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The Precambrian history of our planet is marked by two major events: a pulse of continental 

crust formation at the end of the Archaean eon and a weak oxygenation of the atmosphere (the 

Great Oxidation Event) that followed, at 2.45 billion years ago. This oxygenation has been 

linked to the emergence of oxygenic cyanobacteria1,2 and to changes in the compositions of 

volcanic gases3,4, but not to the composition of erupting lavas—geochemical constraints 

indicate that the oxidation state of basalts and their mantle sources has remained constant 

since 3.5 billion years ago5,6. Here we propose that a decrease in the average pressure of 

volcanic degassing changed the oxidation state of sulphur in volcanic gases, initiating the 

modern biogeochemical sulphur cycle and triggering atmospheric oxygenation. Using 

thermodynamic calculations simulating gas–melt equilibria in erupting magmas, we suggest 

that mostly submarine Archaean volcanoes produced gases with SO2/H2S < 1 and low 

sulphur content. Emergence of the continents due to a global decrease in sea level and growth 

of the continental crust in the late Archaean then led to widespread subaerial volcanism, 

which in turn yielded gases much richer in sulphur and dominated by SO2. Dissolution of 

sulphur in sea water and the onset of sulphate reduction processes could then oxidize the 

atmosphere. 

  

Mass-independent fractionation of sulphur (MIF), quantified as [DELTA]
33

S, is commonly 

recorded in sediments older than 2.45 billion years (Gyr)7. A proliferation of MIF has been 

clearly identified between 2.7 and 2.45 Gyr, and older spikes are recorded at >3.4 Gyr (refs 7–

9). MIF is now widely recognized as the signature of an anoxic atmosphere during the 

Archaean eon, which allowed the photolysis of atmospheric SO2 conducive to MIF. The 

abrupt disappearance of MIF at 2.45 Gyr ago is thought to record the Great Oxidation 

Event—the rise of O2 in the atmosphere that radically changed redox-based biogeochemical 

processes 8,9,10. 

  

A more complete analysis 11 recently described how complex lithosphere–atmosphere–ocean 

transfers could have influenced the variation of Archaean MIF, particularly its strong rise 

between 2.7 and 2.45 Gyr ago, immediately preceding the Great Oxidation Event. A critical 

trigger of MIF could be the redox ratio of sulphur in volcanic gases (SO2/H2S) in an oxygen-

poor atmosphere: high volcanic SO2/H2S produces significant MIF, whereas a low ratio does 

not 11. It follows that a change to more-oxidized volcanic gases at the end of the Archaean 

could have caused the MIF explosion that preceded the Great Oxidation Event 11. The change 

in the redox state of volcanic gases has been attributed to evolution of the mantle source 



composition 3, but the near invariance through geologic times of V/Sc and other redox-

sensitive elements indicates that the redox state of the mantle and mantle-derived basalts has 

remained nearly constant from the middle Archaean to the present 5,6. 

  

Kump and Barley 12 used Holland’s redox criteria 4 for volatile degassing to argue that 

subaerial volcanic gases are more oxidized than submarine ones and proposed that an 

increasing contribution from subaerial volcanism would have resulted in increasingly 

oxidizing volcanic emissions. But to define the redox state of Archaean emissions, Kump and 

Barley 12 used fluids from seafloor hydrothermal vents whose compositions are controlled by 

redox-sensitive fluid–rock reactions 13 and whose redox state, particularly during the 

Archaean, is poorly constrained 4,14. Furthermore, a survey of Hawaiian subaerial versus 

submarine volcanism 15 indicates that submarine lavas are not more reduced than subaerial 

lavas. Our thermodynamic calculations show that the SO2/H2S ratio of volcanic gases is only 

marginally influenced by redox conditions or pre-eruptive volatile contents of the lava, 

provided they remain within known limits. We show instead that degassing pressure controls 

this ratio. 

Figure 1 reports the amount and speciation of magmatic sulphur in volcanic gases released 

from oceanic basalt calculated using a gas–melt equilibrium model 16 (see Methods). For 

similar bulk volatile contents, variations of melt composition within the spectrum of terrestrial 

mafic magmas have only a minor effect on the composition of gas produced during 

decompression 16. For simplicity we consider here a Hawaiian tholeiite whose degassing 

systematics have been well studied 17. The composition of this basalt broadly mimics that of 

the tholeiites that dominate Archaean sequences. Figure 1 shows the effect of pressure and of 

the relative concentrations of pre-eruptive volatiles (S, H and C) on the amount and speciation 

of sulphur in volcanic gases. The black curves show degassing paths for an average basaltic 

source (oxygen fugacity, FMQ - 0.5 (0.5 log unit more reducing than the oxygen fugacity of 

the fayalite magnetite quartz (FMQ) buffer assemblage; 0.5 wt% H2O; 0.3 wt% CO2; 0.15 

wt% S). The total amount of sulphur in volcanic gases (H2S + S2 + SO2) increases with 

decreasing pressure. At pressures exceeding 100 bar, the total degassed sulphur is relatively 

low, around 0.05 wt% for normally hydrated basalts. It reaches a maximum value at 

atmospheric pressure, where the degassed S species is in the range 0.17–0.25 wt%. The 

portion of degassed H2S shows a maximum of 0.05–0.06 wt% at moderately low pressures in 

the range 20–100 bar. At still lower pressures, the quantity of H2S dramatically decreases and 

SO2 becomes the dominant species. At pressures higher than 20 bar, the average SO2/H2S 

ratio is less than 0.5, reaching values of 2 to 8 at atmospheric pressure. Figure 1 therefore 

conveys two important factors, both independent of the source characteristics of the magma: 

(1) the total amount of degassed sulphur increases with decreasing pressure, and (2) at 

pressures exceeding a few tens of bar, sulphur is degassed as H2S, whereas at atmospheric 

pressure, SO2 is the dominant species. 

Figure 2 shows how the overall composition of the gas phase varies as a function of pressure. 

SO2 replaces H2S as the dominant sulphur species at about 5 bar (Fig. 1 also shows that the 

pressure crossover ranges from 3 to 200 bar). The molar CO2/H2O ratio also changes: deep 

degassing produces CO2-rich gases, whereas surface degassing produces water-rich gases. 

The H2S–SO2 shift is not directly related to the CO2/H2O ratio but is essentially controlled by 

the following reaction, which occurs in the gas phase as pressure decreases (Methods): 



Owing to the mole difference between reactants and products, a decrease in pressure displaces 

reaction (1) to the right. The shallow production of SO2 and deep degassing of H2S 

anticipated from theoretical considerations is confirmed by field volcanic gas studies 

16,17,18. The production of SO2 in the gas is accompanied by formation of H2  

 

 reaching 6 mol.% at atmospheric pressure. Figures 1 and 2 show unequivocally that the 

distribution of oxygen between water and sulphur species is primarily controlled by the 

pressure of degassing, and that neither the redox state of the magma source nor abundance of 

pre-eruptive volatiles have a significant effect. Hence, changes in the source processes such as 

the initiation of subduction-related volcanism should not overwhelm the fundamental pressure 

control on the composition of volcanic gases. 

IF records in Archaean sedimentary sulphides show that [DELTA]
33

S remained moderate and 

lower than 4‰ in the period 3.9–3.5 Gyr ago and lower than 2‰ in the period 3.5–2.7 Gyr 

ago 7,8,9. This must indicate volcanic emissions with low to moderate SO2/H2S (ref. 11), a 

characteristic that we attribute to volcanic degassing predominantly at pressures of at least a 

few tens of bars (Figs 1 and 2). Conversely, the strong MIF excursion at 2.7–2.5 Gyr ago 

records transient volcanic emissions with high SO2/H2S that can be obtained only through 

degassing at atmospheric pressure. 

  

The Archaean tectonic style is debated. Higher mantle temperatures 19 are thought to have 

had two effects. First, they led to the formation of thicker oceanic crust because of enhanced 

melting at mid-ocean ridges 20. Second, ocean volumes were larger because enhanced 

degassing in upwelling zones, and more complete and shallower dehydration of subducting 

oceanic crust, resulted in a larger proportion of the total water budget being at the surface 

21,22. Higher temperatures in the continental crust (because of higher contents of radioactive 

heat-producing isotopes 23) reduced the strength of the continental lithosphere and resulted in 

subdued topography. Therefore, we attribute the decrease in venting pressure from about 100 

to 1 bar at the Archaean–Proterozoic transition to a global decrease in sea level accompanying 

the growth of the continental crust, amplified by a decrease in ocean volume. Near-global 

submergence of the continents prevailed through most of the Archaean 24,25 and almost all 

the volcanoes were submarine, as observed in ancient terrains 24. At specific times through 

the Precambrian era, however, the rate of crustal growth and/or continent assembly 

accelerated dramatically 26. The largest of these events, at 2.7 Gyr ago, was accompanied by 

a major MIF spike. We propose that this spike, and perhaps the earlier one around 3.5 Gyr 

ago, resulted from the transient emergence of exposed land from the global ocean. Subaerial 

volcanism then emitted SO2-dominated gas into an oxygen-poor atmosphere. The importance 

of such a transition in the eruptive style has been suggested before 12, but our analysis 

enables a quantitative description of its biogeochemical impacts. Typical compositions of 

volcanic gases as a function of pressure of gas venting and as a function of emerged land area 

are given in Supplementary Tables 1 and 2 and in Supplementary Fig. 1. 

  

We assume that during most of the Archaean, the continents were covered by more than 100 

m of water, with the consequence that volcanic gases contained little sulphur and were 



dominated by H2S, with SO2/H2S < 1 (Fig. 1). Following emergence of the continents, 

volcanic emissions contained up to five times more sulphur and SO2 was the dominant species 

with typical SO2/H2S ratios in the range 2–9. Archaean oceans are believed to have been 

almost sulphate-free, in contrast to present-day sulphate-rich sea water 27,28 (28 mmol kg
-1

). 

The absence of oxygen in the Archaean atmosphere prevented oxidative alteration of 

continental pyrite, which is generally put forward to assert the rarity of sulphate ions in 

contemporaneous seas 27,28. However, an absence of sulphate in sea water precludes the 

sulphate-reduction 28 processes, which in turn could dramatically affect atmosphere 

oxygenation. Bacterial sulphate reduction produces an overall gain in atmospheric O2 (ref. 

28), which is, however, related to photosynthetic activity. But thermochemical sulphate 

reduction, mainly related to hydrothermal activity 13, must have influenced oxygen balance: 

in the absence of thermochemical sulphate-reduction processes, O2 provided by 

photosynthetic bacteria was consumed by ferrous iron dissolved in the ocean 1,14 and by 

hydrothermal smokers injecting strongly reduced gases 4,14 (Supplementary Fig. 2). 

Thermochemical sulphate reduction immobilized ferrous iron emitted by hydrothermal 

smokers to form pyrite 13,14, and decreased the overall reducing capacity of hydrothermal 

fluids 4. The onset of thermochemical sulphate reduction must therefore have positively 

affected atmospheric oxygenation (Supplementary Fig. 3). 

 Our calculations suggest that submarine volcanism, dominant through most of the Archaean, 

produced low-sulphur gases of essentially H2S, which is much less soluble in surface waters 

than SO227,28. When subaerial volcanic degassing became important in the late Archaean, it 

injected SO2 that produced sulphate in sea water by disproportionation upon cooling in the 

atmosphere 4 or by reduction by ferric iron in shallow waters 11. Consistent with recent 

observations 29, we propose that incorporation of sulphate into sea water preceded the Great 

Oxidation Event as subaerial volcanism became volumetrically important and then activated 

sulphate-reduction processes that must have resulted in O2 enrichment of the O2-low 

Archaean exosphere. Furthermore, subaerial volcanic gases are much richer in H2 than 

submarine emissions (Fig. 2) and this must have enhanced hydrogen escape, a process that 

atmospheric models describe as an oxygenation factor for the atmosphere 10,30. 

  

Figure 3 illustrates the sequence of events that may explain the relationships between MIF, 

volcanic gases, emergence of continents and oxygen rise during the late Archaean–early 

Proterozoic transition. The proposed sequence is: (1) submarine volcanism through most of 

the Archaean, yielding volcanic emissions with low SO2/H2S and moderate MIF in sediments, 

(2) emergence of continents in the late Archaean, which produced abundant but irregularly 

distributed volcanic SO2 and led to the MIF proliferation recorded in sediments at 2.7–2.5 

Gyr, (3) decomposition/oxidation of atmospheric SO2 in sulphate, which dissolved into the 

oceans, (4) the start of sulphate-reduction processes, resulting in the net gain in O2, coupled 

with enhanced hydrogen escape, which finally led to (5) oxygenation of the atmosphere well 

after the appearance of oxygenic cyanobacteria 1. Once oxygen was present in abundance in 

the atmosphere, the MIF of sedimentary sulphur disappeared. 

The major finding of our study is that the sulphur MIF record of the Archaean can be 

explained by a change in composition of volcanic gases that facilitated oxygenation of the 

atmosphere. Changes in magma source processes are not the driving force; rather, the 

increasing SO2/H2S ratio of volcanic gases is explained by the increasing subaerial volcanism 

accompanying the emergence of continents. This, together with the rapid crustal growth that 

is globally observed at 2.7 Gyr, implies a change in geodynamic style that is most probably 



due to a cooler mantle and crust. A similar pulse of crustal growth at 3.4 Gyr ago, though 

smaller, may have caused the emergence of the continents and triggered the earlier MIF event. 

Methods Summary 

 Gas–melt equilibria have been simulated using a code detailed elsewhere 16. At each 

pressure step from 2,000 to 1 bar, we simultaneously solve the gas–melt solubility equations 

for H2O–OH
-
, CO2–CO3

2-
, S2–S

2-
 and the gas–gas redox equilibria involving H2–H2O, CH4–

CO–CO2, H2S–S2–SO2, under the requirement that the amounts of H, S, O and C remain 

constant in the magma (gas + melt). The iron redox state in the melt is also computed at each 

step. Each of these equilibrium constants has been experimentally investigated and our model 

combines the existing experimental data for each equilibrium into a multi-component system. 

Oxygen fugacity was allowed to vary in response to the various redox equilibria that occur 

essentially in the gas phase 16, maintaining as constant the bulk oxygen/cation ratio of the 

system (system closed to oxygen). A system open to oxygen would not, however, change our 

conclusion that H2S is dominant in the range 10–200 bar as opposed to SO2 at atmospheric 

pressure. The SO2/H2S changes are primarily due to pressure changes, as illustrated in Figs 1 

and 2. Field measurements on active volcanoes 17,18 are consistent with our predictions. The 

redox state and the relative volatile abundances in the source magma are second-order 

parameters, implying no specific influence of the source region. We therefore assumed a 

common source, unlike previous studies 11,12. 

 

METHOD 

  

Following ref. 16, the mole fraction of the different gas species is calculated from the 

thermodynamic constants of the reactions occurring in the system C–H–S–O at magmatic 

pressure and temperature 31. 

 The homogeneous equilibria in the gas phase are 

 

 In addition, the following melt–gas equilibria are taken into account using thermodynamic 

data from ref. 32 for water and carbon dioxide, and ref. 33 for sulphur and ref. 34 for H2: 

 The iron redox ratio in the melt is computed following ref. 35 as 

  

Each of the equilibrium constants (reactions (2) to (10)) has been combined in the multi-

component C–O–H–S system. The overall uncertainties in calculated gas compositions are 

10%–15%. These uncertainties are mainly inherited from the experimental calibration of C–

O–H–S species solubility 31,32,33,34. During degassing, the bulk mass fractions of the 

different volatile components (H, S, C, O) are kept constant and gas–melt, gas–gas and melt–

melt equilibria are simultaneously solved to derive the gas species abundances at each 

pressure step (from 2,000 to 1 bar). The number of pressure steps imposed in the calculations 

has no effect on the results because thermodynamic equilibrium does not depend on the 

pressure–temperature path but only on the final pressure and temperature considered. The 

initial abundance of C–O–H–S components is fixed at 2,000 bar, which sets the amount of 

dissolved volatiles and both quantity and composition of the coexisting gas fraction. The 

system was computed as a system closed to oxygen 16,36 but the differences between open or 

closed system conditions remain negligible. 

 



 

 

 

 

 

 

 

 

Upon decompression, because volatile solubilities in the melt decreases, the gas fraction 

increases and its composition changes, being enriched in highly volatile species (CO2) at high 

pressure and progressively diluted by less volatile species (H2O and sulphur species) with 

decreasing pressure. Sulphur species display a critical change at low pressure: SO2, nearly 

absent at elevated degassing pressures, dominates at 1 bar over H2S and S2. The stoichiometry 

of those changes follows the reactions 

  

for gas–gas equilibria and the reaction 

  

for melt–gas equilibria. 

  

In reactions (12) and (13), the right-hand side involves a higher mole number and is therefore 

favoured by decreasing pressure. In reaction (14), sulphur degassing as SO2 at low pressure 

implies a reduction of ferric into ferrous iron, consistent with geochemical observations 15. 

The importance of reaction (14), which may induce a decrease in melt oxygen fugacity, is, 

however, limited by the kinetics of melt reduction 37. This kinetics delay between reactions 

(12) and (13) and reaction (14), which we do not take into account, allows the gas SO2/H2S 

ratio to be higher than predicted in Figs 1 and 2, potentially exceeding 10 at 1 bar. The 

thermochemistry of high-temperature gas–melt volcanic systems therefore offer the most 

likely explanation of variation in sulphur MIF observed during the Archaean. 
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Figure 1 | Calculated sulphur content and speciation in volcanic gases as a function of pressure. We 

considered a basaltic magma containing H2O = 0.5 wt%, CO2 = 0.3 wt%, S = 0.15 wt% (black curves). 

Nevertheless, we varied the total water content (‘hydrous’ means 1 wt% H2O) and the redox state 

(FMQ - 1 to FMQ), a range that encompasses conditions of subduction-related basalts and oceanic 

basalts, to illustrate that the influence of such variations is negligible in comparison to the effect of 

degassing pressure. a, Total amount of degassed sulphur species (H2S + S2 + SO2) expressed as weight 

per cent of the basaltic magma. b, Sulphur emitted as SO2 expressed as weight per cent of the 

basaltic magma. c, Sulphur emitted as H2S expressed in weight per cent of the basaltic magma. d, 

Molar SO2/H2S ratio of volcanic gases. All calculations are performed at 1,300 °C. 

 

 

 

 

 

 

 



 

 

Figure 2 | Calculated compositions in mole fractions of volcanic gases as a function of pressure. The 

case corresponding to the black lines in Fig. 1 is shown. The inversion H2S–SO2 occurs at a pressure 

around 10 bar. Submarine degassing produces on average a SO2/H2S ratio of 0.4, with CO2 being the 

dominant gas species. Subaerial degassing yields more H2O than CO2, and SO2 is at least three times 

more abundant than H2S. H2 constitutes 6% of the gas emitted at atmospheric pressure. All 

calculations are performed at 1,300 °C. 

 

 



 

 

Figure 3 | Schematic illustrating the relationships between pressure of volcanic degassing and redox 

biogeochemical cycling. In detail, we illustrate sea level changes, continent emergence, changes in 

composition of volcanic gases, and the overall impact on redox biogeochemistry and oxygen rise and 

the Archaean–Proterozoic boundary. The lower panel shows the early to middle Archaean with large 

ocean volume and subdued topography, implying that most of the Earth was submerged and 

volcanism was predominantly submarine. Such a configuration produced volcanic gases with low 

SO2/H2S ratios, and moderate sulphur MIF. In contrast, in the late Archaean, shown in the top panel, 

continent emergence permitted the widespread occurrence of subaerial volcanism, characterized by 

gases with higher SO2/H2S ratios and H2 contents. Such a configuration explains the proliferation of 

sulphur MIF in the period 2.7–2.5 Gyr. Increasing SO2 contents in the atmosphere triggered an 

increase in seawater sulphate content, which enhanced sulphate reduction processes 

(Supplementary Figs 2 and 3). This, coupled with higher H2 escape, resulted in a net gain in 

atmospheric O2. The atmospheric oxygen rise, nevertheless, did not occur in the late Archaean but in 

the early Proterozoic. 

 

 


