Contribution of 3-D time-lapse ERT to the study of leachate recirculation in a landfill
Résumé
Leachate recirculation is a key process in the operation of municipal waste landfills as bioreactors. It aims at increasing the moisture content to optimise the biodegradation. Because waste is a very heterogeneous and anisotropic porous media, the geometry of the leachate plume recirculation is difficult to delineate from the surface at the scale of the bioreactor site. In this study, 3-D time-lapse electrical resistivity tomography (ERT) was used to obtain useful information for understanding leachate recirculation hydrodynamics. The ERT inversion methodology and the electrode arrays were optimised using numerical modelling simulating a 3-D leachate injection scenario. Time-lapse ERT was subsequently applied at the field scale during an experimental injection. We compared ERT images with injected volumes to evaluate the sensitivity of time-lapse ERT to delineate the plume migration. The results show that time-lapse ERT can accomplish the following: (i) accurately locate the injection plume, delineating its depth and lateral extension; (ii) be used to estimate some hydraulic properties of waste.