L5) appear in the northern part of the site. Several linear undulations (U7, U8 

and U9) and undulation networks (U10) are identified by the CTsoil model. Axes of U8 and of 

some areas of U10 appear oriented along the main slope. Areas mapped in class 1 or 2 that are 

also not particularly linear and/or of decametric-scale are considered as classification errors. 



3.3.2. The Classification Tree CTtopo 

CT analysis on the basis of morphometric attributes was carried out in the outlook of spatial 

extrapolation beyond areas where the soil thickness variable is unavailable. The CART 

algorithm applied to the entire 586-point calibration dataset performs weakly when the soil 

thickness predictor variable is ignored (results not shown). This is mainly due to difficulties 

discriminating class 2 from class 0. However, the CART algorithm applied to the subset of the 

calibration dataset including only classes 1 and 2 (267 points from the total of 586 of the 

calibration dataset) performs better. The confusion matrix (Table 6) reveals that the 

individuals of each class are well classified. The overall performance is more than 96%. Only 

one point of 167 points from class 2 is allocated to class 1 by the CTtopo model, and eight of 

the 100 points from class 1 are allocated to class 2. Classes 1 and 2 can be efficiently 

discriminated one from another by morphometric attributes only. 

Table 7 presents validation results for the CTtopo model performed through validation dataset and the 

mapping of lynchets and undulations over the study area based on the decision rules of the concerned 

model (Fig. 9b). Approximately 67% of the points from the validation dataset are well reclassified by 

the CTtopo model against 83% for the previous CTsoil model. A spatial extrapolation beyond the study 

area where the soil thickness variable is unavailable supposes an overall misclassification of 

approximately 30%. Regardless of the model used (CTtopo or CTsoil), lynchets are well identified in 

contrast to undulations. According to validation results, about 82% of points from class 1 and 59% of 

points from class 2 are well reclassified. Approximately 38% of points from class 2 are not recognised 

by the model as belonging to class 2, and are then automatically linked to class 0 by default. Nineteen 

of the 70 points of class 0 have morphometric attributes which correspond to the classification criteria 

of class 2 defined by the CTtopo model. Confusion between classes 0 and 2 appears more important 

when soil thickness is not accounted for. 

The mapping of the studied landforms based on the decision rules of CTtopo shows that 

lynchets L1, L2 and L3 and undulations U1, U2 and U3 are recognized and mapped (Fig. 9b). 

Undulations U4 and U5–6 appear partially mapped, and L4, L5, U7, U8, U9 and U10 are 

detected. The spatial extent of the landforms differs from the CTsoil results, especially for 

undulations (class 2). Two additional linear areas are mapped in class 2 (U11 and U12) as 

well as non-linear areas (U13) located in the northern part of the site. 

3.4. Volume of soil material stored in the anthropogenic landforms 

Table 8 presents results concerning amounts of soil stored in lynchets and undulations. These 

calculations were made through the application of CTsoil, i.e., the most efficient classification 

model amongst CTsoil and CTtopo. According to the mapping of the studied landforms based on 

CTsoil decision rules (Fig. 9b), lynchets and undulations cover 14.3% and 24.3% of the total 

study area, respectively. The storage thickness ti, defined through the computation of SThst 

(Section 2.5), ranges from 0 to 1.40 m in lynchets and from 0 to 0.78 m in undulations. 

Volumes of soil material stored in these two types of anthropogenic landforms are 

approximately 6030 and 7520 m
3
 for lynchets and undulations, respectively. Lynchets and 

undulations contain then approximately 15% of the total soil material present in the study 

area. 

4. Discussion 



The approach presented above aims to identify and distinguish two different types of linear 

landforms by morphometric attributes and soil thickness. The landforms detailed in the study 

area appear to be associated with soil thickenings. Therefore, their identification and 

distinction would allow a better appreciation of soil variability in cultivated hillslopes. 

4.1. Classification efficiency 

The classification method developed here is efficient using morphometric attributes and soil 

thickness (CTsoil model). Validation results of both classification models CTsoil and CTtopo 

(Table 5 and Table 7, respectively) show that lynchets (class 1) and undulations (class 2) are 

well discriminated from each other with or without soil thickness. Both models perform well 

for the recognition of class 1. However, the undulations are less well identified than lynchets 

because of confusions between class 2 and class 0 (undifferenciated areas), especially when 

soil is not accounted for. 

Class 1 is the only class that presents significant statistical differences for values of all the 

predictor variables when compared to the two others classes (Table 3). Lynchets show the 

highest profile curvature values corresponding to a marked concave shape (Table 2). The 

mean slope value (2.6%) barely reaches half of other class mean values, and its minimum 

slope is almost null. These statistics seem to reflect the consequent slope gentling associated 

with lynchet landforms (Fig. 3a,b) and which has been observed in other hilly agricultural 

regions in western Europe ( [Bracq and Delay, 1997] , Salvador-Blanes, 2002, Follain, 2005, 

[Houben, 2008] and [Brown, 2009] ). The lynchets studied here present larger soil thickness 

in comparison to undulations (respectively 1.1 and 0.6 m in mean thickness against 0.45 m in 

undifferentiated surfaces; Table 2). Like relief, soil thickness variability is more accentuated 

perpendicular to the landform axis than along the axis. Soil thickness increases from upslope 

to downslope in lynchets (from a few decimetres to more than 1.5 m) by the way of a pseudo 

right-angle triangular accumulation (Fig. 8 b). This shape of soil explains the slope gentling 

characteristic to lynchet landforms. Lynchets are then easily identified statistically by both the 

CTsoil and CTtopo applications (approximately 92% and 82% of performance respectively, 

Table 5 and Table 7). 

The slope and planform curvature modalities of class 2 do not differ statistically from those of 

class 0 (Table 3). Thus, classes 0 and 2 are only distinguishable by curvature and profile 

curvature in the CTtopo application. Moreover, profile curvature values range from − 0.99 to 

0.33 m
− 1

 and from − 0.28 to 0.33 m
− 1

 for classes 0 and 2, respectively (Table 2). The profile 

curvature does not help to distinguish classes 0 and 2 when its values for the class 0 are close 

to zero. An undulation is a more discrete and complex feature than a lynchet. Houben (2008) 

defined undulations as ‗horizontal cylindrical segments‘, and thus highlighted the importance 

of their median convex areas (Fig. 3c,d). Class 2 statistics do not reflect a dominant convex 

trend (Table 3). Firstly, this major convex shape is systematically induced by a slight slope 

gentling upslope (a concavity). Secondly, it often ends also with a second slight concavity 

downslope. The presence of this second concavity depends on the difference between slope 

gradient of the undifferentiated areas located upslope and downslope to the undulation. 

Objects from classes 0 and 2 can then present similar combinations of morphometric 

attributes. This could explain why the CTtopo including the three classes did not significantly 

distinguish classes 0 and 2. 

Soil thickness appears to be an important predictive variable for undulation landforms. We 

systematically observed a soil thickening in sampling profiles perpendicular to undulations, 



even a slight one (~ 10 cm). The thickening shows a convex lenticular shape (Fig. 8c). The 

mean soil thickness in undulations is 0.62 m vs. 0.45 m in undifferentiated areas (Table 2). 

The intensity of soil thickening in both lynchet and undulation landforms appears to vary 

along their axes and from one perpendicular sampling transect to another. These short-

distance variations of a few to > 20 cm seem to have no significant consequences on local 

relief when compared to the magnitude of relief variation in lynchets and undulations (Fig. 6). 

The C horizon upper limit probably presents local irregularities along the different landforms 

hidden by the shape of overlying thickened soils. In addition, a few subtle undulation 

landforms (e.g., U5–6) appear associated with important soil thickening; this supports that the 

C horizon upper limit is necessarily mostly concave across the landform. In this particular 

case, the greater soil thickness helps identify undulations (Fig. 9a). Conversely, remarkable 

undulation landforms (e.g., U3) present slight soil thickening; this supports the idea that the C 

horizon upper limit is mostly convex across the landform. Consequently, the CTtopo model 

does not support the discrimination of classes 0 and 2 (Fig. 9b). These local variations of C 

horizon upper limit have a poor effect on the classification efficiency of class 1, considering 

its very distinctive landform attributes and important soil thicknesses. 

4.2. The imprint of successive field border networks 

Linear lynchet landforms have been described to result from the progressive soil material 

accumulation upslope of field borders ( [Bollinne, 1971] , [Papendick and Miller, 1977] , 

[Govers et al., 1999] , Salvador-Blanes, 2002 and [De Alba, 2003] ). Because undulations are 

linear and associated with thicker soils, they are also possibly related to ancient field borders. 

Moreover, lynchet and undulation landforms are both predominantly oriented perpendicular to 

the main slope. Nevertheless, undulation-like landforms can be related to other factors such as 

a natural increase in soil thickness and/or topographic variation of saprolite upper limit 

(Section 4.1). Outcropping limits between the underlying chalk and limestone beds appear to 

be perpendicular to the main slope (Alcaydé et al., 1989). These sedimentary rocks have 

successive beds of metric-to-decametric-scale and of different compositions, hardnesses. 

These different rocks are more or less resistant to erosion: their outcroppings could then have 

influenced local topography and soil profile development. Unfortunately, there is no map of 

bedrock lithology accurate enough to assess the implication of lithology in the development of 

undulation landform here. On the contrary, information about historic field system layouts is 

available. Fig. 10 presents the mapping of lynchets and undulations over the study area 

performed from CTsoil model and combined with the field border networks that have been 

known since 1836. All the linear landforms surveyed in this study are spatially linked to field 

borders. Lynchets are constructed along present field borders, whereas undulations are located 

on ancient field borders. 

The field borders associated with lynchets L1, L2 and L3 have existed since at least 1836 

(Fig. 10). These limits are followed by perennial roads (L1 and L2) or access to the fields 

(L3), which could have been present for decades to centuries before 1836. A fourth effective 

lynchet (L4), associated with the field border edging the alluvial plain, has been mapped by 

CT applications. The field border has existed since at least 1836, as those associated with L1, 

L2 and L3 (Fig. 10). In addition, soil in L4 thickens similarly to soil in lynchets L1, L2 and 

L3. Soil thickness in L4 varies from approximately 50 cm at 30 m upslope of the field border 

to up to 150 cm near the border (Fig. 8c). This footslope lynchet is recurrent on cultivated 

areas. The L5 areas are not located upslope of any known field borders. They are on the 

hillslope shoulder where the slope gradient is gentle and soils are locally more developed (due 



to a deeper weathering of the bed-rock in more flat areas). Thus, some areas can present 

predictor variables similar to class 1. 

Undulations U1 to U6 are linked to field borders that have existed since at least 1836, and 

disappeared during the last campaign of land consolidation in 1967 (Fig. 10). Some cells of 

U3 are mapped as belonging to classes 1 or 0 by CTsoil (Fig. 9). U3 presents thinner soils than 

other undulations, but appears morphologically well-developed (Fig. 6 and Fig. 8a). Because 

some ranges of morphometric attribute values are intersected from one class to the other 

(Table 2), slight soil-thickness variations do not support the identification of U3 as 

undulations by CTsoil. U9 is linked to a former field border that existed since at least 1836 and 

disappeared between 1946 and 1958. The geometrical network U10 is associated with 

successive borders that were very close to one another and had similar orientations. These 

borders disappeared after 1959. Undulations U7 to U10 were evidenced by both classification 

models and U12 by CTtopo only (Fig. 9). These five undulations are weakly developed in the 

field. Their associated field borders disappeared earlier than those linked to undulations which 

are better developed (U1 to U6). All of these undulations are linked to former field borders, 

have variable widths, and are roughly asymmetric. 

The following two scenarios seem possible concerning the origin of these undulations. i) The 

undulations are former lynchets that were more or less developed and have been levelled after 

their associated field borders were destroyed, as suggested by [Bollinne, 1971] and [Houben, 

2008] . The soil material redistribution could have occurred up- and downslope these 

landforms ( [Revel and Rouaud, 1985] and [Walling and Quine, 1991] ). ii) Undulations are 

headlands created by an asymmetric accumulation of soil due to tillage translocation on both 

sides of the borders (Callot, 1980 and Leturcq, 2008). Headlands have been mainly studied by 

the archaeology community in plains of northwestern Europe; they are more developed in 

planar context. They are often associated with field border networks created during the 

Middle Ages and have been active for several decades to a few centuries ( [Zadora-Rio, 1991] 

, Leturcq, 2008 and [Brown, 2009] ). 

U7 and U11 are not related to any known field border (U11 being revealed by CTtopo only; 

Fig. 9). These linear landforms can be linked either to borders that disappeared before 1836 or 

to a specific management (e.g., repeated paths of tillage implement). Concerning the 

undifferentiated surfaces (Class 0), these areas could correspond either to locations where no 

field border has ever been established, or to former lynchets or undulations erased since the 

removal of associated borders. 

Lynchet and undulation axes are predominantly perpendicular to the slope. Field borders are 

an efficient place to block soil material fluxes that are controlled totally (running water) or 

partially (tillage) by gravity ( [Van Dijk et al., 1996] and [Dabney et al., 1999] ). The mapping 

of lynchets and undulations through the application of CTsoil or CTtopo model revealed some 

undulations oriented in the slope direction (U8 and in the U10 undulations network, Fig. 10). 

In that case, only tillage erosion can explain an effective soil accumulation along those 

associated former borders. Tillage translocation is controlled first by the passage of the 

implement through the soil and then by the gravity effect ( [Lindstrom et al., 1990] and [Van 

Muysen et al., 2002] ). In the case of contour-line tillage, soil matter deposition occurs when 

tillage implements encounters field border oriented in the slope direction. This tends to 

suggest that U8 and U10 could be headlands originally. 



Considering discussion in this section and Section 4.1, we synthesize the informations about 

field borders and possible origins of the linear anthropogenic landform studied here in the 

Table 9. The possible origins concern: i) the soil accumulation processes before any field 

border removal and; ii) the influence of the C-horizon upper limit on the actual landform 

morphology in comparison with soil accumulation. 

4.3. Implications in soil mapping 

Results show that spatial variability of morphometric attributes and soil thickness is strongly 

influenced by successive field border networks in the study area. Each of the three landform 

classes identified here presents a distinguishable range of soil thickness values. Lynchet and 

undulation landforms correspond to thicker soil due to material deposition alongside present 

or former field borders (Section 4.2). Soil accumulation viewed in vertical section evolved as 

a pseudo right-angle triangle in lynchets and as a convex lens in undulations. The method 

developed here has the convenience of mapping the classification results. Therefore, this 

method could improve the spatial estimation of soil thickness variations and related soil 

properties over cultivated landscapes. 

The CART algorithm applied to morphometric attributes and soil thickness (CTsoil) performs 

well for lynchet and undulation discrimination. Without soil thickness, the algorithm correctly 

identifies lynchets apart from undulations (CTtopo). However, similarities between maps 

performed from CTsoil and CTtopo models represent approximately 70% of the study area. Half 

of the dissimilarities are estimated as class 0 by the CTsoil model and as class 2 by the CTtopo 

model. Approximately 7% of these dissimilarities are affected to the opposite possibility. 

Thus, the CTtopo model tends to overestimate undulation areas in comparison with the more 

accurate CTsoil model (Section 4.2). We note that CTtopo correctly detects the location of all 

the features studied here (Fig. 11). Both applications appear to be good tools for the 

recognition and mapping of the studied anthropogenic landforms within cultivated hillslopes, 

especially lynchets. 

The different applications of CART algorithm performed in this study demonstrate the 

importance of relations between soil thickness variations and lynchet and undulation 

landforms. Although these linear landforms are discrete in the landscape, they cover a 

significant part of the study area. According to the mapping performed with CTsoil model 

(Table 8 and Fig. 10), lynchets and undulations cover approximately 14% and 24% of the 16 

ha site area, respectively. This means that almost 40% of the site area shows morphological 

evidence of an effective human impact on the spatial variability of soils. Lynchets and 

undulations appear as morphological indicators of human-induced soil accumulations. 

Lynchets and undulations revealed by the CTsoil model contain about 6030 and 7517 m
3
 of 

additionally stored soil material, respectively (Table 8). These volumes represent 6.6% and 

8.2% of the total soil material present in the study area. More than 6030 m
3
 of soil material 

could be then available to water and tillage translocations in this hillslope if field borders 

associated with current lynchets were destroyed in the immediate future. Although 

undulations are more discrete landforms than lynchets, they contain an equivalent volume of 

additionally stored soil material. Because undulations are associated with former field borders 

and lynchets to unchanged borders, undulations appear more frequently in the west of Europe. 

Politics, mechanisation and many other factors indeed stimulated important field border 

removal by land consolidation during the 1960s to 1980s in Western Europe (Vitikainen, 

2004). These undulation landforms could be preferential areas for soil erosion by tillage, as 



wide gentle convexities within the landscape. Indeed, net soil loss by tillage translocation was 

demonstrated as being dependent on slope gradient changes. Erosion occurs on a convex 

slope, accumulation occurs on concave slopes, and a simple translation occurs on linear slopes 

( [Lindstrom et al., 1992] and [Govers et al., 1996] ). 

5. Conclusion 

The aim of this study was to assess whether different types of anthropogenic landforms could 

be discriminated by their morphometric attributes and soil thicknesses. For this purpose, we 

developed a classification method based on a detailed field study carried out in a cultivated 

hillslope of the SW Parisian Basin (France). This method appears convenient because the 

classification models computed by the CART algorithm can be used as mapping tools. 

We distinguished two different types of linear anthropogenic landforms in the study area, 

lynchets and undulations. They are easily distinguishable one from another by their 

morphometric attributes. Their ranges of soil thicknesses appear also statistically different: 

soil thicknesses are higher in lynchets than in undulations. These thicknesses are higher than 

those encountered in surrounding undifferentiated surfaces. Additionally, the shape of soil 

accumulation appears particular to each type of linear landform. 

In contrast to lynchets, undulations are not easily distinguishable from undifferentiated 

surfaces by considering only morphometric attributes. Therefore, the distinction of 

undulations is less accurate than the distinction of lynchets. However, the undulation mapping 

is greatly improved when soil thickness is accounted for as predictor variable in the 

classification method. 

Multi-temporal mapping of historic field system layouts shows that lynchets are associated 

with present field borders that have been established since at least 1836. The mapped 

undulations are linked to field borders that existed for a shorter time period and disappeared 

predominantly during the last campaign of land consolidation in 1967. Undulations appear to 

correspond to anthropogenic soil accumulations as lynchets. In perspective, the use of tracers 

as Cs-137 (half-time life of approximately 30.2 years) coupled to soil erosion modeling could 

be useful to precise the dynamics of both lynchet and undulation landforms since this last land 

consolidation. 

Lynchets and undulations are rarely accounted for in landscape and regional-scale soil 

surveys. However, undulations are discrete and common linear landforms which can store an 

important amount of soil material. Our results would provide new perspectives in the soil 

mapping discipline if associated with new technologies for relief recording. For example, the 

LIDAR (LIght Detection And Ranging) allows the accurate recording of high-density 

topographic data in large areas ( [Brown et al., 2009] and [Rayburg et al., 2009] ). Such 

technologies are of particular interest for quick soil mapping techniques with fine resolution. 

LIDAR could be very efficient to detect lynchets and undulations in the landscape. 

Based on an analysis of morphometric attributes of some representative anthropogenic 

landforms linked with soil thickening, the method developed here could improve the spatial 

estimation of soil thickness variations and related soil properties over large areas. 
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Fig. 1. : Location and topography of the study area. 

 

Fig. 2. : Field border networks in 1836, 1945, 1959 and 2010. 

 

 

 

 

 

 



 

 

Fig. 3. : Illustrations of the two types of linear anthropogenic landforms present in the study 

area: (a) and (c) present a view and a topographic cross-section of a lynchet; and (b) and (d) 

present a view and a topographic cross-section of an undulation (―Conn.‖: connection). 

 



 

Fig. 4. : Soil sampling schemes: (a) samplings Σ and Δ in the whole study area; and (b) zoom 

on sampling Σ scheme in an undulation (U2). 



 

Fig. 5. : Illustrations of the classification method for perpendicular transects of soil sampling 

scheme Σ: (a) perpendicular transect on a lynchet and (b) on an undulation (dots: soil samples 

locations, ―Conn‖: connection). 



Table 1. Summary statistics of morphometric attributes and soil thickness calculated from the 

total dataset of 734 points. 

Variable Unit Min Mean Max S.D.
b
 

Slope % 0.16 5.31 11.90 1.53 

Curvature
a
 m

− 1
 − 1.00 − 0.03 1.18 0.19 

Profile curvature
a
 m

− 1
 − 0.97 0.03 1.03 0.17 

Planform curvature
a
 m

− 1
 − 0.32 0.00 0.47 0.07 

Soil thickness m 0.22 0.62 2.23 0.33 
a
 The negative values of curvature and planform curvature mean for concavity and positive 

values for convexity. The negative values of profile curvature mean for convexity and 

positive values for concavity. 
b
 S.D: Standard Deviation. 



 
 

Fig. 6.  : Map of slope gradient within the study area and location of lynchets and undulations 

axis. 



 

 

Fig. 7. : Experimental variogram of soil thickness (dots) and the theoretical model fits (solid 

line). 



 

 

Fig. 8.  : Soil thickness variability within the study area: (a) map of soil thickness estimated 

from the 586 points of the estimation dataset. Illustrations of characteristic topographic cross-

section and soil thickness evolution (b) in a lynchet and (c) in an undulation. 



Table 2. Summary statistics of morphometric attributes and soil thickness in each expert class. 

Class Size Slope (%) 

 

Curvature (m
− 1

)
a
 

 

Profile curvature 

(m
− 1

)
a
 

 

Planform 

curvature (m
− 1

)
a
 

 

Soil thickness (m) 

 

Min Mean 

(S.Db) 

Max Min Mean 

(S.Db) 

Max Min Mean 

(S.Db 

Max Min Mean 

(S.Db) 

Max Min Mean 

(S.Db) 

Max 

0 389 0.84 6.04 

(2.5) 

11.90 − 

0.35 

− 0.02 

(0.2) 

1.18 − 

0.99 

0.02 

(0.2) 

0.33 − 

0.20 

0.00 

(0.1) 

0.30 0.22 0.45 

(0.2) 

1.30 

1 139 0.16 2.62 

(2.0) 

9.35 − 

1.01 

− 0.20 

(0.2) 

0.32 − 

0.14 

0.18 

(0.2) 

1.03 − 

0.30 

− 0.01 

(0.1) 

0.47 0.45 1.08 

(0.4) 

2.23 

2 206 2.37 5.73 

(2.2) 

10.32 − 

0.32 

0.05 

(0.1) 

0.36 − 

0.28 

− 0.04 

(0.1) 

0.33 − 

0.20 

0.00 

(0.1) 

0.32 0.35 0.62 

(0.2) 

1.30 

a
 The negative values of curvature and planform curvature mean for concavity and positive 

values for convexity. The negative values of profile curvature mean for convexity and 

positive values for concavity. 
b
 S.D: Standard deviation. 

 

 

Table 3. Tukey's HSD (Honestly Significance Differences) test results (α level: 0.05). 

Contrast Slope Curvature Profile curvature Planform curvature Soil thickness 

1 vs. 0 Yes Yes Yes Yes Yes 

1 vs. 2 Yes Yes Yes Yes Yes 

2 vs.0 No Yes Yes No Yes 

 

 

Table 4. Confusion matrix on calibration dataset (CTsoil model). 

Class 0′ 1′ 2′ Total % correct(a) 

0 279 11 29 319 87.5 

1 12 85 3 100 85.0 

2 40 0 127 167 76.0 

Total 331 96 159 586 83.8 

′ means for estimated class. 
a
 Corresponds to the ratio of objects correctly classified within the class by the CT model. 

 

 

 

Table 5. Validation procedure results from CTsoil model. 

Class 0′ 1′ 2′ Total % correct
a
 

0 56 6 8 70 80.0 

1 1 36 2 39 92.3 

2 6 2 31 39 79.5 

Total 63 44 41 148 83.1 

′ means for estimated class. 
a
 Corresponds to the ratio of objects correctly classified within the class by the CT model. 

 



 
 

Fig. 9.  : Maps of (a) CTsoil model and (b) CTtopo model results in the study area. Class 0: 

undifferentiated area. Class 1: lynchet. Class 2: undulation. 



Table 6. Confusion matrix on the subset of calibration dataset including only classes 1 and 2 

(CTtopo model). 

Class 1′ 2′ Total % correct
a
 

1 92 8 100 92.0 

2 1 166 167 99.4 

Total 93 174 267 96.6 

′ means for estimated class. 
a
 Corresponds to the ratio of objects correctly classified within the class by the CT model. 

 

Table 7. Validation procedure results from CTtopo model. 

Class 0′ 1′ 2′ Total % correct
a
 

0 44 7 19 70 62.9 

1 5 32 2 39 82.1 

2 15 1 23 39 59.0 

Total 64 40 44 148 66.9 

′ means for estimated class. 
a
 Corresponds to the ratio of objects correctly classified within the class by the CT model. 

 

 

Table 8. Soil material accumulated in lynchets and undulations revealed by CTsoil model. 

Type of 

landform 

Accumulation 

area (m²) 

% of total 

study area 

Storage 

thickness ti (m) 

 

Stored volume 

Vst (m
3
) 

% of total soil 

material in study area 

Min Max 

Lynchets 22148 14.3 0.00 1.40 6031 6.6 

Undulations 37856 24.3 0.00 0.78 7517 8.2 

 

 



 

 

Fig. 10.  : Maps of CTsoil model results and field border networks of 1836, 1945, 1959 and 

2010. Class 0: undifferentiated area. Class 1: lynchet. Class 2: undulation. 



Table 9. Anthropogenic linear landforms, associated field borders and possible origins. 

Anthropogenic 

linear landform 

Association with a 

known field 

border 

Field border 

duration 

 

Possible soil 

deposition 

processes 

Possible 

substrate top 

influence 

From
a
 To

b
 

L1 Yes min. 

1836 

Present Water + Tillage ? 

L2 Yes min. 

1836 

Present Water + Tillage ? 

L3 Yes min. 

1836 

Present Water + Tillage ? 

L4 Yes min. 

1836 

Present Water + Tillage ? 

U1 Yes min. 

1836 

1967 Water + Tillage Yes 

U2 Yes min. 

1836 

1967 Water + Tillage Yes 

U3 Yes min. 

1836 

1967 Water + Tillage Yes 

U4 Yes min. 

1836 

1967 Water + Tillage No 

U5 Yes min. 

1836 

1967 Water + Tillage No 

U6 Yes min. 

1836 

1967 Water + Tillage No 

U7 No ? ? Tillage ? 

U8 Yes min. 

1836 

1837–

1944 

Tillage ? 

U9 Yes min. 

1836 

1946–

1958 

Water + Tillage ? 

U10 Yes min. 

1836 

1967 Tillage ? 

U11 No ? ? Tillage ? 

U12 Yes 1837–

1944 

1946–

1958 

Water + Tillage ? 

a
 min. 18XX = date of the map where the border was mentioned for the first time. 

b
 18XX–19YY: a date between 18XX and 19YY. 

 

 

 



 

Fig. 11. : Map of similarity/dissimilarity from CTsoil model against CTtopo model results. 

 

 

 

 

 

 

 

 

 

 


