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Abstract. The specific surface area (SSA) of snow deter-
mines in part the albedo of snow surfaces and the capacity of
the snow to adsorb chemical species and catalyze reactions.
Despite these crucial roles, almost no value of snow SSA are
available for the largest permanent snow expanse on Earth,
the Antarctic. We report the first extensive study of vertical
profiles of snow SSA near Dome C (DC: 75◦06′ S, 123◦20′ E,
3233 m a.s.l.) on the Antarctic plateau, and at seven sites dur-
ing the logistical traverse between Dome C and the French
coastal base Dumont D’Urville (DDU: 66◦40′ S, 140◦01′ E)
during the Austral summer 2008–2009. We used the DU-
FISSS system, which measures the IR reflectance of snow
at 1310 nm with an integrating sphere. At DC, the mean
SSA of the snow in the top 1 cm is 38 m2 kg−1, decreasing
monotonically to 14 m2 kg−1 at a depth of 50 cm. Along
the traverse, the snow SSA profile is similar to that at DC
in the first 600 km from DC. Closer to DDU, the SSA of the
top 5 cm is 23 m2 kg−1, decreasing to 19 m2 kg−1 at 50 cm
depth. This difference is attributed to wind, which causes a
rapid decrease of surface snow SSA, but forms hard wind-
packs whose SSA decrease more slowly with time. Since
light-absorbing impurities are not concentrated enough to af-
fect albedo, the vertical profiles of SSA and density were
used to calculate the spectral albedo of the snow for several
realistic illumination conditions, using the DISORT radiative
transfer model. A preliminary comparison with MODIS data
is presented and our calculations and MODIS data show sim-
ilar trends.

Correspondence to: F. Domine
(florent@lgge.obs.ujf-grenoble.fr)

1 Introduction

High latitude regions play a crucial role in determining the
climate of the Earth and its evolution (Goody, 1980; Warren,
1982; Hall, 2004; Lemke et al., 2007), because these regions
are snow-covered most of the time and snow is the Earth’s
surface type with the highest albedo.

Discussions about snow albedo can be more detailed if one
considers the spectral albedo, i.e. the fraction of solar light
that is reflected as a function of wavelength. Figure 1 shows
typical examples of snow spectral albedo, the examples cho-
sen being those of pure recent snow, aged pure snow, and
recent snow contaminated with absorbing impurities such as
soot (also called black carbon).

Figure 1 illustrates that in the visible part of the solar spec-
trum, snow albedo is mostly determined by impurities (War-
ren and Wiscombe, 1980) while in the infra-red, grain size
is the main factor affecting albedo (Wiscombe and Warren,
1980; Colbeck, 1982). Determining the spectral albedo of
snow therefore requires the knowledge of snow grain size
and impurity content.

Snow is a porous medium made of air and ice. Its phys-
ical properties evolve over time through processes grouped
under the term “snow metamorphism” (Colbeck, 1982). Be-
cause ice has an elevated water vapor pressure (165 Pa at
−15◦C and 610 Pa at 0◦C), and because the vertical tem-
perature gradient almost always present in the snow gener-
ates sublimation-condensation cycles that modify the shapes
and sizes of snow grains, the physical properties of snow
change during metamorphism. These properties include den-
sity, thermal conductivity, permeability, but also albedo (Col-
beck, 1982). Since snow grain size almost always increases
during metamorphism (Cabanes et al., 2003; Legagneux et
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Fig. 1. Spectral albedo of fresh and aged pure snow and of fresh
snow contaminated by soot. The plots were calculated using the
DISORT radiative transfer code, which simulates snow grains as
disconnected spheres of the radius indicated.

al., 2004; Flanner and Zender, 2006; Taillandier et al., 2007),
snow albedo usually decreases during metamorphism. Un-
derstanding snow grain size and its variations is therefore
crucial to predict snow albedo and to understand the energy
balance of the Earth.

In many previous studies, snow grain size has been used
as a key variable to describe interactions between snow and
solar radiation (Warren, 1982; Alley, 1987; Grenfell et al.,
1994). However, the notion of “snow grain size” is not very
well defined, and varies from one study to another (Aoki et
al., 2000). More recent studies have therefore used the sur-
face/volume ratio of snow grains, i.e. the snow specific sur-
face area (SSA), to calculate their optical properties. The
SSA of snow is a measure of the area of the ice-air interface
per unit mass (Legagneux et al., 2002).

SSA=
S

M
=

S

ρice·V
=

3

ρice·reff
(1)

with S the surface area of snow grains,M their mass,V
their volume andρice the density of ice (917 kg m−3 at 0◦C).
If snow crsytals are assumed to be spheres, then the above
equation related the sphere radiusreff to SSA. For non-
spherical particles, Eq. (1) defines their effective (or optical)
radius from their SSA. SSA is often expressed in units of
m2 kg−1 and measured values are in the range 2 m2 kg−1 for
melt-freeze crusts to 156 m2 kg−1 for fresh dendritic snow
(Domine et al., 2007b).

Theoretical studies have shown that for a given SSA, snow
reflectance and albedo depend on crystal shape (Grenfell and
Warren, 1999; Grenfell et al., 2005; Neshyba et al., 2003;
Picard et al., 2009). However, for natural snow, compar-
isons between SSA measured by CH4 adsorption and re-
flectance at 1310 nm found no effect of grain shape on re-
flectance, for a given SSA (Gallet et al., 2009). This is
probably because snow grains are made up of a mixture of
shapes, and the shape effects average out. Very recently, Ar-

naud et al. (2011) also used SSA values measured by CH4
adsorption to model snow reflectance at 1310 nm, using the
formalism of Kokhanovsky and Zege (2004), which uses a
shape-dependent coefficient,b, to calculate reflectance for a
given SSA. They found that the best fit was obtained for a
b value of 4.56, very close to and within experimental er-
ror of the b value recommended for disconnected spheres
(bsphere= 4.53) by Kokhanovsky and Zege (2004). Based on
both these studies we conclude that the reflectance of natural
snow, which again is made up of a mixture of shapes, can
adequately be modeled by approximating snow with discon-
nected spheres having the same SSA as the snow. Snow SSA
therefore appears to be a convenient variable to study snow
optical properties.

In early snow studies, there was no simple and reliable
method to measure snow SSA, which is why “grain size”
was used. Systematic measurements of snow SSA during
field campaigns started when the methane (CH4) adsorption
technique was developed (Legagneux et al., 2002; Domine
et al., 2007b). However, that method is time-consuming
and requires liquid nitrogen, a problem in many field stud-
ies, so that its use remained confidential. Other methods
such as stereology and X-Ray tomography, as reviewed in
Domine et al. (2008), offer little advantage over CH4 adsorp-
tion and present their own shortcomings. This probably ex-
plains why almost no data is available on the SSA of snow
on polar ice caps. To help fill that data gap, optical meth-
ods to measure SSA have been recently developped (Gal-
let et al., 2009; Matzl and Schneebeli, 2006; Painter et al.,
2007; Arnaud et al., 2011) to rapidly measure SSA in the
field. These methods are based on the relationship between
the IR reflectance of snow and its SSA (Domine et al., 2006).
Here we will use the method of Gallet et al. (2009). It op-
erates at 1310 nm, while the photographic method of Matzl
and Schneebeli (2006) works around 900 nm, and the spec-
troscopic method of Painter et al. (2007) is around 1030 nm.
At those shorter wavelengths, the reflectance dependence on
SSA is not as strong as at 1310 nm, so that a better accu-
racy is expected at 1310 nm (Gallet et al., 2009). The avail-
ability of SSA data on large polar ice caps appears urgent
because new remote sensing algorithms have been proposed
to retrieve optical radius or SSA from Antarctica (Scambos
et al., 2007; Jin et al., 2008) and Greenland (Kokhanovsky
and Schreier, 2009; Lyapustin et al., 2009) and these meth-
ods need to be validated with field measurements. SSA mea-
surements in Antarctica would be particularly useful because
on the Antarctic plateau, absorbing impurities are negligible
(Warren and Clarke, 1990), so that snow albedo can be cal-
culated from SSA and density, if a planar snow surface is
assumed.

Snow SSA is also an important variable to under-
stand snowpack chemical composition and photochemistry
and its impact on the composition of the polar boundary
layer (Domine and Shepson, 2002; Grannas et al., 2007).
Snow adsorbs many chemical species such as volatile and
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semi-volatile compounds, and also species with a high dipole
moment such as acidic gases that can establish hydrogen
bonds with ice surfaces. Numerous authors have suggested
that snow SSA largely determines the partitioning of many
species between the snow and the boundary layer (Houdier
et al., 2002; Herbert et al., 2006; Domine et al., 2007a; Bur-
niston et al., 2007; Taillandier et al., 2006; Domine et al.,
1995). The nitrate ion, possibly the main driver of snowpack
photochemistry (Grannas et al., 2007), is thought to come to
a large extent from the adsorption of atmospheric nitric acid
(Domine and Thibert, 1996; Cox et al., 2005), and its con-
centration in snow would then be determined by snow SSA
(Domine et al., 2008).

This work presents the first extensive measurements of
the SSA of surface and near-surface snow on the Antarc-
tic plateau near the Concordia station at Dome C (DC:
75◦06′ S, 123◦20′ E, 3233 m a.s.l.) and on the logistics tra-
verse route between DC and the Dumont D’Urville base
(DDU: 66◦40′ S, 140◦01′ E, 10 m a.s.l.) during the Austral
summer campaign in 2008–2009. Near the DC base, mea-
surements were performed in pits at least 70 cm deep where
SSA, density and the thickness of snow layers were mea-
sured in detail. During the traverse, the main objective was
of logistical nature. Scientific objectives were not initially
planned and were added at the last minute. Measurements
are therefore fewer and limited to a depth of 50 cm. They are
nevertheless presented because of their uniqueness.

The data presented here show the vertical profiles of SSA
and allow applications to radiative transfer and atmospheric
chemistry. We chose here to limit our discussion to radiative
transfer and use the DISORT model (Stamnes et al., 1988) to
calculate snow spectral albedo representative of the Antarctic
plateau, in order to provide data that can in future be com-
pared to satellite retrievals and used to test SSA or optical
radius retrieval algorithms.

2 Methods and study site

For clarity, measurements at DC and during the traverse will
be presented separately. Pits done at DC are named C1 to
C13 and pits done during the traverse are named T1 to T8.
For each pit, a flat area was chosen and a clean face was ob-
tained with a saw and a brush to minimize disturbance to the
stratigraphy and to remove loose particles. The stratigraphy
was carefully observed and the SSA, density and thickness
of all layers was measured.

Density was measured by weighing a snow core of known
volume. For thick layers of low to moderate hardness, a
500 cm3 plexiglas coring tube was used. For thin or hard
layers, a 100 cm3 stainless steel coring tube was used. Den-
sity was measured for each layer, with a vertical resolution
of 10 cm or better, depending on the number of layers. The
error on density measured with a coring tube is about 5 %
(Conger and McClung, 2009).

The thickness of layers was measured with a ruler. The
accuracy of a reading is 2 mm and is slightly observer-
dependent because the boundaries between layers were usu-
ally not sharp. Furthermore, the thickness of layers was hor-
izontally variable, so that on average the thickness of a layer
varied by 10 % over a width of 1 m.

SSA was measured using the DUFISSS (DUal Frequency
Integrating Sphere for Snow SSA measurements) instrument
described in Gallet et al. (2009). Two aspects need to be
briefly reminded here: the sampling protocol and the SSA
measurement method. For sampling, a special coring tool
was used to sample a cylindrical snow core 63 mm in diam-
eter and 30 mm in height. The snow core was pushed gently
with a piston into the cylindrical sample holder 63 mm in
diameter and 25 mm deep, so that 5 mm of snow stick out
of the sample holder. This extra snow is shaved off with a
sharp spatula just before the measurement. This sampling
procedure was designed to minimize the perturbation to the
snow. For soft surface layers, the objective was whenever
possible to measure SSA with a 1 cm resolution. In that case,
the top 1 cm was sampled with a spatula and placed in the
sample holder. Additional surface snow was placed in the
sample holder until it was full. The soft snow was gently
compacted to fill any voids and, if required, the surface was
shaved clean as previously mentioned. Tests revealed that
for soft snow such handling did not affect the IR reflectance.
For hard windpacks, the small particles generated by shaving
were gently brushed off. Of course, at Dome C and during
the traverse, temperatures were such that no liquid water was
ever present.

The sample was then illuminated with a 1310 nm laser
diode and the reflected light was collected with an integrat-
ing sphere 15 cm in diameter. The signal was measured
with an InGaAs photodiode. The signal was converted to
reflectance using a set of six standards of reflectances be-
tween 4 and 99 %. The reflectance was converted to SSA
using a calibration curve obtained with snow samples whose
SSA was measured using CH4 adsorption and reflectance
measured with DUFISSS (Gallet et al., 2009). The accu-
racy of these measurements is 10 %. The e-folding depth
(hereafter penetration depth, PD) of the 1310 nm radiation in
typical Antarctic snow is of the order of 1 cm. For exam-
ple radiative transfer calculations using methods described
in Sect. 4 show that for recent snow (density = 120 kg m−3,
SSA = 40 m2 kg−1), PD = 8 mm, and for Antarctic depth hoar
(density = 230 kg m−3, SSA = 12 m2 kg−1), PD = 9 mm. Our
method therefore gives a weighted average of SSA over
about a 1 cm depth. The accuracy of SSA measurements with
DUFISSS is 10 %.

At Dome C, snow layers remain a long time near the sur-
face after precipitation because of the very low accumula-
tion rate: 26 mm water equivalent (Frezzotti et al., 2005).
Snow layers are frequently remobilized by wind, whose
mean speed is 6 m s−1, with maximum values of the order
of 15 m s−1 (Frezzotti et al., 2005).

www.the-cryosphere.net/5/631/2011/ The Cryosphere, 5, 631–649, 2011
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Fig. 2. Location of group C pits around Concordia station at Dome
C, 75◦06′00.2 S, 123◦19′58.8 E.

Measurements at DC focused on surface snow layers, be-
cause their effect on albedo is greatest. SSA measurements
were performed at depths of 1, 2, 5, 10 and 15 cm. Further
down, each observed layer was measured once with a mini-
mal resolution of 10 cm. During the traverse, less time was
available for the measurements and only one measurement
was performed in the top 5 cm.

3 Results

3.1 Dome C

At DC, thirteen pits C1 to C13, with depths between 70 and
100 cm, were studied. Figure 2 and Table 1 show the location
and coordinates of these pits.

To facilitate the comparison between the pits, we present
here the data on the top 70 cm of each pit. SSA, density and
depth of each layer are detailed in Appendix Table A1. The
variability of the stratigraphy is adequately represented by
the three stratigraphic profiles of pits C2, C3 and C7, shown
in Fig. 3.

The stratigraphy of pit C2 is as follows: the surface layer is
comprised of small rounded grains recently deposited by the
wind, overlying a 3 cm-thick hard windpack. Below that, we

observed a layer of faceted crystals, and then a thick layer
of depth hoar, briefly interrupted by a 3 cm-thick layer of
mixed-form crystals between 34 and 37 cm below the sur-
face. In pit C3, the surface layer is 2 cm thick and comprised
of a mixtures of small rounded grains transported by the wind
and surface hoar crystals. Below, windpacks and faceted
crystals or mixed-form crystals alternate. Finally, the top 1-
cm thick surface layer in pit C7 is a mixture of surface hoar,
faceted crystals and small rounded grains. The rest of the pit
is mostly comprised of mixed-form crystals, interrupted by a
windpack between 25 and 46 cm. For all pits except C1 and
C2, the SSA was measured for the top 1 cm, the second cm,
then at 5, 10, 15 and 20 cm, and subsequently every 10 cm.
For C1 and C2, the top 5 cm appeared homogeneous and only
one measurement was performed on this top layer. For con-
sistency, the SSA determined is attributed to the depths of
1, 2 and 5 cm. Figure 4 shows that in the top 15 cm of the
snow, SSA values span a fairly wide range depending on the
snow pit: 13 to 56 m2 kg−1. Below that, the range of SSA
values narrows down, except for pits C12, C3 et C7 where
values at 20 cm are respectively 24, 28 and 39 m2 kg−1 while
for the other ten pits the range is 13 to 21 m2 kg−1. For the
three outlying pits, the layer at 20 cm is either a windpack or
faceted crystals, but in all cases is very hard.

Figure 4 also illustrates the mean SSA profile, showing
that SSA values decrease monotonically in the first 70 cm.
Because of the three outlying pits, the mean values between
15 and 40 cm are higher than the SSA of most pits.

Figure 5 shows the density values for all C pits. There is a
significant scatter, but the average profile shows a monotonic
increase from the surface to 15 cm, followed by an essen-
tially constant density near 350 kg m−3. A thick very hard
windpack explains the densities greater than 500 kg m−3 in
pit C10.

In summary, in group C pits, density and SSA are highly
variable in the top 15 cm. Below that, most values fall within
a fairly narrow range, except when windpacks or other hard
layers are present where higher densities and SSA values are
observed.

3.2 Logistics traverse between Dome C and Dumont
D’Urville

Group T pits were studied during the 8-day traverse (2 to 10
February 2009) and are named T1 to T8. Because of bad
weather there is no pit T6. Figure 6 shows the traverse be-
tween DC and DDU and the location of the pits, as well as the
automatic weather stations (AWS) D85, D47 and D10 used
to interpret pit observations.

T group pits are shallow (50 cm) because little time was
available each evening for work. Moreover, the frequent
strong winds had often produced very hard windpacks that
slowed down the work and only one pit could be done
each evening. Given the spatial variability of the snow ob-
served at DC, the number of pits is insufficient for a good
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Table 1. Coordinates of group C and T pits.

Pit Date of South East Observations Comments
Number measurement Coordinate Coordinate

C1 24 November 2008 75◦06′14.4′′ 123◦17′50.5′′ Clear sky
C2 2 December 2008 75◦06′16.4′′ 123◦20′10.8′′ Clear sky 2 and 3 are within 20 m from each other
C3 4 December 2008 75◦06′16.4′′ 123◦20’10.8′′ Cloudy
C4 15 December 2008 75◦05′51.6′′ 123◦21′32.1′′ Clear sky
C5 17 December 2008 75◦07′03.4′′ 123◦20′26.7′′ Clear sky
C6 23 December 2008 75◦06′13.8′′ 123◦21′54.0′′ Clear sky
C7 26 December 2008 75◦08′01.0′′ 123◦16′08.0′′ Clear sky ∗

C8 9 January 2009 75◦03′51.0′′ 123◦14′48.1′′ Clear sky at 09:00 UTC ∗

C9 13 January 2009 75◦06′49.8′′ 123◦28′30.1′′ Clear sky ∗

C10 24 December 2008 75◦05′56.3′′ 123◦18′00.0′′ Few Cirrus American tower
C11 4 December 2008 75◦05′56.3′′ 123◦18′00.0′′ Cirrus American tower
C12 3 January 2009 75◦19′16.0′′ 123◦24′01.1′′ Overcast 25 km South
C13 4 January 2009 74◦32′41.0′′ 123◦23′43.0′′ Overcast 25 km North
T1 2 February 2009 74◦10′20.5′′ 126◦03′10.4′′ Overcast Altitude 3216 m
T2 3 February 2009 73◦08′29′′ 128◦35′55′′ Overcast Altitude 3169 m
T3 4 February 2009 72◦01′58′′ 131◦05′26′′ Cirrus Altitude 3049 m
T4 5 February 2009 70◦53′16′′ 133◦17′07′′ Clear sky, Drift Altitude 2798 m
T5 6 February 2009 69◦49′36′′ 134◦12′07′′ Clear sky Altitude 2600 m
T6 7 February 2009 68◦44′49′′ 134◦54′21′′ No pit (windy) Altitude 2430 m
T7 8 February 2009 68◦00′53′′ 136◦27′52′′ Overcast Altitude 2060 m
T8 9 February 2009 67◦24′53′′ 138◦36′06′′ Clear sky Altitude 1585 m

∗ C7, C8 and C9 are approximately at 5 km from the base. An equilateral triangle is formed by those three pits, the center is the star on Fig. 2.

representativity. However, they are the only SSA data avail-
able for this region. The exact pit site was chosen somewhat
arbitrarily. Basic safety considerations imposed that the pit
be within 500 m of the convoy. Within this range, a planar
and homogeneous area of at least 10 m2 was chosen. As for
the Dome C pits, we first present the stratigraphy of selected
pits (Fig. 7), before presenting SSA and density data. De-
tailed data are reported in Appendix Table A2.

At the top of pit T2, a 10 cm-thick windpack was ob-
served. Below that was a 3 cm layer of mixed-form crystals,
then a 1 cm windpack, and finally distinct layers of faceted
crystals extending down to 70 cm. Pit T5 was comprised
of windpacks, except between 7 and 11 cm, where a softer
layer of small rounded grains was observed, and between 14
and 34 cm where a layer of mixed-form crystals was found.
Overall, the snow stratigraphy along the traverse showed lit-
tle variability and only five crystal types were observed.

SSA values are shown in Fig. 8, as well as the average
of the T pits. In all pits except T1 the top layer was hard
and appeared homogeneous over at least the top 5 cm. It was
not possible to sample separately the top 1st and 2nd cm and
only one SSA measurement was made in the top 5 cm. How-
ever, for comparison with C pits, this one value is attributed
to depths of 1, 2, and 5 cm in Fig. 8. SSA values in the top
5 cm range from 20 m2 kg−1 to 38 m2 kg−1. Below, in gen-
eral the SSA is less homogeneous than at DC. Noteworthy
observations include: (a) in pit T2, SSA varies by a factor

of 1.8 between 40 and 50 cm even though a single layer was
observed; (b) pits T4 and T5 show fairly constant SSA val-
ues around 23 m2 kg−1 below 15 cm; (c) pits T1 to T4, closer
to DC, have SSA values in the top 15 cm that are above the
group average, while in pits T5 to T8, which are closer to
DDU, top values are all below average, (d) the general trend
is that SSA decreases with depth, especially in the top 20 cm.

Density values, reported in Fig. 9, show a very high
inter-pit variability. Near the surface, values range between
162 kg m−3 (T1) and 446 kg m−3 (T8), and the range is even
larger at 10 cm (150 to 515 kg m−3) and remains high at
50 cm (272 to 478 kg m−3). The general trend is that density
increases from DC to DDU. However, for a given pit, there
is little density increase with depth, as further illustrated by
the average trend also reported in Fig. 9.

3.3 SSA and density profiles representative of Antarctic
plateau snow

Figures 8 and 9 indicate that pits T1 to T4, closer to DC, show
high SSAs and low densities near the surface, while pits T5
to T8 have low SSAs and high densities. At depths around
40 cm, higher SSAs and densities are observed in pits T5–T8.
It therefore appears sensible to separate the traverse data into
two classes: T1–T4 and T5–T8. Rather than consider mean
values for the whole traverse, it makes more sense to look at
averages for both these classes, as done in Figs. 10 and 11.

www.the-cryosphere.net/5/631/2011/ The Cryosphere, 5, 631–649, 2011
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Fig. 3. Stratigraphy, density (ρ) in kg m−3 and SSA in m2 kg−1 of pits C2, C3 and C7.

Fig. 4. SSA profiles of group C pits at Dome C.

Figure 10 shows that SSA profiles of DC and T1–T4 are
fairly similar. On the other hand, Fig. 11 shows that DC
densities are greater than for T1–T4. The greater values of
T1–T4 in the first 2 cm may simply be because for T pits,
only one value was measured in the top 5 cm, and assigned
to the three depths 1, 2 and 5 cm. Regarding the T5–T8 pits,
Figs. 10 and 11 show that they have the highest densities at
all depths, and that their SSAs are lower than elsewhere in
the top 30 cm, and higher below that depth.

This brief description indicates that the mean snow phys-
ical properties investigated here show little variation around

Fig. 5. Density profiles of group C pits at Dome C.

DC, up to a distance of about 600 km towards DDU (T1–
T4). Beyond that (T5–T8), SSAs are lower near the sur-
face, while densities are higher. This conclusion is somewhat
weakened by the small number of T pits, but the difference
between both T sub-groups appears significantly greater than
the intra-group variability, so we believe that the difference
between both sub-groups is real. We suspect this is caused
by different meteorological conditions, which influence snow
metamorphism and the type of snow crystals formed. AWS
temperature and wind speed data with 10 min resolution
(available at ftp://amrc.ssec.wisc.edu/pub/aws/) are shown in

The Cryosphere, 5, 631–649, 2011 www.the-cryosphere.net/5/631/2011/
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Fig. 6. Map of the logistical traverse between Dome C (DC) and
Dumont D’Urville (DDU). The locations of all group T pits (circles)
and automatic weather stations D85, D47 and D10 (X) are shown.

Fig. 7. Stratigraphy, density (ρ) in kg m−3 and SSA in m2 kg−1 of
pits T2 and T5.

Fig. 8. SSA profiles of group T pits along the logistical traverse.
There is no T6 pit because of bad weather that day.

Fig. 9. Density profiles of group T pits along the logistical traverse.

Fig. 10. Mean SSA profiles at DC and along the traverse.

Fig. 11. Mean density profiles at DC and along the traverse.

Figs. 12 and 13 and confirm this suggestion. Temperature
rises by 20 to 35◦C between DC and AWS D10, located
a few km from the coast. Wind speed also increases, and
in particular the intensity of extreme events that favor the
formation of hard windpacks increases considerably. Dur-
ing the period considered, the highest wind speed at DC was
14 m s−1, while it reached 28 m s−1 at D47. It may even have
reached higher values at D10, but February data are missing.
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Fig. 12. Time series of temperature along the traverse in January
and February 2009. DOY = Day Of Year. Data from AWSs.

Fig. 13.Time series of wind speed along the traverse in January and
February 2009. DOY = Day Of Year. Data from AWSs.

Do current data available on the rate of SSA decrease al-
low the understanding of the different behaviours shown in
Figure 10? In general, snow SSA has been observed to de-
crease with time (Cabanes et al., 2003; Legagneux et al.,
2004; Taillandier et al., 2007) although a few instances where
SSA increases have been reported, and wind was often a fac-
tor in these increases (Domine et al., 2009). Models (Legag-
neux and Domine, 2005; Flanner and Zender, 2006) also pre-
dict that SSA should decrease with time. Temperature, tem-
perature gradient, the SSA value and density are the main
factors that are currently thought to affect the rate of SSA de-
crease. SSA decreases faster at higher temperatures and un-
der higher temperature gradients. The experimental work of
Taillandier et al. (2007) indicates that there is a temperature
gradient threshold around 15 K m−1 separating two regimes
for the rate of SSA decrease, the rate of decrease being signif-
icantly higher at higher gradients. The rate of decrease is also
faster for higher SSAs. The impact of density is not clear and
no experimental work is available on its effect. The model of
Legagneux and Domine (2005) indicates that under isother-
mal conditions, higher densities accelerate SSA decrease be-

cause sinks and sources of water vapor are nearer. On the
other hand, the model of Flanner and Zender (2006), which
includes the effect of the temperature gradient, concludes
that increasing density retards SSA decay, because water va-
por migration in a more tortuous network is hindered. In any
case, none of those studies treat many processes to which the
snow was subjected to. These include the effects of wind and
wind transport on SSA, and also the effect of diurnally alter-
nating temperature gradients (Pinzer and Schneebeli, 2009).
On the Antarctic plateau, the accumulation rate is so low that
a given snow layer is exposed to wind action and alternating
temperature gradients for a long time before it is finally shel-
tered from those effects. Fresh snow with high SSA can have
its SSA drop dramatically faster because of wind (Cabanes et
al., 2002). On the contrary, the remobilization of aged snow
by wind can increase its SSA (Domine et al., 2009). The ef-
fect of alternating temperature gradients on the rate of SSA
change has been little documented. Besides unexpected grain
shapes (Pinzer and Schneebeli, 2009), this could lead to sub-
limation of snow grains and to condensation of atmospheric
water vapor onto them, with effects on SSA that are diffi-
cult to predict. Today there is therefore insufficient data to
understand the effect of many processes prevalent in Antarc-
tica on snow SSA. Furthermore, no experiments have been
performed at the low temperatures of the Antarctic plateau,
and where the empirical equations of Taillandier et al. (2007)
may not apply.

It therefore appears difficult to reach a satisfactory expla-
nation for the SSA trends observed in Fig. 10. We must limit
our conclusion to the following. Closer to the coast (T5 to
T8), where winds are stronger, windpacks of high density
form preferentially. These have a density around 430 kg m−3.
Using the density-SSA correlation of Domine et al. (2007b)
for tundra windpacks, the snowpack type studied by Domine
et al. (2007b) closest to that observed here, predicts a SSA
around 20 m2 kg−1, as observed. Closer to DC (C group and
T1 to T4 pits) there is a predominance of rounded grains near
the surface, and the average density is about 280 kg m−3.
The correspondence to tundra snow, again probably the snow
type studied closest to that observed (Domine et al., 2007b),
predicts a SSA of 28 m2 kg−1, lower than the surface val-
ues found here, in the range 30 to 38 m2 kg−1. We therefore
conclude that in this type of snow, wind, although moder-
ate, tends to increase snow SSA, presumably through trans-
port, fragmentation and sublimation of grains, as described
by Domine et al. (2009). We note furthermore that layers of
faceted crystals observed here were significantly harder than
found in seasonal snowpacks, so that processes involved in
their formation and evolution may be different. More work
on the effects of wind and low temperatures on SSA is re-
quired before we can understand the evolution of the SSA of
the Antarctic surface snows studied here.
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3.4 Antarctic snowpack spectral albedo modeling with
DISORT

The SSA and density data obtained here can be used to cal-
culate the optical properties of Antarctic snow. Since snow
on the Antarctic plateau is almost free of light-absorbing im-
purities (Grenfell et al., 1994; Warren et al., 2006), its albedo
over the solar spectrum is determined by its SSA and its
density. Surface roughness can also have an important ef-
fect, but this manifests itself mostly in the calculation of di-
rectional reflectance (Leroux and Fily, 1998; Warren et al.,
1998; Mondet and Fily, 1999) and much less in albedo cal-
culations (Warren et al., 1998). Intuitively, this can be un-
derstood by considering a fictitious rough surface that would
be totally reflective, under directional illumination. When
looking at reflection in the forward direction, shading due to
surface roughness will decrease the directional reflectance.
On the contrary, if the albedo is considered, then all the pho-
tons will be reflected, regardless of surface structure, and the
albedo will be unity, whatever the surface roughness. Of
course snow is not fully reflective, so snow albedo is affected
by surface roughness. However, at present, we are gener-
ally not capable of quantifying this effect, so that for exam-
ple elaborate algorithms that retrieve grain size from satel-
lite data simply neglect surface roughness (Fily et al., 1997;
Kokhanovsky and Schreier, 2009). Here, we also neglect it.
On the Antarctic plateau, this is probably a valid approxi-
mation, as sastrugi (i.e. snow dunes caused by wind, mostly
through erosion processes) are small, at the most 10 cm. On
the traverse, as we neared the coast, their height increased
and often reached 30 cm, sometimes more, so that their pos-
sible effect must be kept in mind when interpreting model
results.

Here, we present calculations of the directional hemispher-
ical reflectance of the snow studied (according to the defini-
tion of Schaepman-Strub et al., 2006), and bi-hemispherical
reflectance, referred to hereinafter as albedo for simplicity,
with several incident radiations. One of the possible uses of
these calculated albedos is the comparison to remote sensing
data, in order to test inversion algorithms. We first detail how
the DISORT code was used in our calculations.

3.5 The DISORT code

DISORT (Stamnes et al., 1988) treats snow as disconnected
spheres and can model the reflectance of a succession of
plane parallel snow layers under direct or diffuse illumina-
tion. Scattering and absorption efficienciesQabs andQscatt
are calculated by the routine Mie0 (Wiscombe, 1980). The
extinction efficiencyQext = Qabs+ Qscatt is thus obtained
and allows the calculation, for each snow layer, of the di-
mensionless variable called the optical depthτ (Wiscombe
and Warren, 1980):

τ i
=

3Qi
extρ

i
snowh

i

4aiρice
(2)

whereai is the radius of the (spherical) snow particles of
the ith snow layer,ρi

snow andhi are the density and thick-
ness of thei-th snow layer, andρice is the density of ice,
917 kg m−3 at 0◦C. Given that for spherical particles we have
SSAi = 3/(ρicea

i), we obtain:

τ i
=

1

4
Qi

ext·ρ
i
snow·SSAi

·hi (3)

A medium is considered optically semi-infinite when in-
creasing its geometrical thickness modifies its albedo by less
that 1 % (Wiscombe and Warren, 1980). From the optical
depthτ , the single scattering albedoω and the phase function
P(�1 �2), DISORT calculates the albedo of the medium
considered. Variations of these three variables depend only
on wavelength and on grain size, i.e. SSA. Therefore, the
evolution of the spectral albedo of semi-infinite snow formed
of plane-parallel layers under given illumination conditions
only depends on the SSA, density and thickness of each snow
layer.

Zhou et al. (2003) showed that calculations of albedo bet-
ter reproduce field observations if a multilayer snowpack,
with layers having different SSAs and densities, is used. In
a similar approach, we here use our observed vertical vari-
ations of SSA and density to calculate using DISORT the
albedo of snow on the Antarctic plateau. We use the top
70 cm for snow at Dome C and the top 50 cm for snow of the
traverse. With these depths and given Antarctic solar zenith
angles, snow is mostly semi-infinite, but to minimize any er-
ror due to insufficient depth, we add to these snow stratigra-
phies a 2-m thick snow layer having the properties of the last
layer measured.

3.6 DISORT configuration

In Antarctica, besides snow SSA and density, the factors that
influence albedo are the type of illumination (direct or dif-
fuse), the solar zenith angle (SZA), cloud cover, and surface
roughness. As mentioned above, a general theoretical frame-
work to quantify the effect of surface roughness on albedo
does not exist, so we neglect it here. Justifications to neglect
it include (1) we are dealing with albedo, so that the effects
of surface roughness are considerably attenuated (Warren et
al., 1998); (2) near Dome C, surface structure were only a
few cm high; (3) most of our calculations use diffuse illumi-
nation, so that surface structures produce no shading.

Clouds enhance the diffuse fraction of radiation and ab-
sorb the IR fraction of the solar spectrum, leading to an in-
crease in broad-band albedo because snow is less reflective
in the IR (Fig. 1). Here, we do not investigate the effect
of clouds on the spectral distribution of the incident radia-
tion. We model the spectral albedo under direct illumination,
clear sky conditions and totally overcast conditions. Clear
sky conditions are represented by a direct incident radiation
to which the diffuse component caused by Rayleigh scatter-
ing in the atmosphere has been added. Overcast conditions
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Table 2. Name and type of incident light sources used in the DISORT calculations.

Source
name

% Direct
incident flux

% Diffuse incident flux Solar zenith angle
θi , degrees

DIR60 100 0 60

DIR70 100 0 70

DIFF 0 100, on all spectrum,
Cloudy conditions

–

CS60 (100-diffuse) Wavelength dependant, Eq. (4),
Clear sky conditions

60

CS70 (100-diffuse) Wavelength dependant, Eq. (4),
Clear sky conditions

70

are represented by completely diffuse incident radiation over
the whole solar spectrum.

Both the SZA (θ) and the type of illumination consider-
ably affect snow albedo. The higherθ , the higher the albedo
because snow is strongly forward scattering. Therefore, an
incoming photon at high SZA penetrates less deeply in the
snow and has a higher probability of exiting the snow (War-
ren, 1982). The albedo under diffuse illumination is ap-
proximately the same as that under direct illumination with
θ = 50◦ for a semi-infinite medium composed by a single
layer (Warren, 1982). Since at DC, the SZA is at least 52◦,
the albedo under direct illumination is always greater than
that under diffuse illumination. Under clear sky conditions,
there is always some diffuse light caused by atmospheric
scattering. Grenfell et al. (1994) propose empirical relation-
ships to determine the ratio of diffuse over total radiation
(D/T) as a function of wavelength for Vostok and South Pole
stations with clear sky. The relationships for both sites are
different mainly because of their different altitudes. Taking
into account the elevation of DC, which is intermediate be-
tween those of South Pole and Vostok, we estimate that at
DC we have:

D

T
= Rdiffuse= 0.0249·λ−3.3 (4)

whereλ is the wavelength in µm. More rigorously,D/T also
depends on SZA, but we neglect this effect here, since we
subsequently limit our calculations to the cases when SZAs
are 60 and 70◦. Below, we calculate albedos for five illu-
mination conditions, i.e. light sources: direct with 60 and
70◦ SZAs (light sources DIR60 and DIR70), diffuse (light
source DIFF), and clear sky conditions with SZA of 60 and
70◦ (light sources CS60 and CS70), following Eq. (4). The
characteristics of the five light sources are summed in Ta-
ble 2. Subsequently, some of those calculations can be used
for comparisons with satellite data. Since the latter data are
obtained at a specific viewing angle, the comparison is not
always simple, but correction factors between conical and

Fig. 14. Hemispherical spectral albedos calculated for selected
snow pits of the C and T groups, using the DIR70diff source. Mean
values for the three pit groups are also shown.

hemispherical reflectances have been proposed (Stroeve and
Nolin, 2002; Kokhanovsky and Zege, 2004).

3.7 DISORT modeling at DC and along the logistical
traverse

Figure 14 shows the range of calculated albedos for the C
and T pits, illuminated with the CS70 source (see Table 2),
as well as their averages. As expected (Warren, 1982), the
albedo is high in the visible (>0.95) and shows little vari-
ations between different pits. Significant variations are ob-
served in the IR, where, at a given wavelength, the albedo in-
creases with the SSA of surface layers (Wiscombe and War-
ren, 1980).

The pit with the highest IR albedo is C8 because its surface
layer has the highest SSA, fresh snow of 54.5 m2 kg−1. Sim-
ilar considerations explain why C10 has the lowest albedo:
it has the lowest SSA in the top 10 cm. The mean value of
C pits was obtained by performing calculations for a snow-
pit with the average SSA and density at each depth. The
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Fig. 15. Hemispherical spectral albedo of the mean group C snow
pit, calculated with all light sources of Table 2.

variability, expressed as the difference between the mean and
the extremes, is±1 % in the visible and reaches±40 % in the
IR.

T1 to T4 pits (not shown in Fig. 14, for clarity) had similar
albedos, calculated using the CS70 light source. This is be-
cause the SSAs of their surface layers fall in a narrow range,
34.8 to 38 m2 kg−1. The albedo of the mean T1–T4 pit is
very close to that of the mean C pit. T5 to T8 pits have lower
albedos than the other T pits, because of the lower SSA of
their surface layer. This is evidenced by the albedo of the av-
erage T5–T8 pit, which has the lowest average albedo. The
T8 pit has the lowest albedo, because it has the lowest surface
SSA, and it is also shown in Fig. 14.

Figure 14 shows that in the visible, the albedos of all pits
are similar, because we neglected the effect of absorbing im-
purities. At 450 nm, the highest albedo is 0.989 and the low-
est is 0.985, an undetectable difference. In the IR, relative
differences between the albedos of pit C8 and pit T8 are 30 %
at 1250 nm and 218 % at 1650 nm, which should be easily
detectable.

Lighting conditions also affect significantly the albedo.
Figure 15 illustrates the albedo of the mean C pit for the
5 illumination sources of Table 2. Figure 15 shows that
the DIR60 and the CS60 light sources give essentially the
same albedos. The same can be said of the DIR70 and CS70
sources.

3.8 Representative spectral albedo of the Antarctic
plateau

The physical properties of the snow around Dome C show
significant variations from pit to pit. However, we believe
that the thirteen pits studied here within 25 km of the DC
base capture the natural variability of the snow and that the
spatially-averaged albedo of the snow is well represented by
that of the mean C snow pit. Indeed, we were careful to
study spots that featured the various snow types present near
the surface: recent wind-deposited snow, windpack, surface

hoar, sastrugi. For remote sensing purposes, the SSA and
density values of the mean snow pit are probably relevant,
given that the resolutions of satellites such as MODIS and
AATSR are in the range 250 m to 1 km.

For the first part of the traverse (pits T1–T4), Fig. 14 indi-
cates that the mean albedo is similar to that of the C group.
This is consistent with the small differences in meteorologi-
cal conditions and snow properties recorded between Dome
C and the AWS at D85. From pit T5 and on, the role of wind
and of the higher temperatures in determining snow physical
properties is felt and the albedo is significantly different. It
is clear that for the second part of the traverse, the number of
pits performed is not sufficient to be a statistically valid sam-
ple, and clearly more studies are needed. Ideally, a science-
dedicated traverse should be arranged. However, it seems
very likely that the variations observed between the start and
the end of the traverse are not explained by random varia-
tions, and that our observations represent a genuine change
in snow physical properties.

To facilitate the comparison between our observations and
satellite data by other researchers, we report in the Appendix
Tables A3, A4 and A5 the data of our calculated albedos
for the 5 light sources used, as a function of wavelength
in the range 0.3–2.5 µm, for the C group, the T1–T4 group,
and the T5–T8 group. For those readers who would require
albedo data with a different fraction of diffuse radiation for
SZA = 60 or 70◦, it is possible to use the data of Appendix
Tables A3 to A5 and the following equation:

anet= Rdiffusead+(1−Rdiffuse)as(θ) (5)

wheread is the diffuse albedo,as is the direct albedo, and the
albedo isanet.

3.9 Preliminary comparison with MODIS data

Table 3 reports the albedos calculated for the relevant
MODIS and AATSR spectral bands. Below, we perform a
preliminary comparison between MODIS data and our calcu-
lations under diffuse illumination. We used the “White Sky
Albedo” (i.e. the albedo under diffuse illumination) of the
MODIS product MCD43C3 (Version 5), which consists in
16-day averages calculated from data obtained under clear-
sky conditions only. MCD43C3 data was used to obtain
the albedo averaged over a square 25× 25 km containing
the location of our measurements. While a higher resolu-
tion product exists, using larger scale averages reduces noise
and shows general trends more clearly. We compare here the
MCD43C3 “White Sky Albedo” at Dome C and along the
traverse to our calculations. For DC, we used the mean value
of our 13 snow pits. Figures 16 and 17 show the results ob-
tained for the 7 available wavelengths.

Some differences are observed but our results and the
MODIS product show similar trends: the albedo, and hence
the SSA, decrease from DC to the coast. Bands 2 (870 nm)

www.the-cryosphere.net/5/631/2011/ The Cryosphere, 5, 631–649, 2011



642 J.-C. Gallet et al.: Vertical profile of the specific surface area and density of the snow at Dome C

Table 3. Directional hemispherical reflectance of all mean pits calculated for the spectral bands of MODIS and AATSR satellites, and using
the light sources of Table 2.

λ, Satellite
and bands

Incident
source

Group C T1–T4 T5–T8 λ, Satellite
and bands

Incident
source

Group C T1–T4 T5–T8

470 nm, DIR60 0.987 0.988 0.986 870 nm, DIR60 0.900 0.901 0.876
Modis DIR70 0.989 0.990 0.989 AATSR DIR70 0.916 0.917 0.896
band 3 DIFF 0.985 0.986 0.984 and Modis DIFF 0.886 0.887 0.859

CS60 0.988 0.988 0.985 band 2 CS60 0.900 0.900 0.876
CS70 0.989 0.989 0.987 CS70 0.915 0.916 0.895

550 nm, DIR60 0.984 0.984 0.981 1240 nm, DIR60 0.568 0.559 0.481
AATSR DIR70 0.987 0.987 0.984 Modis DIR70 0.627 0.619 0.547
and Modis DIFF 0.982 0.983 0.979 band 5 DIFF 0.526 0.517 0.437
band 4 CS60 0.984 0.985 0.981 CS60 0.567 0.559 0.480

CS70 0.986 0.987 0.984 CS70 0.626 0.618 0.546

645 nm, DIR60 0.970 0.973 0.966 1600 nm, DIR60 0.120 0.114 0.071
Modis DIR70 0.975 0.978 0.972 AATSR DIR70 0.173 0.166 0.111
band 1 DIFF 0.966 0.969 0.961 DIFF 0.104 0.099 0.063

CS60 0.971 0.972 0.966 CS60 0.120 0.114 0.071
CS70 0.975 0.976 0.971 CS70 0.173 0.166 0.111

660 nm, DIR60 0.968 0.969 0.962 1640 nm, DIR60 0.138 0.132 0.084
AATSR DIR70 0.974 0.975 0.968 Modis DIR70 0.195 0.188 0.129

DIFF 0.963 0.965 0.956 band 6 DIFF 0.119 0.114 0.073
CS60 0.967 0.969 0.962 CS60 0.138 0.132 0.084
CS70 0.972 0.973 0.968 CS70 0.195 0.187 0.128

Fig. 16.Spatial variations of the spectral albedo during the traverse.
Data shown compare values obtained for MODIS bands 1 to 4, with
those calculated for the same wavelengths using DISORT and our
snow SSA and density profiles (solid lines).

and 5 (1240 nm) are especially interesting because at those
wavelengths snow reflectance is sensitive to the SSA.

The MCD43C3 product also provides a broadband albedo
(0.3–5 µm). Greuell and Oerlemans (2004) propose an al-
ternative method to determine the broadband albedo from
MODIS bands 1, 2 and 4. We also used the parameterization

Fig. 17.Spatial variations of the spectral albedo during the traverse.
Data shown compare values obtained for MODIS bands 5 to 7, with
those calculated for the same wavelengths using DISORT and our
snow SSA and density profiles (solid lines).

of Greuell and Oerlemans (2004) to obtain the broadband
albedo from our calculated spectral albedos, using the values
obtained for the relevant MODIS bands. The comparison be-
tween these three broadband albedos is shown in Fig. 18. All
three methods clearly show the same trend and the absolute
difference is on average of the order of 1 %. The agreement is
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Fig. 18.Comparison of broadband albedos along the traverse calcu-
lated using three methods: (i) MODIS White Sky Albedo product;
(ii) the empirical equation of Greuell and Oerlemans (2004) which
uses MODIS data for bands 1, 2 and 4; (iii) the empirical equation
of Greuell and Oerlemans (2004) using data for bands 1, 2 and 4
calculated from our snow data and DISORT.

Fig. 19. Comparison between the reflectance of Grenfell et
al. (1994) and that calculated from our snow data using DISORT
and illumination and viewing conditions similar to those of Grenfell
et al. (1994). Calculations using the stratigraphy of pit C8, to which
a snow layer 0.25 mm thick with crystals 15 µm in radius match the
observations of Grenfell et al. (1994) fairly well.

in fact surprisingly good given that MODIS and Greuell and
Oerlemans (2004) use different bands to obtain the broad-
band albedo and that the formulas used are based on empir-
ical fits from data obtained for the most part outside of the
Antarctic plateau. The preliminary comparisons of Figs. 16
to 18 show reasonable agreements between MODIS prod-
ucts and our calculations based on SSA and density profiles.
We consider this an encouraging sign to attempt to determine
snow SSA from satellite observations.

Fig. 20. Calculated bi-hemispherical reflectance (i.e. albedo) of
snow near Dome C, and comparison with the measurements of Hud-
son et al. (2006), performed under overcast conditions. Calculations
using the stratigraphy of pit C8 match the observations of Hudson et
al. (2006) fairly well. If a thin high-SSA layer is added, the albedo
is much larger than observations in the IR.

4 Discussion

The data presented here are the first extensive SSA measure-
ments of the surface snow on the Antarctic plateau. Brucker
et al. (2011) recently published a single SSA profile of a
3 m-deep pit near Dome C obtained using NIR photogra-
phy. However, the relationship between their IR reflectance
and SSA is not well established, and they test 3 relation-
ships that predict significantly different SSAs. For exam-
ple, for the topmost snow layer, the 3 methods predict SSA
in the range 26 to 46 m2 kg−1. The objective of Brucker
et al. (2011) is microwave application, and it is difficult to
use their data for optical purposes. There has been very few
albedo measurements on the Antarctic plateau performed un-
der well characterized lighting conditions, so that they could
be compared to our calculations. Grenfell et al. (1994) per-
formed reflectance measurements at Vostok and South Pole
stations. They show a graph of spectral albedo obtained
at South Pole under diffuse illumination with nadir view-
ing (field of view 15◦). Hudson et al. (2006) measured the
bidirectional reflectance of the snow at Dome C. They show
one spectral bihemispherical albedo (overcast sky) recorded
on 30 December 2004. The following discussion focuses on
both these studies. Since Grenfell et al. (1994) and Hudson
et al. (2006) worked under different lighting conditions, two
distinct graphs are necessary to compare their data to our cal-
culations.

Figure 19 shows the data of Grenfell et al. (1994) and the
albedo of the C8 pit and of the mean C pit, calculated for
the lighting conditions of Grenfell et al. (1994). The albedo
obtained by Grenfell et al. (1994) is significantly higher than
ours in the IR. Grenfell et al. (1994) used their data to de-
duce optical grain sizes. They could not model their spectral
reflectance with a single snow layer of a given grain size.
They had to add a 0.25 mm-thick surface layer of density
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150 kg m−3 and consisting of grains 15 to 30 µm in radius
(SSA = 218 to 109 m2 kg−1). In Fig. 19, we also show calcu-
lations where we have added a 0.25 mm-thick layer of grains
15 µm in radius at the very surface of the C8 stratigraphy. The
agreement between the spectrum of Grenfell et al. (1994) and
ours is pretty good.

However, we will stop short of over-interpreting the com-
parison between a spectrum measured at South Pole in 1986
and a spectrum calculated from snow properties measured at
Dome C in 2009. Grenfell et al. (1994) justify the presence
of the thin high-SSA layer at the top of the snow pack by
wind action, suggesting that small particles will settle last af-
ter a wind event. Even if this is indeed the case, which we
cannot judge here, it is not certain that this process would
be as frequent at Dome C, which is significantly less windy
than South Pole (Aristidi et al., 2005). Furthermore, errors
in measurements of albedo, SSA, density and layer thick-
ness and in modeling (DISORT does make approximations,
in particular for directional viewing) are at least 20 %, so that
comparing data obtained in two widely different settings is
difficult. In particular, we feel that it is not reasonable to
attempt any conclusion on the property of the very surface
snow layer on the Antarctic Plateau with current data.

Hudson et al. (2006) measured the bidirectional re-
flectance of the snow at Dome C. They show one spectral bi-
hemispherical albedo (overcast sky) recorded on 30 Decem-
ber 2004. They observed snow grains and mention that their
visual size stayed in the ranger = 50 to 100 µm (SSA = 33 to
65 m2 kg−1, if the grains are assumed to be spherical). Fig-
ure 20 compares their spectral albedo to calculated albedos
under similar lighting and viewing conditions, for the mean C
snow and for pit C8. Our albedo for pit C8 is very similar to
that of Hudson et al. (2006). Calculations using the mean C
snow to which a 0.25 mm-thick layer of SSA = 218 m2 kg−1

(r = 15 µm) and density = 150 kg m−3 has been added yields
much too high an albedo throughout the IR. Given that Hud-
son et al. (2006) only show one spectrum, there is clearly
insufficient data to reach any conclusion on the possible ex-
istence of a thin high SSA layer at the top of Dome C snow.
We strongly encourage further tests of the existence of a thin
high-SSA layer at the very surface.

5 Conclusions

The data presented here are the first extensive measurements
of SSA vertical profiles on the East Antarctic plateau. The
concentration of impurities in the snow is sufficiently low not
to affect albedo (Grenfell et al., 1994; Warren et al., 2006),
and the SSA and density profiles that we obtained can there-
fore be used to calculate the hemispherical spectral albedo of
the snow, if the effect of surface roughness can be neglected.
The albedos thus obtained are, in the IR, lower than those of
Grenfell et al. (1994) obtained in 1986 at South Pole. More
data is required to assess the significance of this difference,

and its cause in terms of snow physical properties or uncer-
tainties on measurements. The existence of a thin high SSA
snow layer at the top of the snowpack at South Pole, pos-
tulated by Grenfell et al. (1994) is an interesting hypothesis
that deserves further testing, as its consequences in terms of
energy budget would be significant.

The calculated albedo of our mean Dome C snow pit is
lower than the one spectral albedo of Hudson et al. (2006),
but our pit with the highest calculated albedo agrees well
with their data. Given the small number of data from Hudson
et al. (2006) that can be compared to ours, insufficient rep-
resentativity or variations in snow properties between 2004
and 2008–2009 may explain the difference.

A full understanding of snow physical properties and
albedo would require combined measurements of albedo,
with high resolution vertical profiles of SSA and density.
Measuring the SSA of snow at several IR wavelengths hav-
ing different penetration depths would be useful to detect
a possible thin high-SSA layer at the surface. DUFISSS
can in principle operate at both 1310 and 1550 nm, but
at present the shorter wavelength has been calibrated for
SSA< 66 m2 kg−1, while the longer wavelength is calibrated
for SSA> 50 m2 kg−1. Further work to allow a greater over-
lap would be useful to this purpose. Lastly, our snow data
allow the calculation of albedo that can be used to analyze
remote sensing data and test inversion algorithms. Our pre-
liminary investigations in fact show encouraging results re-
garding the possibility to determine SSA from space.
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Appendix A

Table A1. SSAs and densities used in DISORT, group C.

C1 C2 C3 (sastrugi on top 25 cm) C4 C5

Depth from SSA, Density, Snow SSA, Density, Snow SSA, Density, Snow SSA, Density, Snow SSA, Density, Snow
top in cm m2 kg−1 kg m−3 Grains m2 kg−1 kg m−3 Grains m2 kg−1 kg m−3 Grains m2 kg−1 kg m−3 Grains m2 kg−1 kg m−3 Grains

1 52.9 305 RG 42.2 291 RG 32.7 227 RG+SH 41.6 158 SH 34.0 221 RG
2 52.9 305 RG 42.2 291 RG 24.8 216 RG+SH 27.9 314 WC 33.6 292 RG
5 52.9 305 RG 42.2 291 RG 36.8 363 WC 18.3 355 MF 33.6 292 RG
10 29.3 444 WC 25.5 368 WC 36.8 363 WC 18.3 355 MF 18.0 290 DH
15 15.1 353 MF 22.9 352 FC 27.6 368 WC 18.3 355 MF 17.4 290 DH
20 15.1 353 MF 20.8 336 FC 27.6 368 WC 19.2 355 MF 12.8 290 FC
30 16.6 341 MF 18.5 296 DH 25.1 328 MF 19.2 355 MF 14.4 318 FC
40 13.3 388 DH 11.9 317 DH 24.4 336 MF 16.2 316 FC 15.3 329 MF
50 11.8 328 DH 12.8 341 DH 24.6 339 MF 14.4 334 MF 11.0 352 DH
60 10.4 404 DH 12.8 371 DH 24.6 318 MF 15.9 334 MF 11.0 313 DH
70 10.4 404 DH 12.7 418 DH 28.1 353 WC 15.6 399 WC 11.8 315 DH

C6 C7 (5 km from base) C8 (5 km from base) C9 (5 km from base) C10

Depth from SSA, Density, Snow SSA, Density, Snow SSA, Density, Snow SSA, Density, Snow SSA, Density, Snow
top in cm m2 kg−1 kg m−3 Grains m2 kg−1 kg m−3 Grains m2 kg−1 kg m−3 Grains m2 kg−1 kg m−3 Grains m2 kg−1 kg m−3 Grains

1 40.3 298 WC 35.7 146 SH+RG 54.5 229 BR+Col+RG 40.6 293 RG 24.3 316 SH+FC
2 40.3 298 WC 27.7 222 RG+MF 16.6 229 FC+RG 30.3 293 RG+FC 24.3 316 SH+FC
5 29.6 298 MF 30.2 294 RG+MF 22.2 229 FC+RG 24.8 315 RG+FC 13.0 466 MF
10 22.2 356 RG+MF 29.5 297 RG+MF 24.1 306 WC 26.0 315 RG+FC 27.7 454 WC
15 21.6 356 RG+MF 33.1 297 RG+MF 22.3 466 WC 19.7 460 WC 18.3 466 WC
20 19.1 356 RG+MF 38.8 306 RG+MF 19.2 466 WC 15.4 307 MF+DH 19.7 466 WC
30 16.8 326 MF 39.3 384 RG+MF 14.5 322 DH 14.3 307 MF+DH 17.9 508 WC
40 16.1 326 MF 26.8 446 WC 14.8 310 DH 14.3 349 MF+DH 15.9 521 FC
50 16.0 363 MF 18.2 380 MF 14.7 347 MF 10.7 343 DH 12.4 343 FC
60 14.0 347 MF 18.2 340 MF 15.6 347 MF 10.7 333 DH 10.2 312 DH
70 11.7 343 MF 13.4 310 MF 12.9 325 MF 10.1 313 DH 12.0 274 DH

C11 C12 (25 km South from base) C13 (25 km north from base) Mean all pits C Snow grains meaning

Depth from SSA, Density, Snow SSA, Density, Snow SSA, Density, Snow SSA, Density, Notation Snow Grains
top in cm m2 kg−1 kg m−3 Grains m2 kg−1 kg m−3 Grains m2 kg−1 kg m−3 Grains m2 kg−1 kg m−3

1 41.1 260 SH 26.0 334 RG 29.7 317 WC 38.1 261 BR Bullet Rosette
2 40.5 291 RG 26.0 334 RG 26.0 317 WC 31.8 286 Col Column
5 46.1 260 RG 26.0 334 RG 26.0 317 WC 30.9 317 DH Depth Hoar
10 19.8 321 MF 25.5 334 RG 29.4 317 RG+SH 25.5 355 FC Faceted Crystal
15 19.8 352 MF 25.5 334 MF 29.4 317 RG+SH 22.4 374 MF Mixed Form
20 15.8 333 MF 26.7 330 MF 24.8 356 RG+SH 21.2 363 RG Rounded Grain
30 12.9 359 MF 24.0 330 FC 21.1 356 MF 19.6 348 SH Surface Hoar
40 11.3 348 MF+DH 17.3 330 DH 21.1 356 MF 16.8 359 WC Wind Crust
50 11.1 363 MF+DH 13.7 348 DH 12.7 332 DH 14.2 347
60 10.0 317 MF+DH 13.7 348 DH 12.7 332 DH 13.8 340
70 11.9 310 MF+DH 13.7 348 DH 12.7 332 DH 13.6 342

Table A2. SSAs and densities values used in DISORT, group T.

T1 T2 T3 T4 Mean T1–T4

Depth from SSA, Density, Snow SSA, Density, Snow SSA, Density, Snow SSA, Density, Snow SSA, Density,
top in cm m2 kg−1 kg m−3 Grains m2 kg−1 kg m−3 Grains m2 kg−1 kg m−3 Grains m2 kg−1 kg m−3 Grains m2 kg−1 kg m−3

1 35.6 162 RG 36.0 351 WC 34.8 285 SH+RG 38.0 407 WC 36.1 301
2 35.6 162 RG 36.0 351 WC 34.8 285 RG 38.0 407 WC 36.1 301
5 35.6 162 RG 36.0 351 WC 34.8 285 RG 38.0 407 WC 36.1 301
10 31.6 150 WC 20.1 302 MF 27.9 400 WC 38.0 407 WC 29.4 315
15 20.7 208 FC 23.4 353 WC 30.0 403 WC 22.8 341 FC 24.2 326
20 20.7 208 FC 18.6 353 FC 18.5 355 MF 22.8 341 FC 20.2 314
30 14.4 251 FC 20.3 353 FC 16.0 341 FC 23.4 380 WC 18.5 331
40 17.0 277 FC 24.0 325 FC 12.0 330 FC+DH 23.3 380 MF 19.1 328
50 14.2 272 FC+DH 15.0 325 FC 14.4 382 FC+DH 23.2 381 MF 16.7 340
60 13.0 278 FC+DH 15.0 325 FC X X X X X X 14.0 302
70 13.1 287 FC+DH 14.3 335 FC X X X X X X 13.7 311

T5 T7 T8 Mean T5–T8 Snow grains meaning

Depth from SSA, Density, Snow SSA, Density, Snow SSA, Density, Snow SSA, Density, Notation Snow Grains
top in cm m2 kg−1 kg m−3 Grains m2 kg−1 kg m−3 Grains m2 kg−1 kg m−3 Grains m2 kg−1 kg m−3

1 27.3 415 WC 21.0 374 WC 19.8 446 WC 22.7 412 DH Depth Hoar
2 27.3 415 WC 21.0 374 WC 19.8 446 WC 22.7 412 FC Faceted Crystal
5 27.3 415 WC 21.0 374 WC 19.8 446 WC 22.7 412 MF Mixed Form
10 22.5 399 RG 16.0 515 WC 16.7 463 FC 18.4 459 RG Rounded Grain
15 22.5 399 RG 16.0 515 WC 18.9 464 WC 19.1 459 SH Surface Hoar
20 22.7 337 RG 16.0 486 WC 18.4 497 FC 19.0 440 WC Wind Crust
30 23.2 370 MF 16.0 506 WC 17.6 477 FC 18.9 451
40 23.7 403 MF 16.4 509 WC X X X 20.1 456
50 23.7 403 MF 16.6 478 WC X X X 20.2 441
60 X X X 17.7 459 FC X X X 17.7 459
70 X X X 16.5 473 WC X X X 16.5 473
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Table A3. Directional hemispherical reflectance of the mean of group C pits, at Dome C, calculated using the light sources of Table 2.

DOME C, Group C

λ, nm DIR60 DIR70 DIFF CS60 CS70 λ, nm DIR60 DIR70 DIFF CS60 CS70

300 0.964 0.970 0.958 0.964 0.970 1450 0.147 0.206 0.127 0.147 0.205
350 0.974 0.978 0.970 0.974 0.978 1500 0.057 0.092 0.051 0.057 0.091
400 0.982 0.985 0.979 0.982 0.985 1550 0.070 0.109 0.061 0.069 0.109
450 0.987 0.989 0.985 0.987 0.988 1600 0.120 0.173 0.104 0.120 0.173
500 0.986 0.989 0.984 0.986 0.987 1650 0.145 0.203 0.125 0.145 0.203
550 0.984 0.987 0.982 0.984 0.986 1700 0.181 0.245 0.156 0.181 0.245
600 0.979 0.983 0.976 0.979 0.982 1750 0.211 0.278 0.182 0.211 0.277
650 0.970 0.975 0.966 0.970 0.974 1800 0.229 0.297 0.198 0.229 0.297
700 0.961 0.967 0.954 0.959 0.965 1850 0.238 0.307 0.207 0.238 0.307
750 0.946 0.955 0.939 0.946 0.954 1900 0.100 0.149 0.087 0.100 0.148
800 0.924 0.936 0.913 0.924 0.935 1950 0.028 0.049 0.026 0.028 0.049
850 0.914 0.928 0.902 0.914 0.927 2000 0.021 0.038 0.020 0.021 0.037
900 0.879 0.898 0.862 0.878 0.897 2050 0.026 0.046 0.024 0.026 0.046
950 0.861 0.884 0.842 0.861 0.882 2100 0.049 0.080 0.044 0.049 0.080

1000 0.791 0.823 0.763 0.790 0.822 2150 0.103 0.153 0.090 0.103 0.153
1050 0.768 0.804 0.739 0.767 0.802 2200 0.155 0.216 0.134 0.155 0.215
1100 0.795 0.827 0.768 0.794 0.826 2250 0.184 0.248 0.158 0.184 0.248
1150 0.771 0.806 0.742 0.771 0.805 2300 0.143 0.202 0.124 0.143 0.202
1200 0.651 0.701 0.612 0.650 0.700 2350 0.093 0.141 0.082 0.093 0.141
1250 0.560 0.620 0.518 0.560 0.619 2400 0.074 0.117 0.066 0.074 0.117
1300 0.563 0.622 0.520 0.562 0.621 2450 0.064 0.102 0.057 0.064 0.102
1350 0.560 0.620 0.518 0.560 0.619 2500 0.053 0.088 0.048 0.053 0.088
1400 0.509 0.573 0.465 0.508 0.572

Table A4. Directional hemispherical reflectance of the mean of pits T1 to T4, calculated using the light sources of Table 2.

LOGISTIC TRAVERSE, T1–T4

λ, nm DIR60 DIR70 DIFF CS60 CS70 λ, nm DIR60 DIR70 DIFF CS60 CS70

300 0.965 0.971 0.959 0.964 0.970 1450 0.140 0.198 0.121 0.140 0.197
350 0.975 0.979 0.971 0.975 0.979 1500 0.054 0.087 0.048 0.054 0.087
400 0.983 0.986 0.981 0.983 0.986 1550 0.066 0.104 0.058 0.065 0.103
450 0.988 0.990 0.985 0.986 0.988 1600 0.114 0.166 0.099 0.114 0.166
500 0.987 0.989 0.985 0.987 0.988 1650 0.138 0.195 0.119 0.138 0.195
550 0.984 0.987 0.983 0.985 0.987 1700 0.174 0.236 0.150 0.174 0.236
600 0.981 0.984 0.978 0.980 0.983 1750 0.203 0.269 0.175 0.202 0.268
650 0.972 0.977 0.968 0.972 0.976 1800 0.220 0.288 0.191 0.220 0.288
700 0.962 0.968 0.955 0.961 0.967 1850 0.230 0.298 0.199 0.230 0.298
750 0.948 0.956 0.941 0.948 0.956 1900 0.094 0.142 0.082 0.094 0.142
800 0.926 0.938 0.915 0.925 0.937 1950 0.027 0.046 0.025 0.027 0.046
850 0.916 0.930 0.904 0.915 0.928 2000 0.020 0.035 0.019 0.020 0.035
900 0.879 0.898 0.862 0.878 0.897 2050 0.025 0.043 0.023 0.025 0.043
950 0.861 0.883 0.842 0.860 0.882 2100 0.046 0.076 0.041 0.046 0.076

1000 0.787 0.820 0.760 0.786 0.819 2150 0.097 0.146 0.085 0.097 0.146
1050 0.763 0.800 0.734 0.763 0.798 2200 0.148 0.207 0.128 0.148 0.207
1100 0.791 0.824 0.764 0.791 0.823 2250 0.176 0.239 0.152 0.176 0.239
1150 0.767 0.803 0.738 0.766 0.802 2300 0.136 0.194 0.118 0.136 0.194
1200 0.643 0.694 0.605 0.643 0.693 2350 0.088 0.135 0.077 0.088 0.135
1250 0.552 0.612 0.509 0.551 0.611 2400 0.070 0.111 0.062 0.070 0.111
1300 0.554 0.614 0.511 0.554 0.613 2450 0.060 0.097 0.053 0.060 0.097
1350 0.552 0.612 0.509 0.551 0.611 2500 0.050 0.083 0.045 0.050 0.083
1400 0.499 0.564 0.456 0.499 0.563
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Table A5. Directional hemispherical reflectance of the mean of pits T5 to T8, calculated using the light sources of Table 2.

LOGISTIC TRAVERSE, T5–T8

λ, nm DIR60 DIR70 DIFF CS60 CS70 λ, nm DIR60 DIR70 DIFF CS60 CS70

300 0.956 0.964 0.949 0.956 0.963 1450 0.090 0.137 0.079 0.090 0.137
350 0.968 0.974 0.964 0.969 0.974 1500 0.031 0.054 0.028 0.031 0.053
400 0.980 0.983 0.977 0.980 0.983 1550 0.039 0.065 0.035 0.038 0.065
450 0.985 0.988 0.984 0.985 0.987 1600 0.071 0.111 0.063 0.071 0.111
500 0.984 0.987 0.983 0.985 0.987 1650 0.089 0.135 0.077 0.089 0.134
550 0.981 0.984 0.979 0.981 0.984 1700 0.116 0.169 0.100 0.116 0.169
600 0.976 0.980 0.972 0.976 0.979 1750 0.139 0.197 0.119 0.139 0.196
650 0.965 0.971 0.960 0.964 0.970 1800 0.153 0.214 0.132 0.153 0.214
700 0.952 0.960 0.945 0.952 0.959 1850 0.161 0.223 0.139 0.161 0.222
750 0.935 0.946 0.925 0.934 0.944 1900 0.057 0.093 0.051 0.057 0.093
800 0.907 0.922 0.893 0.906 0.920 1950 0.015 0.027 0.014 0.015 0.027
850 0.896 0.913 0.880 0.894 0.911 2000 0.012 0.021 0.011 0.012 0.021
900 0.850 0.874 0.829 0.849 0.872 2050 0.014 0.025 0.013 0.014 0.025
950 0.827 0.854 0.804 0.827 0.853 2100 0.026 0.046 0.024 0.026 0.046

1000 0.739 0.779 0.708 0.739 0.777 2150 0.059 0.096 0.053 0.059 0.096
1050 0.711 0.754 0.677 0.710 0.753 2200 0.095 0.144 0.083 0.095 0.144
1100 0.744 0.783 0.713 0.743 0.782 2250 0.117 0.171 0.101 0.117 0.171
1150 0.715 0.758 0.681 0.715 0.757 2300 0.087 0.133 0.076 0.087 0.133
1200 0.573 0.632 0.531 0.573 0.630 2350 0.053 0.087 0.047 0.053 0.087
1250 0.473 0.539 0.429 0.472 0.538 2400 0.041 0.070 0.037 0.041 0.070
1300 0.475 0.542 0.431 0.475 0.541 2450 0.034 0.060 0.032 0.034 0.060
1350 0.473 0.539 0.428 0.472 0.538 2500 0.028 0.051 0.026 0.028 0.051
1400 0.417 0.487 0.374 0.417 0.486
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