
HAL Id: insu-00623034
https://insu.hal.science/insu-00623034

Submitted on 13 Sep 2011

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Dynamic constraints on the crustal-scale rheology of the
Zagros fold belt, Iran

Philippe Yamato, Boris J.P. Kaus, Frédéric Mouthereau, Sébastien Castelltort

To cite this version:
Philippe Yamato, Boris J.P. Kaus, Frédéric Mouthereau, Sébastien Castelltort. Dynamic constraints
on the crustal-scale rheology of the Zagros fold belt, Iran. Geology, 2011, 39 (9), pp.815-818.
�10.1130/G32136.1�. �insu-00623034�

https://insu.hal.science/insu-00623034
https://hal.archives-ouvertes.fr


Publisher: GSA 
Journal: GEOL: Geology 

Article ID: G32136 

Page 1 of 13 

Dynamic constraints on the crustal-scale rheology of the Zagros 1 

fold belt, Iran 2 

Philippe Yamato1,2*, Boris J.P. Kaus2,3, Frédéric Mouthereau4, and Sébastien Castelltort2 3 

1Geosciences Rennes, UMR CNRS 6118, Université de Rennes 1, F-35042 Rennes Cedex, 4 

France 5 

2Department of Earth Sciences, E.T.H. Zürich, Sonnegstrasse 5, 8092 Zürich, Switzerland 6 

3Department of Earth Sciences, University of Southern California, Los Angeles, USA 7 

4UPMC Univ. Paris 06, UMR CNRS 7193, ISTeP, 75252 Paris Cedex 5, France 8 

 9 

*E-mail: philippe.yamato@univ-rennes1.fr 10 

ABSTRACT 11 

Thin-skinned fold-and-thrust belts are generally considered as the result of contractional 12 

deformation of a sedimentary succession over a weak decollement layer. The resulting surface 13 

expression frequently consists of anti- and synclines, spaced in a fairly regular manner. It is thus 14 

tempting to use this spacing along with other geological constraints to obtain insights in the 15 

dynamics and rheology of the crust on geological time scales. Here we use the Zagros Mountains 16 

of Iran as a case study as it is one of the most spectacular, well-studied thin-skinned fold-and-17 

thrust belts in the world. Both analytical and numerical models are employed to study what 18 

controls fold-spacing and under which conditions folding dominates over thrusting. The models 19 

show that if only a single basal décollement layer is present underneath a brittle sedimentary 20 

cover, deformation is dominated by thrusting which is inconsistent with the data of Zagros Fold 21 

Belt. If we instead take into account additional décollement layers that have been documented in 22 
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the field, a switch in deformation mode occurs and crustal-scale folding is obtained with the 23 

correct spacing and timescales. We show that fold spacing can be used to constrain the friction 24 

angle of the crust, which is ~5 degrees in Zagros Fold Belt. This implies that on geological 25 

timescales, the upper crust is significantly weaker than previously thought, possibly due to the 26 

effect of fluids. 27 

INTRODUCTION 28 

It is often assumed that fold belts can be explained by folding of a sedimentary layer 29 

above a basal detachment formed by a weak layer. As the spacing between folds in such belts is 30 

quite regular, we can consider them as a large-scale natural experiment of crustal deformation. 31 

Ideally, it should be possible to combine fold spacing with other geological data and theory to 32 

constrain parameters such as crustal rheology that are difficult or impossible to constrain from 33 

field observations alone. 34 

The classical explanation of folds in fold belts is that they are due to a folding instability, 35 

which is well known for a homogeneous sedimentary sequence with either a power-law viscous 36 

or an elastic rheology (Schmalholz et al., 2002; Burg et al., 2004; Schmalholz, 2006). The 37 

dominant wavelength λdom, for a viscous power-law layer of viscosity  and with exponent n 38 

overlying a linear viscous layer of viscosity , is given by (Schmalholz et al., 2002): 39 

 (1) 40 

where Hsed and Hsalt are the thicknesses of the sedimentary cover and of the salt, respectively. 41 

The growth rate (qdom) of this instability non-dimensionalized over the background strain rate 42 

is given by (Schmalholz et al., 2002): 43 
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 (2) 44 

and a combination of numerical and analytical studies have shown that qdom/  should be larger 45 

than ~20 for folding to form observable folds, rather than homogeneous thickening (e.g., Kaus 46 

et. al, 2008). 47 

The Zagros Fold Belt of Iran constitutes a classical example of such a folded belt that is 48 

geologically (e.g., Stocklin, 1968; Alavi, 2004; McQuarrie, 2004; Sherkati and Letouzey, 2004; 49 

Mouthereau et al., 2007) and geophysically (e.g., Jahani et al., 2009; Hatzfeld and Molnar, 2010; 50 

Nissen et al., 2010) well studied due to excellent exposure and extensive seismic and borehole 51 

data from exploration. The main tectonic and stratigraphic units are summarized on Figure 1 and 52 

show that a particular feature of the Zagros Fold Belt is a consistent spacing of folds with a 53 

wavelength (λdom) of 14 ± 3 km. These folds are generally explained as detachment folding of 54 

the post-Cambrian sedimentary sequence above a basal weak layer constituted by the Hormuz 55 

salt. 56 

The centroid depths of waveform-modeled earthquakes indicate that faulting is restricted 57 

to two structural levels located in the competent sediment cover units at 5–6 km depth and within 58 

the Precambrian basement at depth larger than 11 km down to depths of 30 km (e.g., Talebian 59 

and Jackson, 2004; Nissen et al., 2010). Seismic reflection profiles (Jahani et al., 2009) and field 60 

observations in the Fars region (Mouthereau et al., 2007) show a lack of major thrust faults 61 

cutting the folded cover up to the surface. This confirms that detachment folding rather than 62 

thrusting is the dominant deformation mode in the Zagros Fold Belt. In this aspect, the Zagros 63 

Mountains differ from other fold-and-thrust belts such as the Jura Mountains, where large-offset 64 
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faults are continuous across the stratigraphic sequence, well imaged through seismic studies 65 

(Simpson, 2009). 66 

Detachment folding theory should thus be perfectly applicable to the Zagros Fold Belt. 67 

Equations (1) and (2) show that fold spacing depends strongly on the rheology of the overburden 68 

and on the thickness of the basal salt layer. In the Zagros, a linear viscous overburden (n = 1) and 69 

a viscosity contrast of 100 between salt and overburden, requires a salt layer thickness of ~7.8 70 

km to fit the observed spacing of folds (Equation 1). Yet, seismic data indicates that the 71 

thickness of the Hormuz salt is no more than 1 or 2 km (Jackson et al., 1990; Mouthereau et al., 72 

2006; Jahani et al., 2009). If the sedimentary cover has a power law rheology instead, its power 73 

law exponent should be n~23 (Equation 2) to explain the data, which is considerably larger than 74 

estimates from rock creep experiments (Ranalli, 1995). Large power law exponents are often 75 

taken as evidence for a brittle rheology. Currently, however, there is no theory that can reliably 76 

predict the spacing of detachment folds in the case of a brittle overburden. 77 

There is thus presently no satisfactory explanation for (1) why deformation in the Zagros 78 

Fold Belt is dominated by folding and not by thrusting and for (2) what controls the spacing of 79 

folds and how it is linked to crustal rheology. In order to address this, we performed thermo-80 

mechanical numerical simulations to study the dynamics of detachment folding in the presence 81 

of a brittle sedimentary cover. 82 

NUMERICAL MODEL 83 

To study the effect of using visco-elasto-plastic rheologies on crustal dynamics, we have 84 

performed a series of numerical experiments using the finite element code MILAMIN_VEP 85 

(e.g., Kaus, 2010 and GSA Data Repository DR1). The viscosities of the weak layers are 86 

assumed to be linear and constant, which is a reasonable approximation for the rheology of salt. 87 
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The brittle layers have a temperature-dependent rheology of limestone (see DR1), which 88 

correspond to the majority of rocks within the sedimentary cover (Fig. 1C, Mouthereau et al., 89 

2007). A linear geotherm of 25 °C.km-1 is initially applied (see DR1). For the low-temperature 90 

conditions of the Zagros Fold Belt, stresses are such that the rocks effectively deform in the 91 

brittle regime. Our model domain is initially 200x7.225 km in size (see DR1). The top boundary 92 

is a free surface with no erosion (see DR1) and a constant background strain rate of 10−15 s-1 is 93 

applied at the right of the model box, which results in 15% shortening after 5.5 Myrs consistent 94 

with geological constraints (see DR1). All other sides of the model have free slip conditions. 95 

Finally, to initiate the folding, the interface between the salt and the overburden rocks has 96 

random noise with maximum amplitude of 100 m. Model simulations are performed for 5.5 97 

Myrs, after which results are interpreted. 98 

RESULTS FROM NUMERICAL SIMULATIONS 99 

With a 1.5 km-thick single basal detachment layer underlying a homogeneous brittle 100 

sedimentary cover, the models develop faults rather than folds (Fig. 2B). Such faults develop at 101 

early stages with a spacing that is approximately twice the brittle layer thickness. Subsequent 102 

deformation is locked around these folds that have a box-fold geometry. Compared to the Zagros 103 

Fold Belt, we thus obtain a too large wavelength and an incorrect deformation style. Additional 104 

simulations where we varied the frictional parameters of the crust, or the viscosity of the salt 105 

layer gave similar results (see Fig. DR1). We thus infer that it is impossible to reproduce the 106 

observed finite wavelength of Zagros Fold Belt folds (Fig. 1) by considering only one weak basal 107 

décollement layer, unless this layer has an unrealistically large thickness. 108 

A detailed look at the stratigraphic column, however, reveals that the sedimentary cover 109 

is not rheologically homogeneous. Instead there are several layers that are composed of relatively 110 
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weak rocks such as evaporites or shales (Fig. 1B, C, see detailed descriptions in McQuarrie, 111 

2004; Sherkati et al., 2006 and Mouthereau et al., 2007). A second set of simulations took this 112 

fine-scale rheological structure into account (Fig. 3). The results are remarkably different from 113 

the previous experiments: rather than being fault-dominated, deformation is now achieved by 114 

folding, with a final wavelength similar to the one observed in the Zagros Fold Belt (Fig. 3). An 115 

analysis of the simulation shows that the spacing of the folds is fixed at a very early stage, after 116 

which the individual structures grow without clear geometric pattern, in accordance with field 117 

constraints (Mouthereau et al., 2007). The initial fine-scale rheological stratification of the 118 

sediment cover of the Zagros Fold Belt thus has a first-order effect on the development of upper 119 

crustal-scale structures. These results are in full agreement with a recent study of active 120 

seismicity in the Zagros Fold Belt which showed that both the Hormuz salt layer and the 121 

intermediate layers are mechanically-weak zones that form barriers to rupture for active faults 122 

(Nissen et al., 2010). 123 

CONSTRAINTS ON CRUSTAL RHEOLOGY 124 

The simulations presented in this study highlight the different modes of deformation that 125 

might occur in fold-and-thrust belts. However, they give limited insights into the underlying 126 

physics, as it remains unclear how sensitive the spacing of structures is to the rheology of the 127 

crust. For this reason, we developed a semi-analytical methodology drastically reducing the 128 

computational requirements that allows us to predict the outcome of numerical simulations in a 129 

large parameter space (see details in DR2). The resulting wavelength versus growth rate 130 

diagrams have a single maximum as a function of non-dimensional wavelength (Fig. 4A). 131 

Rigorously, these semi-analytical results are only valid for very small deformations. Yet, a 132 

comparison with numerical simulations reveals that they correctly predict the spacing of folds 133 
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even after 5.5 Myrs, which confirms that fold-spacing is selected at a very early stage in the 134 

evolution of a fold and thrust belt (Fig. 4A). 135 

Results for a homogeneous and brittle sedimentary cover reveal that the dominant growth 136 

rate is smaller than 20, which essentially means that folding will not be able to overcome 137 

background pure-shear thickening. Indeed, our numerical simulations indicate that this leads to 138 

fault-dominated deformation rather than folding (box folds, Fig. 2). If, on the other hand, weak 139 

layers are taken into account in the sedimentary sequence, the growth rate is significantly larger 140 

and the dominant wavelength is reduced (Fig. 4B). The addition of a single weak layer is 141 

sufficient to switch deformation styles from fault- to fold- dominated, and elasticity has a minor 142 

effect only. 143 

Using the same semi-analytical methodology, we performed a large number of 144 

simulations and found that the two most important parameters are the viscosity of the salt/weak 145 

layers and the friction angle of the crust, whereas rock density plays little to no role. Plots of 146 

dominant wavelength and growth rate versus those two parameters show an approximate equal 147 

dependence on the two parameters (Fig. 4). The results also show that weak layers in all cases 148 

yields growth rates that are sufficiently large for the folding instability to dominate faulting. 149 

In the case of Zagros Fold Belt, the effective viscosity of salt has been determined to be 150 

close to 1018 Pa.s, a value consistent with scaled laboratory-derived values (Spiers et al., 1990) 151 

and other modeling studies (Van Keken et al., 1993; Mouthereau et al., 2006). If we combine this 152 

with our method, we estimate that the effective friction angle for the crust in the Zagros Fold 153 

Belt on geological timescales is around 5°+/− 5° (Fig. 4B). 154 

DISCUSSIONS AND CONCLUSIONS 155 
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Contrary to the common view of fold belts that often consider a single major basal 156 

décollement only, we demonstrate through the example of the Zagros Mountains that the whole 157 

stratigraphic sequence might influence the dynamics of the belt. Heterogeneities within the 158 

sedimentary cover, and weak layers in particular, control whether deformation is dominated by 159 

crustal-scale folds or by thrusts. The stratigraphy of a fold belt plays a much larger role than 160 

previously appreciated and should thus be taken into account if one wishes to reconcile field 161 

observations with physically consistent models of geological processes. 162 

Balancing geological cross-sections in fold-thrust belts is a difficult exercise that aims at 163 

providing a consistent structural and kinematic interpretation of usually independent structural 164 

data. Our method paves the way for developing future generations of 2D and 3D dynamic 165 

reconstruction models for fold and thrust belts (e.g., Lechmann et al. 2010). 166 

Moreover, we show that the regular spacing of folds puts constraints on the rheology of 167 

the crust on geological timescales. In the case of Zagros Fold Belt, the value for the friction 168 

angle we obtained in this manner is small (<10°), which indicates that the crust was rather weak, 169 

potentially due to large fluid pressures (e.g., Huismans et al. 2005). 170 
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FIGURE CAPTIONS 242 

Figure 1. Field constraints for the Zagros folded belt. A: Topography illustrates the regular 243 

spacing of folds with amplitude ~500–1000 m over on an area of ~80 000 km2. Fold crest length 244 
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are of ~50 km in average. Inset shows the distribution of fold wavelengths measured for 88 245 

anticlines from the Zagros Folded Belt. B: Cross-section (aa’) across the Zagros Fold Belt based 246 

on field measurement (Mouthereau et al., 2007). λ corresponds to the average wavelength of the 247 

folds. This value is slightly smaller than the 15.8 +/− 5.3 km from Mouthereau et al. (2007) that 248 

took into account the folds from the whole Fars area. MFF and SF correspond to the seismogenic 249 

Mountain Front Fault and the Surmeh Fault, respectively, associated with basement faulting. 250 

Vertical fold velocity is 0.3–0.6 mm.yr-1. C: Synthetic stratigraphic log where WL1, WL2 and 251 

WL3 correspond to the weak layers in the sedimentary sequence (Fm: Formation). 252 

Figure 2. Simulation with a basal décollement layer only. A: Initial setup with a sedimentary 253 

thickness of 7.225 km. All rocks above the basal salt layer are homogeneous and have a friction 254 

angle of 5° and a cohesion of 20 MPa. A background strain rate of 10−15 s-1 is imposed at the 255 

right model boundary. B: Geometry, strain rate, and vertical velocities after 1.5 Myrs and 5.5 256 

Myrs respectively. Deformation is localized along crustal-scale plastic shear zones and 257 

deformation structures are fault-dominated. 258 

Figure 3. Simulation with intermediate crustal detachment layers. A: Initial setup as in figure 2, 259 

but with three additional weak crustal detachment layers with 1018 Pa.s. B: Snapshots of 260 

geometry, strain rate and vertical velocities at different times, which illustrate that crustal-scale 261 

folds rather than faults dominate the deformation pattern. Note that folds do not grow 262 

continuously with time, but rather grow to certain amplitude after which activity switches to a 263 

different fold. 264 

Figure 4. Influence of multiple weak layers and elasticity on folding. λ, H, q and  corresponds 265 

to the wavelength, the total thickness, the growth rate and the background strain rate, 266 

respectively. VP and VEP correspond to visco-plastic and visco-elasto-plastic simulations, 267 



Publisher: GSA 
Journal: GEOL: Geology 

Article ID: G32136 

Page 13 of 13 

respectively. This diagram was produced using the semi-analytical approach described in DR2. 268 

A: Growth rate values obtained for given values of λ/H for 0, 1, 2 and 3 weak layers. For each 269 

case, the characteristic wavelength value corresponds to the highest value of growth rate (e.g., 270 

white star for the case with 3 weak layers). Insets show results of numerical simulations after 5.5 271 

Myrs, which develop folds with a spacing that is in excellent agreement with the predicted 272 

characteristic wavelength. A single basalt décollement layer results in small folding growth rates 273 

and in thrust-dominated deformation. Addition of one or more weak layers to the brittle 274 

sedimentary cover results increases the growth rate significantly and leads to folding-dominated 275 

deformation. The ZFB brown area corresponds to the λ/H ratio of the Zagros Fold Belt. B: 276 

diagrams of characteristic wavelength (left) and corresponding growth rate (right) versus 277 

viscosity of the weak layers and friction angle of the crust. Thick white lines show the 278 

constraints for Zagros Fold Belt (average +/− 1 standard deviation). As in the Zagros Fold Belt 279 

salt viscosity is constrained independently, the best-fit friction angle for the crust is 5+/−5°.The 280 

white star corresponds to the simulation of figure 3. 281 

1GSA Data Repository item 2011xxx, xxxxxxxx, is available online at 282 

www.geosociety.org/pubs/ft2011.htm, or on request from editing@geosociety.org or Documents 283 

Secretary, GSA, P.O. Box 9140, Boulder, CO 80301, USA. 284 
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