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Abstract 1 
 2 
We present a method to quantify abrupt changes (or changepoints) in data series, 3 
represented as a function of depth or time. These changes are often the result of climatic or 4 
environmental variations and can be manifested in multiple datasets as different responses, 5 
but all datasets can have the same changepoint locations/timings. The method we present 6 
uses transdimensional Markov chain Monte Carlo to infer probability distributions on the 7 
number and locations (in depth or time) of changepoints, the mean values between 8 
changepoints and, if required, the noise variance associated with each dataset being 9 
considered. This latter point is important as we  generally will have limited information on 10 
the noise, such as estimates only of measurement uncertainty, and in most cases it is not 11 
practical to make repeat sampling/measurement to assess other contributions to the 12 
variation in the data. We describe the main features of the approach (and describe the 13 
mathematical formulation in supplementary material), and demonstrate its validity using 14 
synthetic datasets, with known changepoint structure (number and locations of 15 
changepoints) and distribution of noise variance for each dataset. We show that when using 16 
multiple data, we expect to achieve better resolution of the changepoint structure than when 17 
we use each dataset individually. This is conditional on the validity of the assumption of 18 
common changepoints between different datasets. We then apply the method to two sets of 19 
real geochemical data, both from peat cores, taken from NE Australia and eastern Tibet. 20 
Under the assumption that changes occur at the same time for all datasets, we recover 21 
solutions consistent with those previously inferred qualitatively from independent data and 22 
interpretations. However, our approach provides a quantitative estimate of the relative 23 
probability of the inferred changepoints, allowing an objective assessment of the 24 
significance of each change.  25 
 26 
Keywords : Transdimensional changepoint models, Geochemical data, Bayesian 27 
modelling, climate change 28 
 29 

30 
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1. Introduction 31 

A major issue in the interpretation of geochemical data (represented as depth or time series) 32 

is the detection of changes in trends. Reliable identification of short-term variations 33 

superimposed on long-term trends is critical for answering questions about uniformity in 34 

the rates of geological processes. The research effort towards understanding climate change 35 

often focusses on the inference of rapid or abrupt changes in the mean signal over time. 36 

Such environmental changes are recorded by geochemical proxies (e.g. McDermott 2004, 37 

Carslaw et al. 2006, Kylander et al. 2007, 2009, 2010, Gutjahr et al 2008, Cloy et al. 2008, 38 

Yasahuru et al. 2008, Ruggieri et al 2009, Large et al 2009, Cole et al. 2009, Palmer et al. 39 

2010, Burton et al. 2007, 2010).  Ideally, recognition of signals from data should based on 40 

sound qualitative interpretation, but also involve quantitative inference from the 41 

observations, allowing for possibly unknown noise levels in the data.  42 

Here we recognise that the definition of abrupt or rapid is subjective. The definition 43 

and identification of change also depends on the form of the trend we expect between 44 

changes. We define abrupt changes as statisically significant variation in the trend over a 45 

scale of one or two samples of the total dataset. Furthermore, we note that the conversion of 46 

depth to time (or age) generally involves calibration of a depth-age relationship, which 47 

itself will have uncertainty (e.g. Thompson and Goldstein 2006, Kylander et al. 2009, 48 

2010). For data collected from one borehole for example, these uncertainties will not 49 

change the positions of the underlying changes, only affecting the inference of absolute 50 

timing, but may become important for the inference of simultaneous changes in data from 51 

different locations.  52 

To provide a brief overview of some approaches for inferring abrupt changes in 53 

geochemical records, we draw on a selection of published work, including some of our 54 

own. Large et al. (2009) described geochemical data including C, N, H concentrations and 55 
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C, H and O isotopes from a 6 m core taken in the Hongyuan peatland, eastern Qinghai–56 

Tibetan Plateau. The core material was dated back to 9.6 kiloyears using 14C. The 57 

interpreted palaeoenvironmental history was linked to the climate variations in northwest 58 

Pacific, the El Niño-Southern Oscillation, movement of the Intertropical Convergence Zone 59 

and the East Asian Monsoon. This interpretation was based on a qualitative visual 60 

inspection and comparison to other proxy data and interpretations. 61 

 Ruggieri et al. (2009) developed a method to infer Milankovitch–type cycles from 62 

geochemical (δ18O) data,. They allow for discrete changes (changepoints) between which 63 

the trend (defined by superimposed sine functions) can change abruptly. They apply their 64 

model to 2 sets of benthic δ18O isotope data with time ranges going back to 2500 and 5000 65 

kiloyears. As these authors state, an important limitation of their method is that they do not 66 

include the number of change points as a parameter to be inferred directly. Instead they 67 

examine the variation of the data fit as a function of the number of changepoints, and try to 68 

identify the upper limit such that adding more changepoints makes little difference to the 69 

data fit. One additional limitation of this approach is that the inference will depend on the 70 

errors inherent in the data, although the data fit function adopted by Ruggieri et al (2009) 71 

does not incorporate a data error term explicitly. In general, we expect a more complex 72 

model (i.e. more changepoints) given more precise data. Often however, we do not have 73 

reliable estimates of the data errors and then choosing a suitable model becomes an issue.   74 

Tomé and Miranda (2004), looking for changes in linear trends, fit gradients to time 75 

series, subject to constraints on the minimum distance between changepoints, and the 76 

magnitude of the changes in trends. The approach requires a user to specify a range for 77 

number of changepoints, and finds best fitting functions for each value of the number of 78 

change points in turn. Although the authors state that they can examine a series of the sums 79 

of squares of residuals for each model (with different numbers of changepoints) to choose 80 
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an appropriate value, they do not explicity do this. Rather they seem to favour visual 81 

inspection to select a preferred model, which is required to have a constant distance 82 

between the changepoints.  83 

 Finally, Kylander et al. (2007) analysed rare earth elements and lead isotopes from 84 

samples in an Australian peatland as inorganic proxies for climatic variations, reflected in 85 

atmospheric dust. The changepoint modelling approach described in Denison et al. (2002) 86 

was adapted to allow common changepoints for multiple datasets. Kylander et al. (2007) 87 

used Eu abundance and Pb isotopes to infer the changepoints, under the assumption that 88 

trends in the data between the changepoints could be expressed as a simple linear 89 

regression function (a constant value or constant slope). In contrast to previous approaches, 90 

the number of changepoints was a parameter to be inferred directly. Moreover, the problem 91 

is formulated in a Bayesian framework, and provides probability distributions on the 92 

number of changepoints and on the changepoint locations.  93 

 In this paper, we present a general approach to infer an unknown number of 94 

changepoints when the errors, or the noise variances, are unknown for one or more datasets. 95 

The data can be irregularly spaced in depth (or time) and there is no requirement for 96 

different datasets to be sampled at the same depths (time).  We specify nothing about the 97 

spacing between changepoints, and the approach we present generalises to any linear 98 

function between changepoints. A key difference in the approach we present here to that of 99 

Denison et al. (2002) is that we decouple the estimates of the data noise variance and the 100 

model parameters. A related approach to deal with poorly constrained errors was described 101 

by Malinverno and Briggs (2004) applied to seismic traveltime inversion for 1D velocity 102 

structure (and see also Malinverno and Parker, 2006).  103 

We begin with a general discussion of changepoint modelling and the role of 104 

different sources of variability in the data. Then we describe the approach we adopt, 105 



 -6- 

although most of the mathematical details are given in the supplementary material. The 106 

method we present includes not only estimation of the number and location of 107 

changepoints, the regression functions between changepoints, but also the distribution of 108 

the data noise variance (if it is unknown or considered unrepresentative). We conclude with 109 

some examples of the application of the method to synthetic and real data and a brief 110 

discussion/summary. 111 

 112 

 113 

2. Changepoint modelling and noise 114 

The general problem can be stated as follows (and see figure 1) ; given one or more 115 

sets of (geochemical) data, f(xi), i = 1,N, at positions xi, representing a depth or time series, 116 

with either known or unknown levels of noise, can we identify the underlying trends or 117 

signal (e.g. the mean or a more general regression function) and the locations of discrete 118 

changes in the trends ? Often ,we  may want to infer the same changepoint locations, but 119 

with different signals in each dataset.  120 

In general we do not know how many changes are appropriate and ideally we 121 

should estimate this from the data. The problem becomes a transdimensional inverse 122 

problem (that is we do not specify in advance the number of unknown parameters, e.g. 123 

Sambridge et al. 2006). Furthermore, there is a trade-off between the level of noise in the 124 

data, and how well we expect to fit the data. Here we broadly follow the philosophy of 125 

Scales and Snieder (1999) in considering noise as that part of the data that we do not 126 

wish/expect the model to explain.  The spread in a geochemical dataset can then be divided 127 

into the variation (

 

σGP
2 ) due to time/depth varying geological processes (which we are 128 

interested in understanding) and the variation due to geological (

 

σGN
2 ) and analytical (

 

σAN
2 ) 129 

noise. Here geological noise might arise from spatial or temporal variations in small scale 130 
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or short term processes, local geological/biological/atmospheric variability and analytical 131 

noise (or more commonly, errors) typically can arise from factors such as instrumental drift 132 

or calibration from imperfect standards. In general we can express the total variance, 

 

σT
2  as 133 

 134 

 

 

σT
2 = σGP

2 + σGN
2 + σAN

2      (1) 135 

 136 

When we are interested in identifying trends and changes in trends, we would like to 137 

choose a model that adequately explains the variation due to geological process, and then 138 

the resiudals between the model predictions and the observed data reflectsthe 2 sources of 139 

noise as defined above. We want good control on the noise (or noise variance) as this will 140 

directly influence how well we should fit our data. Intuitively, we can see that if we 141 

consider a series of scattered data with lower noise variance than is appropriate then we 142 

will tend to fit many changepoints. An extreme case would be if we assume no noise, then 143 

we will fit the data perfectly (with a changepoint between each data point). On the other 144 

hand if we regard the data as more noisy than they really are, then we will tend to fit a 145 

model that has too few changepoints. 146 

 147 

2.1 Bayesian formulation of the change-point modelling problem 148 

Underpinning the Bayesian approach is that unknowns are expressed in terms of probability 149 

density functions (e.g. Tarantola and Valette 1982). A common form of Bayes’ rule is  150 

 

 

p m d( )  α  p d m( )p m( )     (2) 151 

where 

 

p m d( ) is the probability density function (PDF) of the unknown model parameter 152 

vector, 

 

m , containing the unknowns, given the data vector, 

 

d  ; 

 

p d m( ) is the likelihood 153 



 -8- 

function which is effectively the probability of the data, 

 

d , being observed given the 154 

model, 

 

m . The likelihood increases as the model fits the data better relative to the data 155 

noise and the form of the likelihood depends on the statistical character of the noise on the 156 

data.  Finally, 

 

p m( ) is the prior PDF on the model (that is what we think we know about m 157 

before we have the data). The aim of Bayesian inference is to try and estimate the posterior 158 

PDF, 

 

p m d( ) as this characterises all we need to know about the distribution of model 159 

parameter values, given the prior and the information contained in the data (incorporated 160 

through the likelihood). Useful references for Bayesian inference are by Box and Tiao 161 

(1973), Lee (1989), Bernardo and Smith 1994)  and Gelman et al (2004).  162 

 163 

2.1.1 Model parameters 164 

In a changepoint problem, the unknown model parameters are the number of 165 

changepoints (n), their locations (c), the parameters of a regression function between the 166 

changepoints (A) and the noise level (σ) for each dataset being considered. Thus we can 167 

write a general model vector, m, as  168 

 

m = (n,c,A,σ) 169 

in which c, A, and σ can all be vectors. 170 

We write the unknown locations of changepoints as ci, i = 1,n (note that n itself is 171 

also an unknown). We refer to the region between each changepoint as a partition, and a 172 

predictive regression function, ƒi(x), is defined whose parameters (A) depend on the data in 173 

that partition. Thus fi(x) refers to the regression function within the partition at the left of 174 

change point ci (if these are considered on a horizontal axis). As there are n+1 partitions for 175 

n change points, we define c0 as the location of the first data point so the regression 176 

function f1 in the first partition is defined between c0 and c1.  177 
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 Given vectors of independent and dependent (observed) variables, x and dobs, such 178 

as depth (or time) and observed data respectively, the linear regression function between 179 

changepoints can be written as  180 

 

 

f (x) = α i
i=1

M

∑ Gi(x)       (3) 181 

where G i  represents a specified basis function and αi represents an unknown coefficient, 182 

which can be thought of as weights on each basis function. For example, the common 183 

straight line relationship given by dpred = α1 + α2x, is written as a vector-matrix equation,  184 

dpred = GtA 185 

where the superscript t represents the matrix transpose, and  186 

 

 

G =

1 x1

. .
1 xi

. .
1 xk

 

 

 
 
 
 
  

 

 

 
 
 
 
  

, 

 

A =
α1

α2

 

 
 

 

 
  (4) 187 

 188 

A model with a constant value (normally the mean) is written as  189 

 

G =

1
.
1
.
1

 

 

 
 
 
 
  

 

 

 
 
 
 
  

, 

 

A = α1 (5) 190 

As we can separate the basis functions from the coefficients, this is a linear problem (linear 191 

in terms of the unknown coefficients). Here, we us only constant value regression functions 192 

between changepoints. However the approach we present generalises to any linear function, 193 

allowing for more gradual transitions between states (e.g. linear drift). 194 

 195 

2.1.2 Data likelihood 196 
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As commonly assumed in many geochemical problems, we make an implicit assumption 197 

that the noise associated with the data is normally distributed with a mean of 

 

ε and a 198 

variance, σ2, i.e. if we have individual errors represented by εi, then we can write the 199 

distribution of the errors as 200 

 

p ε i( )= N ε ,σ 2( ) (6) 201 

and the variance of this noise distribution may be poorly (or not) known. This is equivalent 202 

to the residuals between the observations and the predictions being normally distributed 203 

with mean of zero and a variance of σ2. If we have reliable and representative estimates of 204 

the noise variances, we can use the values in the likelihood instead of σ. In practice, the 205 

noise term determines the uncertainty in fitting the data which, due to geological 206 

complexity, is usually greater than the reported analytical precision. Given this assumption, 207 

a Gaussian likelihood function for observed data (using d = dobs) in the i-th partition,  given 208 

the predictions with a particular set of model parameters (m) is  209 

 

 

p di m( )=
1

2πσ 2( )
1
2

e
−

1
2

d i , j − fi (x )
σ

 

 
 

 

 
 

2

j =1

ki

∏  (7) 210 

where the subscript j refers to the ki data in the i-th partition (i.e. the region bounded by 211 

changepoints ci and ci-1, with c0 defined the lowest value of the data locations) and di,j is the 212 

j-th observation in partition i.  213 

More generally, for n partitions and Nd different datasets, we have the joint likelihood 214 

function, 215 

 216 

 

p d1,d2...dNd
m( )=

1

2πσ l
2( )

1
2

e
−

1
2

d i , j ,l − fi .l (x )
σ l

 

 
 

 

 
 

2

j =1

ki

∏
i=1

n

∏
l =1

Nd

∏  (9) 217 

 218 
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Given we subsequently assume a constant value in a partition, an appropriate form to chose 219 

values for the predictive function (ƒ) is a normal distribution centred on the mean value 220 

(and a variance equal to the variance) of the data in that partition. In this case, values for 221 

the regression model parameters (A) can be drawn from this distribution while the mean is 222 

the most probable value from the posterior distribution in a Bayesian formulation, 223 

equivalent to the maximum likelihood estimate. We could use a similar approach for any 224 

linear function with unknown coefficients, using standard least squares inverse methods 225 

(e.g. Menke 1989) to find the maximum likelihood values and the covariance matrix for the 226 

coefficients for a given partition, and draw samples for the parameters. 227 

 228 

2.1.3 Prior distributions 229 

In a Bayesian formulation, we need to specify prior distributions on all unknown 230 

parameters. The priors reflect what we consider reasonable to assume about the possible 231 

values for each parameter. Bayes’s rule lets us use the information about the model 232 

parameters contained in the data to update our prior information (i.e. to produce the 233 

posterior distribution). If the posterior distribution is the same as the prior, then the data 234 

have told us nothing we did not already know.  235 

We use the law of hierchical probability to write the priors as 236 

 

 

p(m) = p(n)p(c, A,σ | n)

= p(n)p(c | n) p(Al | c,n)p(σl | c,n)
l

Nd

∏   (10) 237 

 238 

where Nd is the number of datasets.  The choice of priors in our formulation is 239 

straightforward (usually uniform between a specified minimum and maximum value) and 240 

are given in Supplementary material, SM2. 241 

 242 
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3.  Markov chain Monte Carlo method for solving the changepoint problem 243 

In using the Bayesian formulation described above, our goal is to generate a collection, or 244 

ensemble, of values approximating the posterior distribution, whose form we do not know 245 

in advance. As we also do not know the number of changepoints, the problem becomes 246 

what is known as transdimensional, where the number of model parameters itself becomes 247 

an unknown. To solve this problem we use a generalised version of Markov chain Monte 248 

Carlo (MCMC) sampling, known as Reversible Jump MCMC (Green 1995, 2003). A 249 

general introduction to MCMC methods is given by Gilks et al. (1996), a review of 250 

transdimensional Markov chains is given by Sisson (2005) and Gallagher et al. (2009) 251 

present an overview of the general methodology and its application to Earth Science 252 

problems. Specific applications to Earth Science problems have been presented by 253 

Malinverno (2002), Malinverno and Leaney (2005), Stephenson et al (2006), Jasra et al. 254 

(2006), Sambridge et al. (2006), Hopcroft et al. (2009), Charvin et al. (2008) , Bodin and 255 

Sambridge (2009) and Piana Agostinetti and Malinverno (2010). We give brief overview of 256 

MCMC in the Supplementary material, SM1, while here we describe the aspects important 257 

for the transdimensional changepoint problem. The mathematical details for the MCMC 258 

implementation we adopt for the changepoint problem are given in Supplementary 259 

material, SM2 and SM3. 260 

 MCMC is an iterative method, and at each iteration, we consider 2 sets of model 261 

parameters, the current and proposed models (mc and mp).  The procedure for a given 262 

iteration can be described as follows   263 

(i) Randomly perturb the current model to produce the proposed model 264 

(ii) Randomly accept or reject the proposed model (in terms of replacing the 265 

current model), according to the acceptance criterion ratio (see equation 266 

A1.2 in Supplementary material, SM1) . 267 
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In principle, after many iterations, the MCMC sampler should converge to a stable 268 

configuration (that is sampling according to the posterior distribution) and the final stage of 269 

MCMC is to use the sampling to infer characteristics and uncertainties for the model.  270 

 271 

(i) Model perturbations/moves 272 

As stated above, the sampling should converge to the target posterior distribution. 273 

However, the efficiency of the method does depend on choosing a reasonable proposal 274 

function to avoid moving too slowly around the model space as of result of the 275 

perturbations being either too small or too big (see figure 2 of Gallagher et al. 2009). The 276 

scale of model parameter perturbations can be tuned to achieve a reasonable balance 277 

between accepting and rejecting proposed models.  278 

     For the changepoint problem, we define 5 types of model perturbation or move : 279 

1. Change the location of a changepoint 280 

2. Change the regression function (mean estimate) in a partition between 2 281 

changepoints 282 

3. Change the value of noise for a dataset (if appropriate for that dataset) 283 

4. Add a new changepoint (birth) 284 

5. Remove an existing changepoint (death) 285 

 286 

Each type of move has specified probability of being selected (which forms the jump 287 

proposal, R,  referred to in Supplementary Material), and these probabilities need to sum to 288 

unity. In our problem, these are set to 0.2, 0.15, 0.15, 0.25 and 0.25 in the order listed 289 

above. The birth and death probabilities need to be modified to avoid having more/less 290 

changepoints than the maximum/minimum values (nmax/nmin). We do this by setting the 291 

birth (death) probability to 0.5 (0.0) for a model with nmin changepoints, and the death 292 
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(birth) probability to 0.5 (0.0) for a model with nmax changepoints. Having selected a 293 

perturbation type for a particular iteration, all other parameters are kept constant. 294 

 295 

(ii) Acceptance criterion 296 

For the purposes of describing how we accept  or reject the proposed model, we use 297 

a simplified form of acceptance criterion ratio appropriate for 2 models with the same 298 

number of model parameters (and the full expressions for the transdimensional case are 299 

given in the Supplementary material). This can be written as a ratio of probabilites, given as 300 

 

α(mp,mc ) = Min 1,
p(mp )p d mp( )q mc mp( )
p(mc )p d mc( )q mp mc( )

 

 

 
 

 

 

 
    (11) 301 

where Min[1,Z] means we take the minimum of 1 and Z. The terms p(m) and p(m|d) are the 302 

prior and likelihood probabilities for a particular model (and so define the posterior 303 

probability, at least up to the constant of proportionality) . We have already introduced the 304 

concepts of the prior and likelihood functions (and where appropriate, the problem specific 305 

details are given in Supplemntary material, 2).  306 

The proposal probability, q(mp|mc) determines how we move from the current 307 

model to proposed model (step (i) above). The theory underlying MCMC requires us to be 308 

able to reverse such a move (so we need to also include the reverse proposal probability in 309 

the ratio). If we consider prior distributions to be uniform (i.e. all models have the same 310 

probability), and if we have proposal distributions that are symmetric, then we can write 311 

equation 14 above as  312 

 

α(mp,mc ) = Min 1,
p d mp( )
p d mc( )

 

 

 
 

 

 

 
       (12) 313 

This is just a ratio of the likelihoods (i.e. the probability of the proposed and current models 314 

producing the observed data). Thus if the proposed model fits the observed data better than 315 
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the current model (so it has a higher likelihood), then the likelihood ratio is > 1, and then 316 

α(.) is set to 1. Conversely, if the current model fits the data better than the proposed 317 

model, the ratio is < 1, and then α(.) is set to p(d|mp)/p(d|mc), which itself is always > 0. 318 

The final step in an iteration requires us to generate a uniform random number, u, between 319 

0 and 1, and compare this to α(.). If u <= α(.) we accept the proposed model (and this 320 

becomes the current model for the next iteration), otherwise we reject it (and we retain the 321 

current model for the next iteration). From this, we can see that (given the assumptions 322 

about flat priors and symmetrical proposal functions) we will always accept a proposed 323 

model fits the data better as u is always <= 1. If we consider a proposed model that fits the 324 

data almost as well as the current model (say α(.) = 0.95), then, on average, we will accept 325 

the proposed model 95% of the time. For a proposed model considerably worse than the 326 

current model in terms of data fit (say α(.) = 0.05), then, on average, we will only accept  327 

the proposed model 5% of the time. If the posterior distribution resembles a normal 328 

distribution, we can see that this process will tend to concentrate the sampling under and 329 

around the peak (the higher probability region), but also allows us to sample less good 330 

models (out in the tails of the distribution). In fact, the number of accepted samples for 331 

each model is proportion to the posterior probability of that model and the ensemble of 332 

accepted models then is a good approximation of the posterior distribution. 333 

  334 

  For the first 3 moves described in (i) above, the number of model parameters is 335 

constant and the acceptance ratio is given by equation 11. For the birth and death moves, 336 

the dimensions of the current and proposed model are different and it is necessary to use 337 

the acceptance ratio given in Supplementary Material 1 (equation A1.2). Intuitively, we 338 

might expect that models with more parameters will tend to provide a better fit to the 339 

observed data, and then that the sampler would tend always to increase the number of 340 
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model parameters towards the maximum.   However, to demonstrate how MCMC operates 341 

during transdimensional moves, we can consider again a simplified form of the  acceptance 342 

criterion as  343 

 

 

α(mp,mc ) = Min 1,
p(mp )p d mp( )
p(mc )p d mc( )

 

 

 
 

 

 

 
     (13) 344 

 345 

If all the parameters are independent and we consider a proposed model with 1 more 346 

parameter more than the current model (all other parameters being the same), then, with the 347 

prior on the extra parameter given as p(mp,n+1) we can write this as 348 

 

α(mp,mc ) = Min 1,
p(mp,+1)p(mc )p d mp( )

p(mc )p d mc( )
 

 

 
 

 

 

 
 

= Min 1,
p(mp,+1)p d mp( )

p d mc( )
 

 

 
 

 

 

 
 

    (14) 349 

 350 

If both models fit the observations equally well (the likelihoods have the same value), then  351 

as p(mp,n+1) < 1, we have  352 

 

α(mp,mc ) = p(mp,+1)      (15) 353 

 354 

Thus, in this special case, the acceptance probability is equal to prior probability on the 355 

extra model parameter. In other words, even when the fit to the observations is as good as 356 

the current model, the proposed model (with more parameters) is less likely to be accepted, 357 

by a factor equal to the prior probability of the extra parameter.  358 

More specifically, when we propose an increase in the number of changepoints 359 

(birth), an increase in likelihood function will tend to encourage acceptance of the proposed 360 

model. However the decrease in the prior ratio will tend to discourage acceptance due to 361 
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the increased dimensionality of the space. Overall, the algorithm always prefers a large 362 

partition rather than two small partitions with similar mean values (which would have 363 

similar likelihood values). This is an example of a property of Bayesian inference referred 364 

to as ‘natural parsimony’, which means that given a choice between a simple and complex 365 

models that provide similar fits to data, the simpler one will be favoured (e.g. Jeffreys and 366 

Burger 1992, Mackay 1992, Bretthorst 1993, O' Ruanaidh and Fitzgerald 1996, Sivia 1996, 367 

Jaynes 2003).  368 

 369 

(iii) Calculation of model and uncertainties 370 

Typically the MCMC sampling is run for many (104-106) iterations, and includes an 371 

initial period during which the samples are not yet from the target posterior distribution. 372 

This is known as burn-in and these samples are discarded before making inference from the 373 

posterior distribution. Gilks et al. (1996) show examples of these characteristic behaviours 374 

as a guide for their recognition and we discuss this later with the examples. The post-burn-375 

in samples should then provide a good approximation to the posterior distribution for the 376 

model parameters, i.e. p(m|d). This can be visualised for one model parameter by plotting a 377 

histogram. We can also calculate the expected model as a average, i.e. 378 

 379 

 

m =
1
N

mi
i=1

N

∑        (16) 380 

 381 

which is effectively a weighted mean, in which the weighting is the posterior probability 382 

for each model. Similarly the variance and co-variance of model parameters are given by 383 

standard formulae. Finally, we can readily calculate the 95% credible intervals by ordering 384 

the samples for a particular variable, and simply identifying the upper and lower 2.5% of 385 

the distribution as the 95% credible interval.  386 
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 Rather than choosing the best data fitting model, which tends to be overly complex, 387 

our preferred final solution is given by the expected model (equation 16) with 95% credible 388 

intervals around the regression function parameters, and the distributions on the number 389 

and locations of changepoints. When a large number of models are added together, their 390 

partitions overlap so the average model is continous and smooth. An advantage of this is 391 

that we can produce a model that contains the features common to the majority of sampled 392 

models, but also can be more complex (yet smoother) than any individually sampled model. 393 

 394 

4. Examples of changepoint modelling 395 

      396 

We first use synthetic data to demonstrate that we can recover the known signal and noise 397 

terms. In this example, we discuss how to assess whether the MCMC sampler has 398 

performed adequately. Subsequently, we apply the method to 2 sets of real geochemical 399 

data, from peat cores in northeast Australia (Kylander et al. 2007) and eastern Tibert (Large 400 

et al. 2009). 401 

 402 

4.1 Synthetic data 403 

The synthetic data are shown in figures 2a,b,c. We randomly selected 4 changepoints and 404 

different mean value functions in each partition to produce 150 irregularly distributed 405 

samples for each dataset and added noise with different levels to each. We used these data, 406 

assuming unknown noise variance, to infer the distributions on the number and locations of 407 

changepoints and the noise variance. 408 

As stated earlier, we tune the proposal functions to achieve adequate sampling of 409 

the model parameters. Among the more common ways to assess if these input parameters 410 

are appropriate are to examine the rate of acceptance (typically around 30%, although 10-411 
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60% may be  adequate, e.g. Brooks et al., 2003), and also the behaviour of the likelihood or 412 

model parameters as a function of iteration (they should show no long term trend, and 413 

ideally resemble white noise). However, for birth and death we can not readily control the 414 

acceptance rates, which can be much lower (<5%) in this problem. 415 

We choose a proposal function scale (θ in equation A2.6) that is proportional to the 416 

range (maximum and minimum values) of particular parameter. We use 0.2, 0.05 and 0.025 417 

of the prior ranges for the regression function (here the mean), the changepoint locations 418 

and the noise, respectively. We make exploratory runs in which we monitor the acceptance 419 

rates over 104-105 iterations, and adjust the scaling parameters accordingly. In this problem, 420 

if the acceptance rate is too high, the scaling parameters are too small, and vice-versa. 421 

Having tuned the proposal functions, we run the chain for 5x105 iterations, with a burn-in 422 

of 2.5x105 iterations.  423 

 In figure 3, we show the log likelihood (data fit), the number of partitions and the 424 

sampling for the 3 noise parameters. During the early part of sampling (figure 3a,b), there 425 

is clearly structure in the chain. The initial log-likelihood is about -1.2x104, but  even over 426 

the initial 5000 iterations we see that the sampler quickly arrives in better regions of the 427 

model space, and the log-likelihood increases rapidly, even though the number of 428 

changepoints is decreasing. Over the same sampling period, the noise values have not 429 

equilibrated either, the blocky structure, indicative of relatively poor movement around the 430 

model space (or mixing). In contrast, the post-burn parts of the chain show that the 431 

sampling appears to have reached equilibrium. There are no significant trends in the 432 

sampling (they look like white noise), and the number of partitions is sampled between 4 433 

and 7.  434 

 As described in section 3, we use the post-burn-in samples to calculate the expected 435 

(or average) changepoint structure, the 95% credible intervals around it, the probability of 436 
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having changepoints over the range of the samples and also the mean and distribution on 437 

the noise values for each dataset. In figures 2d,e,f we show the 3 datasets, with the mean 438 

estimated noise value as error bars, together with the expected changepoint structure, and in 439 

figure 4 we show the distributions on the noise parameters. It is clear, by comparison with 440 

figure 2, the changepoint structure has been recovered well, with no spurious features, and 441 

also the mean noise is in good agreement with the original values. In figure 5 we show the 442 

distribution on the  inferred number of changepoints, demonstrating that the inference leads 443 

to about 80% probability there are 4. This is conditional on all the model assumptions (a 444 

finite number of discrete changes with constant mean values in each partition), although 445 

these are appropriate in this example. 446 

 To demonstrate the influence of different datasets, we ran each dataset 447 

independently, using the same parameters as the joint run and the results are shown in 448 

figure 6. Again the main changepoint structure is recoved, although we see that some small 449 

scale artifacts have been introduced for individual datasets. This leads to a slightly different 450 

distribution on the number of changepoints, although all 3 datasets still have 4 as the most 451 

probable, with the frequency of 5 changepoints, relative to 4, being higher than in the joint 452 

model (25% compared with 98% dataset 1, 65% datset 2, and 30% dataset 3). In practice, it 453 

is unlikely that we would be primarily interested in the absolute number of changepoints, 454 

but rather in where changes are inferred to occur. If we have multiple datasets, and expect 455 

them to have the same changepoint structure, then we recommend modelling them together 456 

for consistency in the changepoint structure. 457 

  458 
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4.2 Real data examples 459 

In the real data examples described below, we follow a similar approach as described 460 

above. We monitored the acceptance rate on all variable parameters, and where relevant we 461 

adjusted the proposal function scales to achieve an acceptance rate of 20-40%.  462 

 463 

4.2.1 Lynch’s Crater, Australia 464 

The first real data example we consider is from Kylander et al (2007), who undertook 465 

geochemical analyses on a 13m section equivalent to ~50Kyr from a peatbog at Lynch’s 466 

crater, north-east Australia. They reported Pb isotope and Rare Earth Element data, used as 467 

proxies for climate change, and in particular for variations in air-transported mineral dust 468 

sources. Here we follow that paper, and consider the 206Pb/207Pb isotope ratios and the 469 

Europium anomaly,  (Eu/Eu*)PAAS, which is a measure of Eu2+ fractionation from Eu3+ 470 

relative to the adjacent ions, Sm3+ and Gd3+  (Eu* being the geometric mean of these two).  471 

We first use this example to demonstrate the inference of changepoints either 472 

representing the noise with the analytical errors or estimating the noise variance directly 473 

from data. In terms of analytical errors, those for the Pb isotope ratio were determined from 474 

a long-term series (nearly 2 years) measurements of the NBS 981 standard. In the absence 475 

of an equivalent estimate from repeat measurements, we assumed 10% of the observed 476 

value for the Eu anomaly. The mean noise variances on Pb and the Eu anomaly are 477 

3.86x10-4 and 0.123, respectively. 478 

In figure 7 we show the inferred changepoint structure using these specified errors 479 

in the data likelihood, and also the case in which we also infer the noise variances, for each 480 

dataset in terms of a probability distribution (figure 8). Clearly, the structure in the first 481 

case is dominated by the Pb isotope ratios (which have relatively small analytical errors). 482 

The mean number of changepoints is 106 (±4, 1σ) and it is difficult to make meaningful 483 
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sense of these results. In the second case, where we estimate the noise variance, the mean 484 

number of changepoints is 6 (±1, 1σ), and correspondingly, the mean of the noise variances 485 

on the Pb isotope data and the Eu anomaly are 0.00913 and 0.0341, respectively. In this 486 

case, the inferred noise variance on the Eu anomaly is about  3-4 times smaller than the 487 

assumed 10%, while for the Pb isotopes, it is about 24 times larger than the analytical level. 488 

In terms of the inferred changepoint locations, the major peaks around 150 and 620m 489 

correspond to the two most significant changes inferred by Kylander et al. (2007). The 490 

shallowest changepoint is related to a change to warm, wet conditions while the second is 491 

change from humid to arid. The 3rd peak around 820m in our results also corresponds to a 492 

lesser change inferred by the earlier work. We refer the reader to Kylander et al. (2007) and 493 

Muller et al. (2008), for a more detailed discussion of the environmental significance of 494 

these changes.  495 

We also ran the 2 datasets individually, assuming the errors were unknown, and the 496 

results were very similar in terms of the error distributions. The Pb isotope data however 497 

only required one significant changepoint (around 820m), while the Eu anomaly data 498 

produced essentially the same result as the joint modeling.  499 

 500 

4.2.2 Hongyuan, Eastern Tibet 501 

Large et al. (2009) presented a series of geochemical and physical property measurements 502 

from a 6m deep section, equivalent to ~10Kyrs,  of the Hongyuan peatbog in eastern Tibet. 503 

The aim of this study was to assess the relative influences of the Indian and east Asian 504 

monsoons, and to relate this to other inferences of climate variations in China. Here, we use 505 

the C, N, H and δ13C analyses, together with the bulk density and carbon density to make 506 

quantitative inference of changepoints. In this case, we have no specific information 507 

concerning the errors for each dataset, so we also need to infer the noise variance.  508 
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 The changepoint and noise variance distributions are shown in figures 9 and 10. The 509 

noise levels are lower than the standard deviation of each dataset (~2-3 times lower), except 510 

for the δ13C dataset, for which the inferred noise variance is similar in magnitude to the 511 

variation in data. The summary diagram of Large et al. (2009) (their figure 7) compares 512 

their data to previous studies, and in particular of inferred periods of cold, dry (permafrost) 513 

periods relative to warmer, wetter periods. Thus our inferred changepoints should 514 

correspond to times when these conditions switch. Apart from the relatively low amplitude 515 

probability changepoint inferred around 200 cm and the recent variations (<50cm, 516 

attributed to disturbance as a consequence of Yak grazing by Large et al, 2009), the 517 

changepoints agree well with those inferred by a qualitative comparison of regional 518 

datasets from China by Large et al. (2009) (see figure 9).  519 

 Although we do not show the results here, we also ran these 6 datasets individually. 520 

As we might now expect, the details of the changepoint location structure differs between 521 

each dataset. Also, the mean values of the estimated  noise levels were lower (by between 522 

10 and 60%) than for the joint model. This latter result is also not unexpected as the joint 523 

modelling tends to compromise (increase) the noise variance to accommodate common 524 

changepoints for multiple datasets. While there is clearly common information, it is not 525 

easy to identify reliably the changepoints by considering these datasets individually. Again 526 

we recommend joint modelling of multiple datasets if we anticipate a common changepoint 527 

structure for a particular problem. 528 

 529 

5. Summary 530 

Changepoints can be defined as abrupt changes in trends (such as the mean, gradient or any 531 

function) over depth or time. In this paper, we have presented a new approach to 532 

changepoint modelling, applicable to multiple datasets with common changepoint 533 
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locations, allowing for unknown noise variance in each dataset. The approach is based on 534 

Bayesian transdimensional Markov chain Monte Carlo and we estimate the changepoint 535 

structure in terms of distributions for number and location of changepoints, the regression 536 

function parameters and the noise variance on multiple datasets. Here, we have considered 537 

the regression function in terms of a constant value between 2 changepoints, but the 538 

approach generalises to any linear function of the data. In any transdimensional problem, 539 

the solution (i.e. the number and location of changepoints) is strongly influenced by the 540 

assumed noise variance. Our approach, in allowing us to estimate the noise variance 541 

directly from the data, is particularly useful when we do not have reliable estimates of the 542 

data error/noise, or perhaps only consider analytical errors (i.e. we neglect natural variation 543 

due to geological complexity) and so implicitly assume the data are more precise than is 544 

perhaps advisable. Furthermore, the Bayesian approach we adopt is naturally parsimonious 545 

and avoids inferring unwarranted complexity when finding the changepoint structure. Thus 546 

we expect to favour models with fewer changepoints, while still achieving an adequate fit 547 

to the observed data. 548 

Using synthetic data, we have demonstrated that we can recover the changepoint 549 

structure and the noise variances reliably. When dealing with multiple datasets, we assume 550 

that all datasets contain the same changepoint locations, but the response, or regression 551 

functions, and noise variances are different. The approach we present can be generalised 552 

readily to allow for different noise variance between partitions, if required. Additionally, 553 

the different datasets can be irregularly spaced in depth (or time) and there is no need for 554 

the data to be sampled at the same depths (time). The details of the solutions will depend on 555 

which datasets are used (i.e. singly or jointly) and we recommend using joint modelling if 556 

the assumption of common changepoints is considered valid. This assumption is perhaps 557 

best assessed from the understanding of geochemical behaviour in different enviromental 558 
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systems. Certainly, the results are more coherent and generally easier to interpret than by 559 

combining results from individual dataset modelling. Applications of the method to real 560 

datasets from NE Australia and eastern Tibet provide results in agreement with previous 561 

qualitative interpretations based on visual inspection. However, our approach is preferable 562 

as it is more objective, explicity incoporates the noise variance (either known or unknown), 563 

allows us to assess quantitatively the relative importance of the inferred changepoint 564 

structure, and we obtain probability distributions on all parameters. Finally, directions for 565 

future work would be to consider transdimensional regression functions (for example we 566 

estimate the order of a polynomial which could be different between partitions) and to 567 

allow for uncertainty in depth to age conversions (which will be important when comparing 568 

records from different locations).  569 
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Figure Captions 
Figure 1. An example of the changepoint problem. We have a set of noisy data (dots), with 

a common noise variance (the  noise is Gaussian, and 1σ value is shown as the error bar in 

the bottom right). The underlying function from which the data were generated is shown by 

the solid line. The function is discontinuous, with 4 changepoints at x = 2, 5, 6, and 8. In a 

real problem, the model parameters are the number of changepoints (n), the locations of the 

changepoints (xi, i = 1, n) and the values of the function in each region (in this case, this is 

just the mean value of the data between each changepoint). 

 

Figure 2 

(a,b,c). The 3 synthetic datasets (grey dots), with 4 common changepoints. The noise scale 

(σ from equation 7) is given in the top left, with an error bar ±1σ shown just below. The 

true regression function for each dataset is shown by the solid line.  

(d,e,f) Changepoint structure inferred for the 3 synthetic dataset. The solid line is the 

inferred function (relative to the lefthand axis), and the lighter dashed lines  represent the 

95% credible intervals on this function. The continuous lines represent the probability of a 

changepoint (relative to the right hand axis). The error bars are drawn using the mean value 

of the noise variances for each data set (see figure 4). 

 

Figure 3.  

(a) Log-likelihood (LL) and the number of changepoints (n) for the initial 5000 

iterations. 

(b) The sampled values for the 3 noise terms over the initial 5000 iterations. 

(c) As (a), but during the post-burn-in sampling 

(d) As (b), but during the post-burn-in sampling 
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Figure 4. Inferred distributions of the noise variances for each data set. The true values are 

shown as the heavy vertical lines. 

 

Figure 5. Inferred distribution on the number of changepoints for the data in figure 3. 

 

Figure 6. As figure 2,d,e,f,, but each data set was modelled individually. 

 

Figure 7. Inferred changepoint model for the data from Kylander et al. (2007). Their 

inferred climatic-related varitations are indicated by the grey bar bars at the base of each 

graph. 

(a) Pb isotope data using the analytical errors for the noise term. 

(b) Eu anomaly data, using 10% of the observed value as the noise term 

(c) As (a), but we infer the noise variance (mean value shown as the error bars) 

(d) As (b), but we infer the noise variance (mean value shown as the error bars) 

 

 

Figure 8. Inferred distributions of the noise variance for the two datasets of Kylander et al 

(2007).  

 

Figure 9. Inferred changepoint model for the data from Large et al. (2009). Their inferred 

climatic-related variations are indicated by the grey bar bars at the base of each graph. 

(a) H, (b)  N, (c)  C, (d) Total Carbon, (e) δ13C, (f) density 

 

 

Figure 10. Inferred distributions of the noise variance for the 6 datasets of Large et al 

(2009). The sequence of graphs is the same as in figure 9. 
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