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Abstract 

Although water is ubiquitous in the continental crust, its effect on geochronometers through 

mineral reequilibration is rarely taken into account. Here we present 40Ar/39Ar analyses on 

muscovite and U-Pb isotopic data on zircon and monazite from a Variscan syn-tectonic 

granite from western France. Both the K-Ar in the muscovite and U-Pb in the monazite 

isotopic systems were hydrothermally reset, whereas the U-Pb radiogenic system in most of 

the zircons was unaffected and dates the granite emplacement age. Titanium chemical maps 

obtained on muscovites  from various dated samples display a spectacular overprinting of 

their magmatic zoning resulting from increasing fluid-rock interaction. These results reiterate 

the need to combine geochronological data with petrological, mineralogical and geochemical 

studies to accurately interpret ages obtained in this type of geodynamical settings. 
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1. Introduction 

Thermochronology is based on the Arrhenius diffusion law, where temperature is the 

only extrinsic parameter controlling diffusion and thereby closure of isotopic chronometers 

(Jäger, 1967; Dodson, 1973). However, the presence of fluids can enhance mineral 

reequilibration processes (e.g. Putnis, 2009) which can disturb isotopic systems (e.g. Villa, 

1998; 2010). Indeed, numerous studies have demonstrated that recrystallization and/or 

reequilibration processes can induce disturbance of mica 40Ar/39Ar ages in metamorphic 

terranes (e.g. Chopin and Maluski, 1980; Hames and Cheney, 1997; Cheilletz et al., 1999; 

Giorgis et al., 2000; Di Vicenzo et al., 2001; 2004; 2006; Beltrando et al., 2009; Allaz et al., 

2011) and also in granites (Alexandrov et al., 2002).  

In the continental crust, large shear zones are often associated with granitic 

magmatism (e.g. Weinberg et al., 2004). 40Ar/39Ar dating of muscovites from these syn-

kinematic granites represents a powerful tool to date granite cooling and therefore coeval 

shearing. To evaluate the potential effect of fluid-induced disturbance at sub-solidus 

conditions in a deforming magmatic environment, we focused on the Questembert 

peraluminous leucogranite emplaced along the South Armorican Shear Zone (SASZ; Fig. 1a 

and b) at shallow depth (1-2 kbar, Tartèse and Boulvais, 2010), implying a rapid cooling in 

this cold environment. Widespread syn-cooling S-C structures (Fig. 1c) demonstrate its syn-

kinematic character (Berthé et al., 1979, Gapais, 1989). This leucogranite allows to study the 

behaviour of distinct isotopic systems under a fluid controlled environment. Indeed, 

petrographic features, whole-rock and mineral chemistry and oxygen isotopes evidence two 

stages of hydrothermal alteration: a high-T stage of magmatic fluid exsolution and a low-T 

stage involving post-crystallization fluids partly derived from the surface (Tartèse and 

Boulvais, 2010). Fluid circulation throughout the granite has likely been facilitated by the 

pervasive and vertical S and C planes formed during its cooling (e.g. Dipple and Ferry, 1992; 
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Streit and Cox, 1998). The present study shows that both the K-Ar in muscovite and the U-Pb 

in monazite radiogenic systems were hydrothermally reset. Without a proper approach, ages 

measured in such environment could therefore be wrongly interpreted, which could lead to 

erroneous constraints regarding geodynamical reconstructions. 

 

2. 40Ar/39Ar and U-Pb geochronology  

2.1. Muscovite 40Ar/39Ar dating 

Euhedral to subeuhedral muscovite grains, with variably deformed shapes resulting 

from syn-deformation crystallization, were handpicked from the 0.25-1.50 mm fractions. 

Mineralogical and microstructural features are given in Tartèse and Boulvais (2010). 

Individual grains were analyzed by step-heating with an 40Ar/39Ar laser probe, following the 

procedure described in Ruffet et al. (1991; 1995). Details on the method are given in the 

Supplementary Material. 40Ar/39Ar analytical data are listed in Table 1, and corresponding age 

spectra are displayed in Figure 2. All errors in the text are reported at 2σ. Muscovite analyses 

display 40Ar/39Ar plateau dates ranging from 319.2 ± 0.9 Ma down to 303.4 ± 0.9 Ma (Fig. 

2a). Individually, each plateau date could be interpreted as an intrusion cooling age, although 

they conjointly demonstrate a 16 Ma age span, leading potentially to a non-negligible bias for 

the age of the synchronous shearing. At first glance, this time span rules out a single phase 

emplacement history for the intrusion. 

The oldest c. 319 Ma date is recorded in the undeformed QRT01 sample. All the other 

samples are characterized by pervasive ductile structures related to shearing along the SASZ 

(Fig. 1c), without correlation between strain intensity and/or vicinity to the SASZ and the 

measured dates. A possible interpretation could be that the 319 Ma “old” underformed sample 

represents a first granitic pulse prior to deformation. Multiple granitic pulses would have 

continued from c. 315 down to c. 303 Ma, a time span during which Tartèse et al. (2011) 
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proposed that the SASZ was active. Muscovite dates would thus image the cooling of 

successive pulses of magmas below the closure temperature of the muscovite K-Ar system. 

This scenario would nevertheless require an unrealistic 16 Ma long protracted magmatic 

activity. 

2.2. Monazite and zircon U-Th-Pb dating 

To get independent age constraints, U-Th-Pb analyses were performed on zircons and 

monazites separated from sample QRT07, using the SHRIMP II and SHRIMP-RG 

respectively (Research School of Earth Sciences, ANU). Analytical procedures followed the 

methods described in Williams (1998) and in Williams et al. (1996), respectively. Details on 

the method are given in the Supplementary Material. Isotopic compositions and 

corresponding dates are given in Table 2. All errors in the text are reported at 2σ. Monazite 

U-Pb data yield an intercept date of 306.5 ± 3.2 Ma (Fig. 3a), the regression line being 

anchored to the 207Pb/206Pb value of 0.856, calculated at 307 Ma using the single stage model 

of Stacey and Kramers (1975) as few analyses show slight common lead contamination. 

Zircon U-Pb data are more scattered (Fig. 3b). Four data are largely discordant and likely 

show the combined effects of common lead contamination and lead-loss. Seven concordant to 

sub-concordant analyses cluster around 310-320 Ma and yield a consistent 206Pb/238U 

weighted mean date of 316.1 ± 2.9 Ma. One analysis is significantly older and plots at c. 335 

Ma. 

BSE images of monazite grains display complex zoning patterns and/or dissolution 

features (Fig. 4b to 4e) reflecting chemical disequilibrium, while monazite in Fig. 4a seems to 

be homogeneous and shows a crack filled with K-Feldspar. The SE image displayed in Fig. 4f 

shows a monazite grain with K-Feldspar and zircon intergrowth. CL images of most of the 

zircon grains display cores with a typical magmatic oscillatory zoning (Fig. 4g to 4i) 

surrounded by darker homogeneous rims (Fig. 4h and 4i). The zoned domains yielded sub-
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concordant dates around 317-318 Ma (Figs. 3b and 4g-h) whereas the analysis of a dark rim is 

largely discordant (Figs. 3b and 4h). Fig. 5 shows that the most discordant data are the most 

contaminated by common Pb. Common lead contamination likely occurred preferentially in 

metamict domains or in hydrothermal rims, potentially linked to a common Pb-rich fluid input 

in the system (e.g. Watson et al., 1997). 

The first important result is that monazite and muscovite ages in sample QRT07 are 

consistent at c. 307 Ma while zircon grains are older at c. 316 Ma. Also, zircon displays 

typical magmatic zoning while monazite grains show patchy zoning and evidences of 

dissolution-recrystallization features. The grain textures and large difference between zircon 

and monazite U-Pb ages rule out the possibility that both date magmatic events. The second 

important result is that the zircon U-Pb age of 316.1 ± 2.9 Ma obtained on sample QRT07 is 

identical within error with the 40Ar/39Ar age of 319.2 ± 0.9 Ma obtained on sample QRT01. 

 

3. Whole-rock and muscovite chemistry 

40Ar/39Ar dates have been compared to whole-rock geochemical data (from Tartèse 

and Boulvais, 2010). Dates show a good negative correlation with the whole-rock Sn content 

(Fig. 2b), an incompatible element concentrated in late magmatic fluids (Förster et al., 1999). 

A positive correlation is also noticeable with the Nb/Ta ratio (Fig. 2b), whose fractionation 

from a typical crustal ratio of around 11 has been interpreted as a strong indicator of fluid-

rock interaction (Dostal and Chatterjee, 2000). The most altered samples, with high Sn 

contents and low Nb/Ta ratios, are also those yielding the youngest 40Ar/39Ar muscovite dates. 

Dates are thus getting younger when evidence of hydrothermal activity recorded by host rocks 

increases. 

The chemistry of muscovite grains from the dated samples was also examined (for 

analytical details and chemical data, see Supplementary Material). These grains have a typical 
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magmatic shape and a size similar to the dated grains. Muscovite in the studied samples has a 

composition close to the stoichiometric muscovite (Si = 3.07 ± 0.02 and Al = 2.73 ± 0.04 apfu 

in average). In the Ti-Na-Mg diagram (Fig. 6a), the measured compositions encompass the 

field of primary (i.e. magmatic) and secondary (i.e. hydrothermal) muscovite (Miller et al., 

1981). In detail, muscovite from the 319 Ma QRT01 sample plots within the primary field, 

muscovite from the 303 Ma QRT02 sample plots within the secondary field and muscovite 

from other samples (40Ar/39Ar dates between 315 and 307 Ma) lies between these two end-

members. When reported against the Mg/(Mg+Ti+Na) molar parameter (Fig. 6b), it becomes 

evident that muscovites are getting younger as their chemistry tends toward the hydrothermal 

field. 

Chemical maps of the TiO2 content (Fig. 7) were acquired in order to precisely image 

chemical changes induced by hydrothermal activity. In QRT01, the transition between a Ti-

rich core and a Ti-poor rim is very sharp and typical of magmatic growth. It cannot be 

interpreted as a post-crystallization solid-state diffusion, which would have induced smooth 

changes. From QRT08 to QRT06 and then QRT02, these Ti-zonings are less marked and 

associated with an absolute decrease in TiO2. We thus infer that all the studied grains have a 

magmatic origin and that most of them underwent hydrothermal alteration and 

recrystallization, such that they acquired secondary hydrothermal compositions. This 

hydrothermal alteration led to a progressive overprinting of their magmatic zoning and 

induced crystallo-chemical transformations throughout the entire grain (Fig. 7). In these 

conditions, it is very unlikely that the muscovite K-Ar isotopic system remained undisturbed. 

 

4. Discussion 

The six samples collected in the Questembert granite display different 40Ar/39Ar 

plateau ages, in the range 319-303 Ma, all potentially meaningfull when considered 
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individually. The question that arises is therefore how such a large time span can exist within 

a single rapidly cooled intrusion. Several scenarios can be drawn: (1) each individual 

40Ar/39Ar age corresponds to a different magmatic pulse; (2) the intrusion was emplaced c. 

303 Ma ago (youngest 40Ar/39Ar age) and all the older dates are meaningless and (3) the 

intrusion took place c. 319 Ma (oldest 40Ar/39Ar age) and all the younger ages are linked to 

hydrothermal alteration. 

Several arguments allow us to favour the third scenario. The oldest 40Ar/39Ar and U-Pb 

dates at c. 319 Ma were obtained on muscovite and zircon grains that show typical magmatic 

textures. On the contrary, all the younger muscovite 40Ar/39Ar and monazite U-Pb dates were 

found on grains showing variable degrees of alteration and fluid-assisted recrystallization. 

This therefore rules out the first scenario of distinct magmatic pulses. In the second scenario, 

the older 40Ar/39Ar muscovite dates would reflect the contribution of extraneous argon (e.g. 

Damon et al., 1967). However, as the 40Ar/39Ar dates regularly decrease with the increase of 

the hydrothermal character recorded by both the whole-rock and the muscovite chemistry, the 

age span is much likely related to resetting of old ages than to excess Ar. This is consistent 

with the high level of emplacement of the granite along a major shear zone, i.e. in a fluid-

dominated system which constitutes an inifinite reservoir where Ar can escape (e.g. Kelley, 

2002). Also, the oldest muscovite 40Ar/39Ar date of c. 319 Ma is within error with the zircon 

U-Pb date of 316.1 ± 2.9 Ma, which is unlikely fortuitous. We rather interpret the 316-319 

age as the emplacement age of the granite and the younger muscovite 40Ar/39Ar and monazite 

U-Pb dates as the results of hydrothermal sub-solidus alteration. 

Two extreme hydrothermal scenarios may explain the observed data: (1) fluids flowed 

throughout the granite around 303 Ma and differentially re-equilibrated the various samples, 

depending on the fluid/rock ratio; (2) fluids flowed more or less continuously throughout the 

granite and were recorded locally at different times. Muscovite data favour the second 
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scenario. Indeed there is a progressive hydrothermal overprinting of the magmatic signal in 

muscovite grains caused by fluid-induced recrystallization. It is very unlikely that radiogenic 

argon, an unbounded and highly diffusive element, remained in the crystalline network of 

muscovite that undergoes crystallo-chemical transformations throughout the entire grain (Fig. 

7). Moreover, hydrothermal scenario 1 would likely implied pronounced saddle-shaped 

40Ar/39Ar age spectra expressing mixing between a c. 320 Ma magmatic and a c. 303 

hydrothermal end-members (e.g. Cheilletz et al., 1999), which are not observed in Fig. 2a. 

Here, muscovite yielded only very subtle saddle-shaped age spectra testifying for distinct 

protracted (c. 1-2 Ma) recrystallization events. Monazite U-Pb dates also favour hydrothermal 

scenario 2. Analyses made on grains from sample QRT07 yield a consistent age of c. 307 Ma, 

identical within error with the 40Ar/39Ar date. K-Ar in muscovite and U-Pb in monazite 

therefore date hydrothermal resetting of both radiogenic systems. Still in sample QRT07, a 

couple of discordant zircon analyses have likely been affected by this event, but most of them 

have not as they preserved the granite emplacement age. Therefore, monazite has been totally 

reset by hydrothermal alteration whereas zircon did not. This is in good agreement with the 

fact that monazite is often more sensitive to fluid-rock interactions than zircon (Ayers et al., 

2006; Bosse et al., 2009; Poujol et al., 2010). Finally, data show that a long lasting sequential 

and heterogeneous hydrothermal activity affected the granite after its emplacement. It may 

have been initiated by the release of high temperature magmatic fluids during granite 

solidification and continued for a long time with fluids derived from both the crust and the 

surface. This is in good agreement with the “two-stage alteration” that affected the 

Questembert granite (Tartèse and Boulvais, 2010), and with the intense hydrothermal activity 

that affected this part of the Variscan orogeny at the end of the Carboniferous (e.g. Gloaguen 

et al., 2007; Lemarchand et al., 2011). 
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5. Conclusion 

The 40Ar/39Ar muscovite dates from six samples collected in a single syn-kinematic 

granite provide distinct and meaningful ages, covering a time span of 16 Ma. Considering the 

shallow depth of intrusion of the Questember granite (ca. 5 km), this time span cannot be 

interpreted as a slow cooling of the intrusion. Moreover, combined geochemical and 

complementary U-Pb isotope data demonstrate that this time span neither corresponds to a 

long magmatic activity nor to discrete deformation-related events. It is rather the consequence 

of a fluid-assisted resetting of the muscovite K-Ar and monazite U-Pb chronometers. As 

fluids are ubiquitous in the Earth, especially in highly deformed zones, this study shows that it 

is highly hazardous to interpret ages without detailed geochemical and crystallo-chemical 

investigations of the studied rocks and minerals. 
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Figure captions 

 

Figure 1: a) Localization of the studied area in the Armorican massif. NASZ: North 

Armorican Shear Zone; SASZ: South Armorican Shear Zone; b) Simplified geological map of 

the Questembert granite (Q) region; c) Photograph of sample QRT07 showing typical S-C 

structures, indicative of a syn-crystallization dextral shearing. 
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Figure 2: a) 40Ar/39Ar age spectra of analyzed muscovites. The age error bars for each 

temperature steps are at the 1σ level. Plateau ages are given with a 2σ uncertainty, including 

error on the decay constant (λtot = 5.5492 x 10-10 a-1 ± 0.17%; Renne et al., 2010); b) Selected 

whole-rock geochemical data vs. muscovite 40Ar/39Ar dates for each analyzed sample. 
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Figure 3: a) Tera-Wasserburg U-Pb diagram for monazite data from the sample QRT07; b) 

Tera-Wasserburg U-Pb diagram for zircon data from the sample QRT07. In these two 

diagrams, error ellipses are at 1σ. The intercept age has been calculated for all the monazite 

analyses and the 206Pb/238U weighted mean age for the seven zircon analyses filled in grey. 
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Figure 4: Selected images of monazite and zircon grains.  a-e) Monazite grains (BSE images). 

Analysis numbers and corresponding 206Pb/238U dates are reported (1σ error). SHRIMP spots 

where no date is reported correspond to pits made during oxygen isotope analyses. f) SE 

image showing Zrn + Kfs intergrowths on a monazite grain. g-i) Zircon grains (CL images). 

Circles indicate the location of analyses. Analysis numbers and corresponding 206Pb/238U 

dates are reported (1σ error). Mineral abbreviations are after Whitney and Evans (2010). 

Scale bars represent 50 µm in all the pictures. 
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Figure 5: Percent of common 206Pb against the zircon 206Pb/238U apparent dates. 

 

 

Figure 6: a) Muscovite chemical compositions plotted in the ternary Mg-Ti-Na diagram of 

Miller et al. (1981); b) 40Ar/39Ar dates vs. Mg/(Mg+Ti+Na) for each analyzed muscovite 

grain. The Mg/(Mg+Ti+Na) molar ratio illustrates the shift from primary to secondary 

muscovite fields in the ternary diagram. 
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Figure 7: Chemical maps of TiO2 distribution in muscovite grains from four samples. All 

images have the same color scale. Scale bars are 200 µm for samples QRT01 and QRT02 and 

500 µm for samples QRT08 and QRT06. 
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Table 1: Muscovite 39Ar-40Ar analytical data. 

Step 40ArAtm (%) 39ArK (%) 37ArCa/39ArK 40Ar*/39ArK Age (Ma)1 1σ (Ma) 

QRT01 Muscovite 
1 39.09 0.1 0.204 23.46 228.1 42.9 
2 8.50 0.3 - 31.85 303.1 18.2 
3 1.40 0.1 - 35.18 332.1 29.3 
4 1.65 0.9 - 34.89 329.6 6.4 
5 1.46 0.5 - 34.98 330.3 12.0 
6 0.92 6.0 - 33.75 319.7 1.2 
7 0.54 14.6 0.005 33.67 319.0 0.8 
8 0.27 16.2 0.011 33.69 319.2 0.6 
9 0.67 9.9 0.025 33.68 319.1 1.1 
10 0.28 17.0 0.011 33.67 319.0 0.7 
11 0.40 5.8 0.008 33.68 319.1 1.4 
12 0.57 3.4 - 33.66 319.0 2.2 
13 0.16 9.5 0.003 33.75 319.7 0.8 
14 0.06 8.9 0.003 33.80 320.2 0.9 
Fusion 0.52 6.6 0.002 33.63 318.7 0.9 

QRT02 Muscovite 
1 28.84 0.6 0.050 28.05 269.4 7.2 
2 3.61 2.2 0.047 32.65 309.9 2.0 
3 3.63 1.2 - 32.43 308.1 3.7 
4 1.29 17.1 0.020 31.87 303.2 0.5 
5 0.74 2.5 0.026 31.96 303.9 2.1 
6 1.19 20.5 0.017 31.84 302.9 0.5 
7 0.40 14.3 0.011 31.95 303.9 0.5 
8 0.51 9.2 0.016 31.87 303.2 0.9 
9 0.40 9.8 0.019 31.95 303.9 0.6 
10 0.19 16.6 0.022 31.92 303.6 0.7 
Fusion 0.21 6.1 0.018 31.98 304.1 0.9 

QRT06 Muscovite 
1 9.53 0.0 0.663 28.49 273.2 113.8 
2 14.13 0.2 - 31.95 303.7 18.9 
3 4.42 0.5 - 34.06 322.1 7.9 
4 1.91 0.4 - 33.99 321.4 7.7 
5 3.53 1.2 - 33.20 314.6 2.2 
6 4.45 0.4 0.214 31.93 303.5 14.6 
7 0.55 36.4 0.011 32.42 307.9 0.5 
8 0.70 2.3 0.078 32.29 306.7 2.5 
9 - 4.7 - 32.70 310.3 1.0 
10 0.29 11.5 0.015 32.50 308.6 0.6 
11 0.10 9.9 0.020 32.57 309.1 0.7 
12 0.10 10.7 0.006 32.61 309.5 0.9 
13 0.05 7.3 0.024 32.78 311.0 0.9 
14 0.14 7.7 0.017 32.70 310.3 0.8 
Fusion - 6.8 0.016 32.91 312.1 1.0 

QRT07 Muscovite 
1 20.41 1.1 - 32.35 307.0 4.0 
2 6.48 0.8 - 33.79 319.6 6.0 
3 13.06 1.0 0.030 32.73 310.4 5.2 
4 1.96 28.8 0.007 32.42 307.7 0.5 
5 0.42 3.0 0.005 32.28 306.5 1.4 
6 0.58 7.3 0.003 32.45 308.0 0.9 
7 0.31 8.0 0.003 32.38 307.3 0.7 
8 0.61 18.8 0.011 32.33 306.9 0.6 
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9 0.35 17.8 0.010 32.37 307.3 0.6 
10 0.52 6.6 0.020 32.43 307.7 1.0 
Fusion 0.71 6.9 0.014 32.57 309.0 1.1 

QRT08 Muscovite 
1 64.13 0.2 0.050 8.40 226.4 15.4 
2 15.86 0.7 0.050 11.46 302.3 2.5 
3 10.31 0.9 - 12.06 316.8 3.5 
4 2.70 0.8 - 12.14 318.7 2.1 
5 2.38 5.4 0.003 12.05 316.5 0.6 
6 0.80 8.5 0.004 12.03 316.0 0.6 
7 - 3.2 0.002 12.01 315.6 1.0 
8 0.52 1.0 0.009 12.05 316.6 2.4 
9 1.08 8.4 0.005 11.97 314.7 0.5 
10 1.76 4.3 0.003 12.00 315.4 0.8 
11 0.68 19.8 0.006 11.95 314.1 0.4 
12 0.31 19.5 0.005 11.99 315.1 0.4 
13 0.55 5.3 0.006 11.95 314.1 0.7 
Fusion 0.15 21.9 0.005 12.02 315.8 0.5 

QRT09 Muscovite 
1 59.12 0.0 0.034 7.00 190.8 68.1 
2 39.01 0.1 0.063 7.59 206.1 45.6 
3 20.20 0.2 0.053 11.73 309.2 17.7 
4 29.06 0.1 - 9.77 261.1 50.3 
5 11.37 0.6 - 11.85 312.1 3.4 
6 5.16 0.7 0.002 11.93 314.0 3.3 
7 2.58 0.5 - 12.00 315.6 5.5 
8 2.16 0.7 - 11.98 315.2 2.7 
9 4.79 1.3 0.001 12.00 315.6 1.6 
10 0.41 6.2 0.004 11.88 312.6 0.8 
11 1.00 3.3 0.005 11.80 310.9 1.1 
12 1.03 2.7 0.010 11.84 311.8 1.1 
13 0.42 7.7 0.005 11.85 312.1 0.6 
14 0.14 8.7 0.004 11.84 311.8 0.5 
15 0.25 12.5 0.005 11.84 311.9 0.5 
16 0.05 12.0 0.006 11.84 311.7 0.5 
17 0.13 20.1 0.006 11.83 311.5 0.4 
18 0.23 15.3 0.007 11.84 311.8 0.6 
19 0.08 4.1 0.012 11.92 313.8 0.7 
Fusion - 3.4 0.013 11.92 313.8 1.0 
40Aratm = atmospheric 40Ar; 40Ar* = radiogenic 40Ar; Ca = produced by Ca-neutron 

interferences. K = produced by K-neutron interferences. 1Age (Ma): the date is calculated 

using the decay constants recommended by Renne et al. (2010). The errors are at the 1σ level 

and include the error in the value of the J parameter (set to ± 0.2%). Correction factors for 

interfering isotopes produced by neutron irradiation in the McMaster reactor were 

(39Ar/37Ar)Ca = 7.06 × 10-4, (36Ar/37Ar)Ca = 2.79 × 10-4, (40Ar/39Ar)K = 2.97 × 10-2.
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Table 2: SHRIMP U-Pb results for the analyzed monazite and zircon grains from the sample QRT07. 1 

Labels 204Pb/206Pb 207Pb/206Pb 1σ 
(%) 

f206 
(%) 

206Pb/238U 1σ 
(%) 

207Pb/235U 1σ 
(%) 

207Pb/206Pb 
Age (Ma) 

1σ 
(Ma) 

206Pb/238U 
Age (Ma) 

1σ 
(Ma) 

207Pb/235U 
Age (Ma) 

1σ 
(Ma) 

Disc. 
(%) 

QRT07 Monazites 
2.1 0.0001 0.0537 1.7 0.22 0.0483 2.1 0.3575 2.7 357 6 304 6 310 8 15 
3.1 0.0001 0.0529 1.9 0.20 0.0493 2.1 0.3599 2.8 325 6 310 7 312 9 4 
4.1 0.0002 0.0545 2.0 0.46 0.0473 2.1 0.3551 2.9 390 8 298 6 309 9 24 
4.2 0.0001 0.0539 1.9 0.16 0.0495 2.1 0.3682 2.9 368 7 312 7 318 9 15 
5.1 0.0001 0.0531 1.1 0.14 0.0479 2.0 0.3512 2.3 334 4 302 6 306 7 10 
6.1 0.0002 0.0548 2.0 0.40 0.0487 2.1 0.3684 3.0 404 8 307 7 318 9 24 
7.1 0.0004 0.0587 0.7 0.79 0.0480 2.0 0.3881 2.1 554 4 302 6 333 7 45 
8.1 0.0003 0.0575 1.1 0.64 0.0496 2.1 0.3936 2.4 511 6 312 7 337 8 39 
9.1 0.0002 0.0542 2.2 0.28 0.0490 2.2 0.3659 3.1 380 9 308 7 317 10 19 
10.1 0.0001 0.0548 1.9 0.19 0.0481 2.1 0.3634 2.9 403 8 303 6 315 9 25 
10.2 0.0003 0.0609 2.3 0.48 0.0495 2.1 0.4154 3.1 635 14 311 7 353 11 51 
11.1 0.0005 0.0535 2.2 0.92 0.0493 2.2 0.3636 3.1 350 8 310 7 315 10 12 
12.1 0.0001 0.0530 1.1 0.12 0.0491 2.0 0.3589 2.3 330 4 309 6 311 7 6 
16.1 0.0003 0.0541 2.1 0.60 0.0483 2.1 0.3602 3.0 375 8 304 7 312 9 19 
17.1 0.0002 0.0563 2.2 0.32 0.0508 2.2 0.3947 3.1 465 10 320 7 338 10 31 

QRT07 Zircons 
1.1 0.0007 0.0610 2.0 1.35 0.0468 1.2 0.3937 2.3 640 13 295 4 337 8 54 
1.2 0.0004 0.0567 1.4 0.82 0.0476 1.2 0.3721 1.8 480 7 300 4 321 6 38 
2.1 0.0002 0.0543 1.2 0.32 0.0493 1.3 0.3693 1.8 383 4 311 4 319 6 19 
4.1 - 0.0539 1.0 0.06 0.0506 1.3 0.3760 1.7 368 4 318 4 324 5 14 
4.2 0.0002 0.0539 0.9 0.34 0.0493 1.2 0.3666 1.5 368 4 310 4 317 5 16 
4.3 0.0002 0.0537 1.0 0.45 0.0506 1.2 0.3746 1.6 358 4 318 4 323 5 11 
6.1 0.0003 0.0548 1.4 0.63 0.0504 1.2 0.3809 1.8 405 6 317 4 328 6 22 
6.2 0.0007 0.0640 0.7 1.29 0.0485 1.2 0.4283 1.4 743 5 305 4 362 5 59 
7.1 0.0016 0.0731 0.8 2.91 0.0476 1.3 0.4803 1.5 1018 8 300 4 398 6 71 
9.1 - 0.0526 1.8 0.07 0.0511 1.2 0.3709 2.2 313 6 321 4 320 7 3 
11.1 0.0003 0.0558 0.9 0.64 0.0504 1.2 0.3879 1.5 443 4 317 4 333 5 28 
13.1 0.0001 0.0524 1.2 0.19 0.0531 1.2 0.3838 1.8 304 4 334 4 330 6 10 

Zircons analyses in bold are those used in the calculation of the 206Pb/238U weighted mean age. 2 
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Analytical procedures 35 

Electron microprobe analyses 36 

Muscovite chemistry (Supplementary Table 1) and chemical maps were acquired 37 

using a Cameca SX-100 electron microprobe at IFREMER, Plouzané, France operating in 38 

the wavelength-dispersive mode. Operating conditions were a 15 kV acceleration voltage, 39 

a beam current of 20 nA and a beam diameter of around 1 µm. Counting times were 40 

approximately 13-14 s per oxide for a standard spot analysis and it therefore took around 41 

150 s for a complete analysis of the 11 oxides measured. For a complete description of 42 

the analytical procedure and the list of the standards used, see Pitra et al. (2008). WDS X-43 

ray element maps have been realized in the same analytical conditions. The resolution for 44 

the different Ti maps is 1 µm/px for QRT01 and QRT02, 2 µm/px for QRT06 and 3 45 

µm/px for QRT08 with a 100 ms dwell time per pixel. 46 

 47 

Muscovite 40Ar/39Ar dating 48 

Euhedral to subeuhedral single grains of muscovite, with variably deformed 49 

shapes resulting from syn-deformation crystallization, were handpicked from the 0.25–50 

1.50 mm fractions. Two irradiations were performed at the McMaster reactor (Hamilton, 51 

Canada) and were monitored with Taylor Creek Rhyolite (TCR-2) sanidine (28.34 Ma, 52 

Renne et al. 1998). The first irradiation lasted 16.66 hr (total fluence of 1 × 1018 n.cm-2) 53 

for samples QRT01, QRT02, QRT06 and QRT07 and the second irradiation lasted 43.33 54 

hr (total fluence of 2.6 × 1018 n.cm-2) for samples QRT08 and QRT09. Muscovite single 55 

grains were analyzed by step-heating with an 40Ar/39Ar laser probe, following the 56 

procedure described in Ruffet et al. (1991; 1995). Blanks were performed routinely each 57 

first or third step, and subtracted from subsequent sample gas fractions. A plateau age is 58 

obtained when apparent ages of at least three consecutive steps, representing a minimum 59 

of 70% of the 39Ar released, agree within 2σ error bars with the integrated age of the 60 

plateau segment. 61 

 62 

Zircon and monazite U-Th-Pb dating 63 

Zircon and monazite were separated from the sample QRT07 with conventional 64 

heavy liquid and magnetic methods. Euhedral zircons are typically 100-200 µm long with 65 

elongation ratios of 2 to 3. Monazite grains are yellow, euhedral and stubby, with some 66 

grains displaying lobate edges. Individual grains were handpicked, mounted in epoxy, 67 
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hand-grounded, and polished on a lap wheel with 6 μm and 1 μm diamond suspension. 68 

Prior to analysis, all grains were photographed in transmitted and reflected light. Zircon 69 

grains were then imaged using cathodoluminescence (CL) imaging at the Electron 70 

Microscope Unit, Australian National University, Canberra, in order to reveal their 71 

internal structure. The CL investigation was performed with a HITACHI S2250-N 72 

scanning electron microscope working at 15 kV and 30 µA. Monazite grains were imaged 73 

using a JEOL JSM 6400 scanning electron microscope at the CMEBA laboratory 74 

(Rennes 1 University). Secondary electron (SE) images allow to display mineral 75 

intergrowths with monazite and back-scattered electron images reveal monazite internal 76 

structures. 77 

Zircon and monazite were dated using the SHRIMP II and SHRIMP-RG, 78 

respectively, at the Research School of Earth Sciences (RSES, ANU). Analytical 79 

procedures for zircon dating followed the method described in Williams (1998). SHRIMP 80 

RG analyses of monazite (following the methodology of Williams et al., 1996) utilized 81 

energy filtering to remove lower-energy molecules from an isobaric interference at mass 82 

204 (Ireland, 1995; Ireland et al., 1999). The primary oxygen ion beam excavated areas 83 

of c. 25-35 μm depth and c. 10-15 μm in diameter for zircon and monazite analyses 84 

respectively. The measured ratios were calibrated using reference zircon (TEM, 417 Ma, 85 

Black et al., 2004) and monazite (s44069, 425 Ma, Aleinikoff et al., 2006). As these two 86 

reference minerals are not homogeneous regarding U, Th and Pb, the contents have not 87 

been calculated for the studied samples. SHRIMP raw data were reduced using the Squid 88 

program of Ludwig (2001). U-Pb data uncorrected for common lead are presented in this 89 

study. Indeed, the exact quantification of the 204Pb content is difficult to achieve (average 90 

1σ uncertainty on the 204Pb/206Pb ratios is 23%), especially for Phanerozoic rocks (e.g. 91 

Price et al., 2006). Age calculations were done using the Isoplot/Ex software (Ludwig, 92 

2008) and are given with errors at the 2σ level. 93 
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Table 1: Average chemical composition of muscovite. 138 

 

QRT01 

(n=15) 
sd 

QRT08 

(n=17) 
sd 

QRT09 

(n=34) 
sd 

QRT06 

Core 

(n=7) 

sd 

QRT06 

Rim 

(n=4) 

sd 

QRT07 

Core 

(n=15) 

sd 

QRT07 

Rim 

(n=13) 

sd 
QRT02 

(n=15) 
sd 

SiO2 46.17 0.62 45.89 0.73 45.40 0.50 44.69 0.28 44.94 0.34 46.46 0.42 46.19 0.21 46.17 0.62 

TiO2 0.26 0.13 0.77 0.27 0.46 0.21 0.50 0.24 0.39 0.11 0.65 0.32 0.35 0.14 0.26 0.13 

Al2O3 34.17 1.03 35.42 0.59 35.41 0.78 34.36 0.34 34.63 0.46 34.48 0.49 34.19 0.67 34.17 1.03 

FeO 2.84 1.24 1.39 0.29 1.92 0.40 1.86 0.20 1.88 0.19 2.23 0.58 2.49 0.56 2.84 1.24 

MnO 0.13 0.06 0.00 - 0.01 0.03 0.01 0.04 0.01 0.05 0.10 0.04 0.12 0.05 0.13 0.06 

MgO 0.82 0.11 0.75 0.13 0.85 0.14 0.79 0.09 0.80 0.04 0.78 0.11 0.82 0.13 0.82 0.11 

Na2O 0.35 0.06 0.67 0.14 0.42 0.10 0.43 0.02 0.40 0.07 0.46 0.13 0.38 0.13 0.35 0.06 

K2O 11.15 0.35 10.92 0.30 10.94 0.21 11.21 0.09 11.26 0.16 11.04 0.29 11.24 0.21 11.15 0.35 

SUM 95.89 
 

95.82 
 

95.41 
 

93.84 
 

94.31 
 

96.20 
 

95.78 
 

95.89 
 Structural formula based on 11 oxygen atoms 

Si 3.09 0.02 3.05 0.02 3.04 0.02 3.05 0.01 3.05 0.02 3.09 0.02 3.09 0.01 3.09 0.02 

Ti 0.01 0.01 0.05 0.01 0.02 0.01 0.03 0.01 0.02 0.01 0.03 0.02 0.02 0.01 0.01 0.01 

Al 2.70 0.05 2.75 0.03 2.79 0.04 2.76 0.02 2.77 0.03 2.70 0.04 2.70 0.04 2.70 0.05 

Fe 0.16 0.07 0.09 0.01 0.11 0.02 0.11 0.01 0.11 0.01 0.12 0.03 0.14 0.03 0.16 0.07 

Mn 0.01 - 0.00 - 0.00 - 0.00 - 0.00 - 0.01 - 0.01 - 0.01 - 

Mg 0.08 0.01 0.08 0.01 0.09 0.01 0.08 0.01 0.08 - 0.08 0.01 0.08 0.01 0.08 0.01 

Na 0.05 0.01 0.08 0.01 0.05 0.01 0.06 - 0.05 0.01 0.06 0.02 0.05 0.02 0.05 0.01 

K 0.95 0.02 0.94 0.02 0.93 0.02 0.98 0.01 0.98 0.02 0.94 0.03 0.96 0.02 0.95 0.02 

SUM  7.05 
 

 7.04 
 

 7.03 
 

 7.06 
 

 7.06 
 

 7.03 
 

 7.05 
 

 7.05 
 

Oxide contents in wt.% and cationic contents in apfu; sd = standard deviation (1σ). 139 


