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[1] Recently, Crow et al. (2009) developed an algorithm for enhancing satellite-based land
rainfall products via the assimilation of remotely sensed surface soil moisture retrievals into
a water balance model. As a follow-up, this paper describes the benefits of modifying their
approach to incorporate more complex data assimilation and land surface modeling
methodologies. Specific modifications improving rainfall estimates are assembled into the
Soil Moisture Analysis Rainfall Tool (SMART), and the resulting algorithm is applied
outside the contiguous United States for the first time, with an emphasis on West African
sites instrumented as part of the African Monsoon Multidisciplinary Analysis experiment.
Results demonstrate that the SMART algorithm is superior to the Crow et al. baseline
approach and is capable of broadly improving coarse-scale rainfall accumulations
measurements with low risk of degradation. Comparisons with existing multisensor,
satellite-based precipitation data products suggest that the introduction of soil moisture
information from the Advanced Microwave Scanning Radiometer via SMART provides as
much coarse-scale (3 day, 1�) rainfall accumulation information as thermal infrared satellite
observations and more information than monthly rain gauge observations in poorly
instrumented regions.

Citation: Crow, W. T., M. J. van den Berg, G. J. Huffman, and T. Pellarin (2011), Correcting rainfall using satellite-based surface soil

moisture retrievals: The Soil Moisture Analysis Rainfall Tool (SMART), Water Resour. Res., 47, W08521, doi:10.1029/

2011WR010576.

1. Introduction
[2] Starting with the anticipated launch of its core satel-

lite in 2013, land rainfall retrievals from the upcoming
Global Precipitation Mission (GPM) constellation will con-
tribute to a host of natural hazard, hydrologic, and water
resource applications [Gebremichael and Hossain, 2009].
However, expectations for hydrologic applications are tem-
pered by known limitations in the resolution and accuracy
of satellite-based rainfall accumulation products [Harris et
al., 2007; Li et al., 2009; Tobin and Bennett, 2010; Pan et
al., 2010]. Such products are known to suffer from a range
of error sources, including sampling uncertainties [Steiner
et al., 2003; Nijssen and Lettenmaier, 2004; Hossain et al.,
2004], beam-filling issues [Kummerow, 1998], and difficul-
ties estimating the impact of solid hydrometeors [Bennartz
and Petty, 2001]. Over land, these difficulties are com-
pounded by uncertainty in background emissivity values
associated with variations in land surface properties [Mor-
land et al., 2001; Bytheway and Kummerow, 2010]. One

potential strategy for ameliorating these problems is the use
of ancillary land measurements related to precipitation
[Pan and Wood, 2007; Pellarin et al., 2008; McCabe et
al., 2008; Pellarin et al., 2009]. In particular, remotely
sensed surface soil moisture dynamics and rainfall share an
obvious physical connection. Such synergistic opportuni-
ties are highly relevant given the likely temporal overlap
between GPM and the NASA Soil Moisture Active Passive
(SMAP) mission. Currently under development in anticipa-
tion of a 2014 launch, the SMAP mission will combine L
band (1.4 GHz) radar and radiometry to produce a global
10 km soil moisture product with an average repeat time of
2–3 days [Entekhabi et al., 2010].

[3] With this potential in mind, Crow et al. [2009]
describe and apply a simple data assimilation approach to
correct land rainfall accumulation estimates using remotely
sensed surface soil moisture retrievals. Their approach is
based on the time series of net additions (or subtractions)
of soil water corrections calculated when sequentially
assimilating surface soil moisture retrievals into a water
balance model using a Kalman filter. These water volumes,
or ‘‘analysis increments,’’ are then correctively applied to
the satellite-based rainfall product used to force the water
balance model. Results by Crow et al. [2009] demonstrate
that the approach can correct a substantial fraction of root-
mean-square error (RMSE) in 2–10 day accumulation esti-
mates obtained from existing multisensor, satellite-based
rainfall products. That is, over land, remotely sensed sur-
face soil moisture retrievals provide a viable source of cor-
rective information for satellite-based rainfall products.
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[4] Relatively good results by Crow et al. [2009] are
obtained despite their reliance on a simple modeling and
data assimilation framework. However, such simplifications
potentially contribute to specific limitations noted in their
approach, particularly a tendency toward the overprediction
of low-intensity rainfall events and the degradation of corre-
lation-based rainfall accumulation skill in densely vegetated
areas. In addition, the Crow et al. [2009] approach was vali-
dated only within the contiguous United States (CONUS)
and was not directly assessed in data-poor areas, where it is
likely to yield the greatest benefits.

[5] Here we will explore the potential benefit of utilizing
more complex data assimilation and modeling approaches to
enhance the performance of the original Crow et al. [2009]
algorithm. On the basis of this analysis, a new approach,
referred to as the Soil Moisture Analysis Rainfall Tool
(SMART), is defined and tested using high-quality rain
gauge data sets available within both the contiguous United
States and West Africa. Finally, a quasi-global-scale analysis
is conducted using rainfall data products from the Tropical
Rainfall Measuring Mission (TRMM) Multisatellite Precipi-
tation Analysis (TMPA) [Huffman et al., 2007, 2010].

2. Background
[6] As noted in section 1, our baseline is the rainfall cor-

rection approach previously introduced by Crow et al.
[2009] (hereinafter referred to as the C09 algorithm). The
general algorithm development strategy employed in C09
(and continued here) is to start with simple parameterizations
and add complexity only when clearly justified. Conse-
quently, the C09 algorithm is based on using a satellite-based
rainfall accumulation product (P0) to derive the antecedent
precipitation index (API) on day i for spatial grid box j :

API�i;j ¼ �i;j APIþi�1;j þ P0i;j: ð1Þ

In the C09 baseline, � is estimated from the empirical rela-
tionship

�i;j ¼ �� �ðhTaiDðiÞ;j � 270Þ; ð2Þ

where � and Tah iD ið Þ is the climatological air temperature
in K on the day of year D corresponding to i and � and �
are global constants given in Table 1.

[7] When available, remotely sensed surface soil mois-
ture retrievals �i;j are used to update (1) via a Kalman filter:

APIþi;j ¼ API�i;j þ Ki;jð�i;j � API�i;jÞ: ð3Þ

Here the minus and plus denote API values before and after
Kalman filter updating, respectively. Daily soil moisture

observations (in water depth dimensions) for a particular
grid box are obtained by linearly rescaling a time series of
raw surface soil moisture retrievals �� (in volumetric soil
moisture dimensions) such that their long-term mean (�)
and standard deviation (�) match those derived from a mul-
tiyear integration of (1) calculated for the same grid box:

�i;j ¼ ð��i;j � ��j Þ
�API

j

��j
þ �API

j ; ð4Þ

where the absence of the subscript i indicates that a given
variable does not vary in time.

[8] The Kalman gain K in (3) is given by

Ki;j ¼ T�i;j=ðT�i;j þ SjÞ; ð5Þ

where T is the error variance for API forecasts and S is the
error variance for � retrievals. At measurement times, T is
updated as

Tþi;j ¼ ð1� Ki;jÞT�i;j : ð6Þ

Between soil moisture retrievals and the adjustment of API
and T via (3) and (6), API is forecasted on the basis of
observed P0 and (1). Likewise, T is updated via

T�i;j ¼ �i;j
2 Tþi�1;j þ Qj; ð7Þ

where Q represents the added uncertainty in API predic-
tions accumulated during a daily forecast step.

[9] Analysis increments are simply the change in API
upon updating in (3):

�i;j ¼ APIþi;j � API�i;j ¼ Ki;jð�i;j � API�i;jÞ: ð8Þ

If assimilated � observations are skillful, then the corrective
� time series should correlate with recent random errors in
P0. The C09 algorithm exploits this tendency to linearly
correct 3 day P0 sums ([P0]) on the basis of coincident � cal-
culated during a soil moisture data assimilation analysis:

½eP0�l;j ¼ ½P0�l;j þ 	j½��l;j; ð9Þ

where 	 is a scaling factor and l now indexes nonoverlap-
ping 3 day windows. A 3 day window appears to be the
shortest accumulation window over which the C09 algo-
rithm can be reliably applied [Crow et al., 2009]. In addi-
tion, the C09 analysis was restricted to periods of liquid
(i.e., nonsnow) precipitation.

[10] As discussed in C09, defining theoretical constraints
for 	 is difficult. Instead, C09 relies on three separate strat-
egies: (1) calibrating time constant (but spatially variable)
values of 	 until the RMS error of ½eP0� is minimized relative
to historical rain gauge data, (2) calibrating 	 against an in-
dependent satellite-based rainfall product, or (3) simply
assuming 	 is a fixed constant (in both time and space).
Obviously, the first approach presumes the availability of
historical rain gauge data and may not be globally applica-
ble. During calibration, any derived value of ½eP0� < 0 is
reset to zero.

Table 1. Assumed Values for Defined Constants Within the
SMART Algorithma

Constant Equation Value

� (2) 0.70
� (2) 0.01 K�1


 (12) 5
Q (12) 3 mm2

aQ is held externally fixed only for the case 3 methodology described in
section 3.3.
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[11] Because of the rescaling step in (4), the C09 proce-
dure has no legitimate basis for correcting long-term bias
in P0 and can, in fact, induce a positive bias if substantial
numbers of negative rainfall predictions are made and sub-
sequently reset to zero [Crow et al., 2009]. Therefore, the
long-term mean of eP0 is rescaled to match that of P0. Also,
to ensure that intermittent temporal data gaps in satellite-
based products do not impact results, only time periods
containing at least one �� retrieval per 3 day window and
one satellite-based rainfall rate estimate per day are
included in the analysis. For the satellite data products con-
sidered here (see section 4), these requirements are gener-
ally met during periods of normal sensor operations.

3. Potential Modifications
[12] The C09 approach represents an intentionally sim-

ple approach to the problem of correcting rainfall accumu-
lation amounts using soil moisture remote sensing. This
section will describe a number of potential modifications
incorporating increased modeling and filtering complexity.
Section 5 will then evaluate modifications on the basis of
their ability to improve rainfall accumulation estimates
within CONUS.

3.1. Rescaling of Satellite-Based Soil Moisture
Retrievals

[13] It is generally acknowledged that some type of a pri-
ori rescaling is necessary prior to the assimilation of ��

retrievals into a land surface model [see, e.g., Reichle and
Koster, 2005; Drusch et al., 2005]. In C09, such rescaling
is based on the simple, time invariant transformation in (4).
One shortcoming of this approach is that it fails to correct
for possible seasonal differences in the climatology of
modeled and remotely sensed soil moisture estimates. A
second deficiency is that it corrects only for differences
between the first (mean) and second (variance) statistical
moments of the soil moisture time series and neglects dif-
ferences in higher-order statistical moments.

[14] The first shortcoming arises because � in (4) is a
spatially variable but temporally fixed statistic sampled
from a multiyear data set. To correct this, (4) can be modi-
fied so that different � statistics are sampled separately
from a multiyear data set using a 31 day sampling window
centered on a particular day of the year D :

�i;j ¼ ð��i;j � ��DðiÞ;jÞ
�API

j

��j
þ �API

DðiÞ;j: ð10Þ

In this way, the rescaling step in (4) is modified to vary
over the seasonal cycle and compensate for possible sea-
sonal differences existing between the API and �� climatol-
ogies. Note that � still does not vary seasonally in (10). A
more ambitious alternative would be to introduce � season-
ality in an analogous manner.

[15] To compensate for potential differences in higher-
order statistical moments, rescaling based on the cumula-
tive density function (CDF) matching of API values to ��

can also be applied:

�i;j ¼ G�1
j Fjð��i;jÞ
h i

; ð11Þ

where F and G are the long-term CDFs of �� and the API
model, respectively. Here such transformations are based
on ranking the entire historical time series of �� and API
(on a grid box by grid box basis) and transforming directly
between soil moisture values in each time series with equal
ranking. The nonlinear form of (11) ensures that the result-
ing � time series will possess exactly the same distribution
as API and not simply match its first and second statistical
moments. Like (4), (11) can also be modified to capture
seasonality by sampling separate F and G within a 31 day
window centered on a particular D.

3.2. Conditioning of Rainfall Forecasts
[16] In order to operate effectively, the forecasting step

in (1) should accurately characterize existing information
concerning rainfall accumulation amounts and the impact
of this information on conditioned model background
uncertainty [Crow, 2003]. The importance of such condi-
tioning is reflected by the considerable attention paid in
recent years to developing appropriate rainfall ensembles
conditioned on incomplete and inaccurate rainfall measure-
ments and predictions [Clark et al., 2004; Hossain and
Anagnostou, 2006a, 2006b; Wojcik et al., 2009]. At their
most basic, such approaches recognize that no matter how
uncertain, nonzero rainfall rate estimates obtained from
remote sensing should lead to different conditional expect-
ations than estimates of zero rainfall. This conditioning is
not reflected in (7), where a constant additive term Q is
applied at every time step, regardless of observed P0. Here,
as a first step, we apply a simple approach to such condi-
tioning by introducing a second term in (7) that induces
greater amounts of background uncertainty in API forecasts
when P0 > 0:

T�i;j ¼ �i;j
2 Tþi�1;j þ Qj þ 
P02i;j: ð12Þ

Here the scaling factor 
 is assumed to be a unitless global
constant set equal to 5 (Table 1). This change leads to
larger K, and more weight applied to observations, follow-
ing the observation of nonzero rainfall accumulations. If
(12) provides a more appropriate background error model
than (7), such temporal variations in K should lead to a
more efficient integration of � information and enhanced
rainfall correction via (9). Sensitivity results describing the
impact of varying 
 are described in section 5.1.

3.3. Filter Calibration
[17] The C09 approach utilizes a �-whitening approach

for constraining Q and S. In particular, it defines the time
series of filtering innovations � as

�i;j ¼ ð�i;j � API�i;jÞ=ðT�i;j þ SjÞ0:5 ð13Þ

and adjusts the ratio Q/S until a serially white innovation
time series is obtained. Such an approach is appealing
because it eliminates the need to independently specify Q
and S. However, recent work has shown it to be misguided
because of the presence of serially correlated error in
remotely sensed surface soil moisture products. In such
cases, whitening � leads to the systematical underestima-
tion of S and excessive weight on assimilated observations
in (3) [Crow and van den Berg, 2010].
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[18] Here we instead follow the approach of Scipal et al.
[2008] by using a triple-collocation (TC) strategy to esti-
mate S. This approach compares soil moisture anomalies
obtained from a satellite-based passive radiometer (�0), a
satellite-based scatterometer (�0SCAT), and API modeling
(�0API) to obtain an estimate for the error variance in a soil
moisture product :

Sj ¼ hð�0i;j � �0API;i;jÞð�0i;j � �0SCAT;i;jÞi; ð14Þ

where angle brackets indicate temporal averaging. Soil
moisture anomalies are based on subtracting off a 31 day
moving average mean obtained for each multiyear data set,
and all anomalies are rescaled to have the same temporal
variance as the API anomalies. Values of S obtained in this
way provide an appropriate basis for estimating the spa-
tially variable (and temporally constant) error variance of
assimilated �0 observations required as input into (5) [Crow
and van den Berg, 2010]. Q is then held globally constant
at a value of 3 mm2 (Table 1). Sensitivity results describing
the impact of varying Q are described in section 5.1.

3.4. Non-Gaussian Rainfall Errors
[19] The application of a Kalman filter in the baseline C09

approach requires an implicit assumption that background
modeling errors are approximately Gaussian. However,
except at very coarse time and space scales, errors in rainfall
observations do not generally induce Gaussian error in land
surface model soil moisture predictions [Crow, 2003]. Con-
sequently, better results in (9) may be obtainable using alter-
native filtering techniques not requiring a rigid Gaussian
assumption. Both the ensemble Kalman filter (ENKF [e.g.,
Reichle et al., 2002]) and a particle filter (PF [e.g., Liu and
Chen, 1998]) allow this assumption to be relaxed.

[20] In an ENKF, the forecast step (1) is replaced by an
N-member API ensemble generated using

APIk
i;j ¼ �i;j APIk

i�1;j þ �k
i;jP
0
i;j; ð15Þ

where � is sampled from a lognormal distribution with
mean 1 and variance � and k ¼ 1, 2, . . . , N is the ensemble
index. Lognormal multiplicative noise of this type offers a
simple way to capture conditional rainfall uncertainty and
has been widely applied in ENKF land data assimilation
systems [e.g., Crow and Van Loon, 2006; Reichle and Kos-
ter, 2005]. By virtue of the lognormal distribution of �, the
resulting ensemble of API forecasts is non-Gaussian. At
measurement times, each ensemble member is updated as

APIk;þ
i;j ¼ APIk;�

i;j þ Ki;jðAPIk;�
i;j � �i;j þ 
k

i;jÞ; ð16Þ

where 
 is sampled from a zero-mean Gaussian distribution
with variance S. In the ENKF, K is calculated as a function
of the ensemble variance of API– (CM) and measurement
error covariance S :

Ki;j ¼ CMi;j=ðCMi;j þ SjÞ; ð17Þ

and the analysis increment � required in (9) is defined as

�i;j ¼ N�1
XN

k¼1

ðAPIk;þ
i;j � APIk;�

i;j Þ: ð18Þ

[21] Despite the introduction of non-Gaussian error in
the ENKF forecasting step, the update in (16) is still based
on an implicit assumption of Gaussian error in APIk,–.
Therefore, a complete treatment of non-Gaussian error
requires the implementation of a PF. In a PF, individual en-
semble members (or ‘‘particles’’) are assigned an initial
weighting value Wk, where Wk ¼ N–1 and N now equals the
number of total particles. Like the ENKF, the PF uses (16)
to forecast the API value associated with each particle
(APIk;�

i;j ) until the first observation time. Upon the acquisi-
tion of an observation �, the weights for each particle k are
updated following

W k;þ
i;j ¼

1ffiffiffiffiffiffiffiffiffi
2�Sj

p exp �
ðAPIk;�

i;j � �i;jÞ
2

2Sj

24 35: ð19Þ

This updating is based on the (widely made) assumption
that remotely sensed surface soil moisture retrievals have
Gaussian errors [see, e.g., Nagarajan et al., 2011]. Note
that (19) leads to unequal weight for each particle and, if
left unchecked, will eventually concentrate all weighting
on a small number of particles. In order to redistribute
weighting equally among all N particles and avoid this
well-known degeneracy problem, the resampling algorithm
described by Liu and Chen [1998] is applied. Their algo-
rithms selects a new set of N particle values APIk,þ with
equal weighting by, essentially, replicating particles with
high Wk,þ and removing particles with low Wk,þ. In this
way the tendency for all weight to concentrate on a small
number of particles is curbed, and the filter is made self-
sustainable. Using this resampled set of APIk,þ, � is derived
from (18), and the process is repeated for the next observa-
tion interval. Because the PF makes no parametric assump-
tions concerning the background error distribution of API
forecasts, it should provide a superior filter for the case of
non-Gaussian error in P0. Since the variance parameter � is
largely unknown, ENKF and PF results will be presented
for a range of possible choices.

3.5. Soil Moisture Modeling
[22] Another characteristic of the C09 baseline is its reli-

ance on a simple soil moisture model. It is difficult to sys-
tematically examine the impact of alternative models since
an almost infinite array of more complex (and more highly
parameterized) soil moisture modeling approaches exist.
As an alternative, we will focus on two fundamental differ-
ences between the API model and a more complex land
surface model: (1) the API model lacks temporal variations
in � (i.e., soil water loss rate) associated with meteorologi-
cal and/or radiation conditions, and (2) the API model lacks
an explicit representation of maximum soil water capacity.

[23] In order to examine the impact of varying � on the
basis of meteorological conditions, daily average potential
evaporation data (PET) and surface air temperature data
(Ta) are obtained from an atmospheric reanalysis and are
used to modify � in (2) using either

�0i;j ¼ �i;j ��PETðPETi;j � hPETiDðiÞ;jÞ ð20Þ

or

�0i;j ¼ �i;j ��Ta ðTa;i;j � hTaiDðiÞ;jÞ; ð21Þ
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where the angle brackets represent the climatological aver-
age of a given quantity within a 31 day, multiyear moving
average window centered on day of year D. Both PET and
Ta should be inversely correlated with � (i.e., larger � equa-
tes to more soil water retention, which in turn, is associated
with low evapotranspiration, PET, and Ta conditions). The
two constants �PET (W–1 m2) and �Ta (K–1) modulate the
sensitivity of �0 to temporal anomalies in PET and Ta.
Since the correct values of these constraints are unknown, a
wide range of �PET (W–1 m2) and �Ta (K–1) will be exam-
ined for evidence that introducing PET- and/or Ta-based
variations (or any magnitude) into � is associated with
improved rainfall correction.

[24] The impact of a finite surface layer capacity can be
mimicked by setting an upper limit on API predictions
obtained during either the KF forecasting step in (1) or the
updating step in (3). Any API update or forecast exceeding
this saturation capacity is then immediately reset to the
capacity, and excess water is assumed to leave the modeled
system through either recharge or runoff. It is important to
note that enforcing such a nonlinear threshold might have
important consequences on selecting the correct sequential
filter since the PF and ENKF are both better suited to
addressing the impact of nonlinear thresholds than the KF.

4. Data and Domains
[25] Remotely sensed surface soil moisture retrievals ��

are obtained from application of the single-channel re-
trieval algorithm to X band (10.6 GHz) Advanced Micro-
wave Scanning Radiometer–EOS (AMSR-E) TB data
[Jackson et al., 2010]. Surface soil moisture retrievals are
acquired with a spatial resolution of about 402 km2 and
measurement frequency of 1–2 days at midlatitudes.
Screening is performed to mask areas with snow cover and/
or experiencing active rainfall. After screening, retrievals
obtained from both ascending and descending overpasses
between 1 July 2002 and 31 December 2009 are combined
and aggregated to form a (near) daily, 1� latitude-longitude
product. The �SCAT product used in (14) is based on scatter-
ometer observations obtained from the European Space Ra-
dar (ERS-1 and ERS-2) measurements and application of
the soil moisture retrieval algorithm described by Naeimi et
al. [2009] between mid-2003 and May 2007.

[26] A number of different remotely sensed rainfall data
sets are also used for P0 in (1). The TMPA is computed ret-
rospectively as the version 6 3B42 product. It combines
multiple intercalibrated passive microwave estimates,
microwave-calibrated thermal infrared (TIR) estimates,
and monthly gauge data [Huffman et al., 2007]. In real
time, the combined passive microwave portion of the
TMPA is computed experimentally as the 3B40RT product,
and the combined microwave plus microwave-calibrated
TIR estimates are computed as the 3B42RT product [Huff-
man et al., 2007]. These real-time products differ from the
version 6 3B42 product in only using microwave data,
being real time, using a different microwave precipitation
data set from the calibration standard, and having a hetero-
geneous computational record. In particular, the upgrade in
February 2005 approximately doubled the inventory of
microwave data previously used, switched from 5 day to 3
h recomputations of the microwave-TIR relationships, and

significantly improved the microwave-TIR calibration pro-
cedure in cold-land regions. The data record starting in Jan-
uary 2009 employs additional satellite data types (thus
offsetting the termination of older satellites) and uses a cli-
matological calibration by month and location that approxi-
mately corrects the observed monthly biases between
3B42RT and the version 6 3B42 [Huffman et al., 2010].
Note that 3B40RT is not recalibrated. All three products
(TRMM 3B42, TRMM 3B40RT, and TRMM 3B42RT) are
resampled to a daily, 1� latitude-longitude grid between
50�N and 50�S. Daily rainfall accumulation is defined as
the total depth of rainfall between 12:00 and 12:00 UTC.
However, for the soil moisture product we define that same
day by a period shifted 12 h into the future (00:00 to 24:00
UTC). This 12 h shift is assumed to effectively capture the
necessary delay between rainfall and the resulting soil
moisture. Results will focus solely on the correction of 3
day rainfall accumulation products. Results by Crow et al.
[2009] suggest that this approximates the finest temporal
scale at which robust correction of rainfall is possible using
AMSR-E soil moisture retrievals.

[27] Land-water masking is based on the Moderate Reso-
lution Imaging Spectroradiometer (MODIS) MCD12C1
land cover classification product. Any 1� box containing
more than 25% open water is permanently masked from the
analysis. PET and Ta products required as input into (20)
and (21) are acquired from the National Centers for Envi-
ronmental Prediction (NCEP) Reanalysis 2. Four 6-hourly
reanalysis predictions per day are averaged to obtain a sin-
gle 12:00 to 12:00 UTC daily average and then resampled
onto a 1� spatial grid.

[28] Three independent rainfall products are used for
verification. CONUS results are verified on the basis of
comparisons with NCEP’s Climate Prediction Center
(CPC) 1� unified rain gauge analysis product [Higgins et al.,
2002]. Over West Africa, verification is based on three
1� African Monsoon Multidisciplinary Analysis (AMMA
[Lebel et al., 2009]) supersites located in Benin, Mali, and
Niger (Figure 1). A distributed rain gauge network, with 10
measurement sites in the Mali supersite and 40 measure-
ment sites in the Benin and Niger supersites, has been
established in each by the AMMA program [Mougin et al.,
2009; Cappelaere et al., 2009]. Measurements from each
individual rain gauge site are spatially aggregated up to the
1� supersite scale using block kriging [Ali et al., 2003].
Finally, for quasi-global (50�S to 50�N) results, verification
is based on the gauge-corrected TMPA 3B42 precipitation
product described above.

5. Results
[29] Sections 5.1–5.3 describe the impact of modifica-

tions presented in section 3 on rainfall correction results
within CONUS. Modifications leading to improved per-
formance are gathered into a new algorithm called the Soil
Moisture Analysis Rainfall Tool (SMART). Following its
formal definition, SMART is applied within CONUS in
section 5.5 and then evaluated outside CONUS for the first
time in sections 5.6 and 5.7. Initial intercomparison results
in sections 5.1, 5.2, and 5.3 are based on tuning the con-
stant parameter 	 in (9) to minimize the RMSE difference
between SMART rainfall products and the benchmark CPC
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unified rain gauge analysis. However, SMART results in
sections 5.6 and 5.7 will also examine the impact of simply
assuming 	 ¼ 0:60. Since soil moisture retrievals have
been screened to remove time periods with snow cover,
accumulation results should be interpreted as reflecting
only liquid precipitation conditions.

5.1. Impact of Filtering Modifications (R2 and RMSE)
[30] For convenience, potential filtering modifications

introduced in sections 3.1 to 3.3 are indicated by references
to three incremental cases. Case 1 is the C09 baseline plus
one of the alternative rescaling techniques presented in sec-
tion 3.1, case 2 is case 1 plus the new error forecasting
technique described in section 3.2, and case 3 is case 2 plus
the alternative Q and S calibration approach introduced in
section 3.3. For reference, these case definitions are also
listed in Table 2.

[31] Figures 2 and 3 describe the performance of various
satellite-based rainfall products over CONUS. As described
in section 4, all results are based on comparisons between
1�, 3 day rainfall accumulations obtained from (original
and corrected) satellite-based rainfall products with the
CPC unified rain gauge data set between June 2002 and De-
cember 2009. Comparisons are performed separately for all
807 of the 1� grid boxes in CONUS and then spatially aver-
aged to produce the results plotted in Figure 2. Uncorrected
3B40RT 3 day accumulations have a (CONUS-averaged)
RMSE of 13.1 mm and an explained variance (i.e., square
of Pearson’s correlation coefficient R) of 0.32. Upon appli-
cation of the baseline C09 algorithm, these values improve
to 10.0 mm and 0.40, respectively.

[32] Figure 2 also depicts the added value of the modifi-
cations to the baseline C09 approach described in section 3.

Changing the soil moisture rescaling strategy from the
static linear approach in (4) to the dynamic approach in
(10) (to produce case 1) further improves the RMSE and R2

of 3 day accumulation estimates to 9.7 mm and 0.43,
respectively. While potentially requiring more historical
data to parameterize, (10) allows climatological differences
between API and �� to be resolved before they impact (9).
Somewhat surprisingly, none of the other alternative rescal-
ing approaches discussed in section 3.1 display any obvious
benefit. For example, allowing sampled � statistics in (10)
to vary seasonally leads to slightly worse rainfall accumu-
lation estimates, and the nonlinear CDF-matching transfor-
mation in (11) produces significantly poorer results for the
cases of both a single bulk transformation and the applica-
tion of separate transformations applied within each 31 day

Figure 1. Location of the three West African African Monsoon Multidisciplinary Analysis (AMMA)
supersites.

Table 2. Variation in Case 3 RMSE and R2 CONUS Results
Associated With the Modification of 
 and Q Relative to the Base-
line Values Listed in Table 1a

Constant R2 RMSE (mm)

Baseline (Table 1) 0.458 10.09

 ¼ 2 0.458 10.12

 ¼ 10 0.455 10.09

Q ¼ 1 (mm2) 0.455 10.25
Q ¼ 5 (mm2) 0.459 10.02

aCONUS, contiguous United States; RMSE, root-mean-square error.

Figure 2. Contiguous United States (CONUS)-averaged
root-mean-square error (RMSE) and R2 for 3 day, 1�

3B40RT accumulations and corrected accumulations using
both the C09 baseline and the three modified cases
described in Table 2.
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seasonal window (not shown). However, care should prob-
ably be taken when broadly interpreting these results. Diffi-
culties with CDF matching may arise from our particular
focus on rainfall accumulation correction (as opposed to
the more common data assimilation goal of correcting soil
moisture) and sampling issues associated with parameteriz-
ing (11) using only 7.5 years of historical data. Neverthe-
less, all subsequent references to case 1 will refer only to
the application of (10).

[33] Adding the conditioning of rainfall error via (12) (to
produce case 2) leads to incremental R2 and RMSE improve-
ments relative to case 1 (Figure 2). Such conditioning allows
the filter to adjust the background error variance in response
to recently observed rainfall amounts and to make more
informed decisions regarding the appropriate weighting of
new observations. Note that both cases 1 and 2 calibrate Q
and R using a consistent �-whitening approach (see section
3.3). As a result, the differences noted between case 1 per-
formance and case 2 performance can be attributed directly
to the introduction of nonzero 
 in (12). In contrast, case 3
drops � whitening altogether and instead estimates S on the
basis of the TC approach described in section 3.3. This
change improves case 3 R2 results relative to case 2.

[34] In summary, moving between cases 1, 2, and 3 in
Figure 2 produces continual improvement in rainfall R2

with gauge data. However, the transition between cases 2
and 3 is also associated with a slight increase in rainfall
accumulation RMSE. An additional consideration is that
the implementation of cases 2 and 3 requires the additional
parameter 
 and the outside specification of Q (previously
fixed via � whitening in C09 and case 1; Table 1). How-
ever, a preliminary sensitivity analysis suggests that case 3
performance is relatively insensitive to both parameters
(Table 3). The lack of sensitivity to Q is not surprising
since during high-precipitation periods most of the API
forecast covariance T� is now created by the 
P02 term in
(12), with the Q term assuming a secondary role. Likewise,
the lack of sensitivity to 
 would seem to indicate that even
a low value of 
 produces sufficiently high T� in (12) to
produce essentially direct insertion conditions for the Kal-
man filter (i.e., K ¼ 1) during periods of significant rainfall.
Whatever the cause of this insensitivity, Table 3 suggests
that even a rough parameterization of 
 and Q is adequate
for good case 3 performance.

[35] Improvements in rainfall accuracy noted in Figure 2
also vary spatially with land cover type. Over CONUS, Fig-
ure 3 plots 1� changes in RMSE and R2 realized upon appli-
cation of the C09, case 1, case 2, and case 3 algorithms.
Within heavily vegetated areas the C09 baseline demon-
strates no net R2 improvement (and even modest degrada-
tion). However, steady incremental improvement (i.e.,

higher R2) is associated with the implementation of all
three modified cases, with the largest improvements occur-
ring between C09 and case 1 in the Pacific Northwest and
cases 2 and 3 in eastern CONUS (Figure 3). As noted
above, the transition between cases 2 and 3 is also associ-
ated with a slight CONUS-wide increase in RMSE.

5.2. Impact of Filtering Modifications (Categorical
Measures)

[36] Figure 4 provides an alternative evaluation of cases
1, 2, and 3 using nonparametric categorical measures based
on defining a storm ‘‘event’’ as 3 day rainfall accumulations
in excess of a given threshold. Defining H to be the number
of such events successfully predicted by a given rainfall
product (out of NE total events), F to be the number of non-
events erroneously predicted, and M to be the number of
actual events that were missed, the false alarm ratio (FAR),
probability of detection (POD), and threat score (TS) are
defined as

FAR ¼ F
H þ F

; ð22Þ

POD ¼ H
H þM

; ð23Þ

TS ¼ H
H þ F þM

: ð24Þ

A perfect accumulation time series yields FAR ¼ 0, POD
¼ 1, and TS ¼ 1. Note that TS provides an integrated mea-
sure of categorical performance that is sensitive to both the
probability that a given event is detected and the probabil-
ity that a predicted event occurs.

[37] These metrics can be calculated for a range of 3 day
accumulation thresholds used to define a storm event. Fig-
ure 4 shows changes in FAR, POD, and TS upon imple-
mentation of the C09, case 1, case 2, and case 3 algorithms.
As before, accumulation values obtained from the CPC uni-
fied rain gauge analysis are used as benchmark truth. For
each 1� CONUS box, all 3 day periods with a (CPC-based)
cumulative rainfall accumulation of 2 mm or greater are
ranked according to their 3 day accumulation total. Note
that the 2 mm baseline is motivated by known deficiencies
in the quality of CPC rain and no-rain predictions at low
accumulation thresholds [Janowiak et al., 2004]. Using this
ranked list of 3 day accumulation totals, threshold percen-
tiles on the x axis of Figure 4 are translated into a specific 3
day rainfall accumulation threshold for each 1� CONUS
box. Results plotted in Figure 4 represent the CONUS-wide
average for the change in 3B40RT FAR, POD, and TS met-
rics for an event threshold defined by each percentile level.

[38] The use of CONUS-wide averages provides a rela-
tively stringent test since it forces various approaches to
attempt rainfall correction over a wide range of land cover
classes, many of which are ill suited for soil moisture
remote sensing at the X band (10.6 GHz) [Njoku et al.,
2003]. Partly as a consequence, two problems are evident
in categorical results for the C09 baseline algorithm pre-
sented in Figure 4 (black lines). First, the application of the
C09 algorithm tends to reduce the probability that very

Table 3. Incremental Filtering Modification Cases

Case Name Description

C09 Crow et al. [2009] baseline
Case 1 C09 plus soil moisture rescaling

modification in (10)
Case 2 Case 1 plus background error fore-

casting modification in (12)
Case 3 Case 2 plus filter calibration modifi-

cation in (14)
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large events will be detected (i.e., it produces negative
�POD for threshold percentiles greater then 80% in Figure
4b). Conversely, the C09 algorithm overestimates the fre-
quency of low-intensity rainfall events (i.e., it produces
positive �FAR for threshold percentiles less than 50% in
Figure 4a). POD problems at high accumulation thresholds
are likely an inherent problem with any soil moisture-based
correction scheme. Large events typically produce more
rainfall than is needed to saturate surface soil moisture lev-
els. Consequently, their magnitude cannot be unambigu-

ously inferred from subsequent soil moisture dynamics. As
a result of this saturation effect, the C09 algorithm tends to
be overly skeptical of high-intensity events in the 3B40RT
data set and is too aggressive in correcting them back to
lower accumulation amounts. While this skeptical bias aids
in reducing FAR, it also harms POD for high-threshold
events. Conversely, FAR problems at low thresholds occur
primarily when positive temporal trends in �� caused by re-
trieval error noise are misidentified as low-intensity rainfall
events.

Figure 3. Improvement in 3B40RT RMSE and R2 (3 day accumulations) for the C09 baseline, case 1,
case 2, and case 3 algorithms. Note that � RMSE is normalized by the uncorrected 3B40RT RMSE in
each 1� grid box to create a unitless variable. The color bar is constructed so that blue (red) shading
always indicates improvement (degradation) relative to the uncorrected 3B40RT product.
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[39] As a result of these shortcomings, the C09 algorithm
fails to uniformly improve TS for all event thresholds (Fig-
ure 4c). While the complete elimination of both low-thresh-
old POD and high-threshold FAR problems is difficult,
both shortcomings can be progressively minimized by
implementing the filtering modifications described in sec-
tion 3. In particular, case 3 results show simultaneous
improvement to both FAR results at low thresholds (Figure
4a) and POD problems at high thresholds (Figure 4b). As a
result, it succeeds in improving TS across the entire range
of thresholds examined in Figure 4. Qualitatively similar
improvements are seen when TS is replaced with either the
equitable threat score [Mason, 2003] or the hit rate (H/NE)
categorical metric.

5.3. Additional Filtering Modifications
[40] However, not all potential filtering modifications to

the C09 baseline approach lead to improved accumulation
predictions. Section 3.3 describes alternative ENKF- and
PF-based correction approaches that allow rainfall errors to
be generated via multiplicative perturbations sampled from
a lognormal distribution (as opposed to the additive, Gaus-
sian basis of the C09 baseline algorithm). In Figure 5 (as in
Figure 2), uncorrected 3B40RT products are associated
with relatively large 3 day accumulation errors (black
circle). A substantial fraction of this error is removed by

applying the KF-based case 3 algorithm. Figure 5 also
shows the impact of swapping out the KF core of case 3
and replacing it with either a PF or ENKF capable of cap-
turing multiplicative rainfall errors (see section 3.4). Here
ensemble size (N) is set equal to 2000, and a range of
choices for � in (15) are tested. A large value of N is inten-
tionally chosen to insulate PF and ENKF results against en-
semble sampling errors. Nevertheless, no added benefit is
associated with either the PF or ENKF modification for any
reasonable choice of �. This suggests that at the relatively
coarse time and space scales considered here (3 day and
1�), there is no benefit in replacing the Gaussian error
model at the core of the C09 algorithm.

[41] A final filtering simplification in C09 is the exclu-
sive reliance on a one-dimensional filtering approach
whereby rainfall accumulations in a given grid box are
updated only via �� retrievals in that particular box and no
consideration is paid to the lateral (i.e., grid box to grid
box) transfer of information. In order to quantify the poten-
tial value of retrievals in neighboring grid boxes, a test
case was constructed in which the analysis increments
additively applied to rainfall (i.e., � in (9)) were calculated
using a weighted average of analysis increments for a cen-
tral 1� grid box (spatially corresponding to the rainfall time
series being corrected) as well as increments calculated for
the eight grid boxes immediately surrounding it. Despite
applying a wide variety of relative weights to these sur-
rounding grid boxes, this modification did not produce a
discernible improvement relative to the C09 baseline case
of placing all weight on analysis increments calculated for
the center 1� grid box (not shown). This result implies thatFigure 4. Change in (a) false alarm ratio (FAR), (b) prob-

ability of detection (POD), and (c) threat score (TS) for the
C09 baseline, case 1, case 2, and case 3 algorithms and a
range of 3 day accumulation thresholds.

Figure 5. CONUS-averaged RMSE and R2 for 3 day
3B40RT accumulations and case 3–corrected accumula-
tions based on a Kalman filter (KF), ensemble Kalman filter
(ENKF), and particle filter (PF) implementation of case 3
(and various choices of �).
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one-dimensional data assimilation approaches are adequate
at 1� spatial resolution.

5.4. Impact of Modeling Modifications
[42] The baseline C09 rainfall correction algorithm also

utilizes a simple soil moisture forecasting model. The physi-
cal realism of the model should impact the accuracy of the
rainfall correction approach. For instance, errors associated
with the inaccurate modeling of evapotranspiration should
ideally be minimized (or compensated for) before they are
misattributed to rainfall uncertainty. Given the known de-
pendence of evapotranspiration on air temperature (Ta) and
PET, the alternative parameterization of �0 presented in (20)
and (21), which explicitly take into account Ta and PET var-
iations, should aid in the modeling of soil moisture dynam-
ics. In both equations, the sensitivity of �0 to Ta and PET
temporal anomalies is controlled by a single parameter
(�PET or �Ta ). Values of zero for these sensitivity parame-
ters cause the parameterization of �0 to fall back on (2).
Increasing �PET or �Ta gradually enhances the amount of
influence that PET and Ta anomalies have on �0 and thus the
API time series that forms the basis of the rainfall correction
approach. For the case 3 algorithm, Figure 6 describes the
impact of �PET and �Ta on the net improvement of cor-
rected rainfall R2 versus the CPC unified benchmark. In
contrast to expectations, nonzero values of �Ta and �PET
are associated with a general reduction in R2 improvement.
Consequently, no added value is associated with the inclu-
sion of Ta and PET anomaly information in (2).

[43] A second change associated with a more complex
land surface model is the imposition of a maximum soil
water capacity on modeled soil moisture values (in contrast
to the unbounded API model in (1)). Figure 7 examines the
impact of such limits on the performance of the case 3

algorithm. As in Figure 6, 3 day rainfall accumulation pre-
dictions are evaluated on the basis of their R2 fit to the CPC
unified rain gauge analysis. Note that the imposition of any
finite storage capacity in Figure 7 is associated with
degraded algorithm performance. The imposition of a max-
imum capacity results in periods of soil water saturation
and the subsequent loss of antecedent rainfall information
in API forecasts. These results suggest that the degrading
effect of saturation information loss outweighs the benefits
of obtaining a soil moisture time series that realistically
reflects actual soil saturation effects. Similar results are
found for the use of both a PF and an ENKF despite that
fact that the PF is better equipped to handle the nonlinearity
imposed by a finite soil water capacity.

[44] The modeling changes discussed above are admit-
tedly somewhat ad hoc and have not been independently
verified to improve soil moisture predictions. Conse-
quently, Figures 6 and 7 cannot be interpreted to suggest
that (1) is optimal. However, these results suggest that fun-
damental processes that a more complex soil moisture
model would add to (1) (i.e., energy balance control on soil
water loss via (20) and (21) and soil saturation and runoff
generation) do not necessarily enhance the correction of
rainfall accumulations.

5.5. SMART Implementation in CONUS
[45] Hereinafter, case 3 (i.e., the one-dimensional KF

approach of C09 with the three modifications introduced in
sections 3.1, 3.2, and 3.3) is referred to as the Soil Moisture
Analysis Rainfall Tool (SMART). Required SMART pa-
rameters and their assigned values are listed in Table 1.
Note that the alternative use of the ENKF and/or PF
(described in section 3.4) and the modeling modifications
described in section 3.5 are not implemented.

[46] Two factors impacting the additive skill associated
with SMART are the accuracy of uncorrected precipitation

Figure 6. The improvement of CONUS-averaged R2

(�R2) for case 3 results derived with various levels of
�PET and �Ta .

Figure 7. The improvement of CONUS-averaged R2

(�R2) for case 3 results derived using various maximum
antecedent precipitation index (API) capacities. Results are
shown for both the ENKF and PF cases.

W08521 CROW ET AL.: SOIL MOISTURE ANALYSIS RAINFALL TOOL W08521

10 of 15



products and the information assumed to be available for the
calibration of 	 in (9). With regard to the first point, it
should be stressed that the two real-time TMPA products
examined here (3B40RT and 3B42RT) are not based on his-
torically constant methodologies [Huffman et al., 2010]. In
particular, two significant changes have modified the TMPA
real-time product generator: the significant expansion of
input microwave observations in February 2005 and the
modification of the real-time TMPA calibration procedure in
January 2009 (see section 4 for further details). No TMPA
reprocessing of past real-time products was attempted in ei-
ther case. Table 4 uses these two key events to divide the
entire 2002–2009 analysis into three separate time periods:
August 2002 to January 2005, February 2005 to December
2008, and January 2009 to December 2009. General
improvement in the accuracy of both real-time TMPA prod-
ucts is noted between different periods as methodological
advances improve the accuracy of TMPA products. This
improvement in uncorrected TMPA rain accumulation prod-
ucts is also associated with a steady decline in the additive
value of SMART corrections. That is, smaller amounts of
added value are noted as the underlying TMPA rain products
improve. This trend illustrates both the competitive relation-
ship between soil moisture and precipitation retrievals in the
SMART analysis and the enhanced value of SMART for
locations where existing rainfall products are poor.

[47] In addition, all results to this point have been based
on tuning the constant, dimensionless parameter 	 in (9) to
minimize the long-term RMSE difference between
SMART rainfall products and the benchmark CPC unified
rain gauge analysis. Since it presumes the retrospective
availability of relatively good daily rain gauge data, this
‘‘optimal 	’’ strategy may be difficult to implement in data-
poor areas. As a way forward, Crow et al. [2009] suggest
two additional strategies : (1) calibrating 	 against an inde-
pendent rainfall data set or (2) setting 	 to a globally con-
stant value. While the first strategy tends to yield slightly
better results [Crow et al., 2009], finding truly independent
global precipitation products is difficult ; therefore, results
here will focus on the second strategy of simply fixing
	 ¼ 0:60. Figure 8 describes the impact of this approach on
the application of the SMART algorithm to the 3B40RT,
3B42RT, and 3B42 rainfall products within CONUS.
Uncorrected products are indicated with solid black sym-
bols, and SMART-corrected rainfall utilizing optimal 	 are
indicated using open black symbols. Gray symbols in Fig-
ure 8 show results for the blanket assumption that
	 ¼ 0:60. Relative to the use of an RMSE-optimal 	, this

assumption produces only marginally worse results, and
substantial improvement relative to uncorrected TMPA
products is still observed (Figure 8).

[48] A valuable point of reference for improvement in
rainfall accumulation estimates associated with SMART
are comparable improvements realized upon the incorpora-
tion of other types of observational data. As described in
section 4, the TMPA system generates a cascade of prod-
ucts in which a progressively wider range of observation
types are collectively applied to estimate rainfall accumula-
tions [Huffman et al., 2007]. The 3B40RT product repre-
sents a baseline of using only microwave-based products,
while 3B42RT captures the incremental value associated
with also integrating TIR remote sensing observations.
Likewise, the 3B42 product captures improvements arising
from the use of rain gauge data to bias correct 3B42RT
accumulation estimates on a monthly scale. Within CO-
NUS, the incremental value of incorporating this cascade
of observation types is reflected in the consistent improve-
ment of RMSE and R2 metrics for the 3B40RT, 3B42RT,
and 3B42 products versus the CPC benchmark (see solid
black symbols in Figure 8). Comparable improvements can
also be realized by applying the SMART algorithm. In par-
ticular, within the CONUS domain, results for applying the
SMART algorithm to the 3 day 3B40RT ‘‘microwave-
only’’ product are substantially better, in both a RMSE and
R2 sense, than results for the uncorrected, 3 day 3B42RT
‘‘microwave-TIR’’ product. That is, on average within CO-
NUS, soil moisture information contributes more to 3 day,
1� TMPA rainfall estimates than the introduction of TIR
remote sensing information. Applying the SMART algo-
rithm to the uncorrected 3B42RT microwave-TIR product
also leads to enhanced rainfall accumulation predictions;
however, because of high rain gauge densities in CONUS,
SMART-corrected 3B42RT results cannot match the accu-
racy of the 3B42 ‘‘microwave–TIR–rain gauge’’ product
for 3 day accumulations. Consequently, in densely instru-
mented areas like CONUS, the added value of SMART
lags that provided by monthly rain gauge data.

5.6. Smart Implementation in West Africa
[49] To date, all results (for either SMART or its C09 pre-

cursor) have been for locations within CONUS. While the
availability of the CPC unified rain gauge data set makes
CONUS a good test bed site for SMART, results there do
not speak directly to the operational implementation of
SMART in data-poor areas of the world where soil moisture
observations are likely to have the largest positive impact on
rainfall accumulation estimates. Rainfall data collected dur-
ing the West African AMMA experiment provides an op-
portunity to assess SMART performance in one such region.

[50] After 2002, ERS scatterometer soil moisture obser-
vations are not widely available outside of CONUS and
Europe. This prevents the application of (14) to estimate S.
Therefore, for the AMMA and quasi-global analysis (sec-
tion 5.7) we estimate S on the basis of monthly enhanced
vegetation index (EVI) measurements taken from the
monthly MODIS MYD13C2 product :

Si;j ¼
�API

j

5��j
EVIi;j

 !2

: ð25Þ

Table 4. Impact of TMPA Real-Time Historical Processing
Changes on 3B40RT and 3B42RT Accuracy and the Magnitude of
Improvement Associated with SMARTa

Product Time Period R2 R2 With SMART �R2

3B40RT Aug 2002 to Jan 2005 0.267 0.418 0.152
Feb 2005 to Dec 2008 0.386 0.494 0.108
Jan 2009 to Dec 2009 0.453 0.531 0.079

3B42RT Aug 2002 to Jan 2005 0.337 0.465 0.128
Feb 2005 to Dec 2008 0.458 0.550 0.092
Jan 2009 to Dec 2009 0.450 0.540 0.089

aAll values are for 3 day, 1� accumulations within CONUS. TMPA,
Tropical Rainfall Measuring Mission (TRMM) Multisatellite Precipitation
Analysis.
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This parameterization recognizes the first-order importance
of biomass amount, characterized using EVI, on the level
of error in ��. As a consequence, larger S, and therefore
less weight on � retrievals, is specified for heavily vege-
tated land surfaces.

[51] Table 5 summarizes SMART results for correction
of the TRMM 3B40RT product in AMMA supersites over
Benin, Niger, and Mali shown in Figure 1 using an optimal
	 approach. Results correspond to the June 2002 through
2009 time period for Benin and Niger and the May 2005
through 2009 period for Mali. SMART is able to improve 3
day accumulation RMSE and R2 over all three supersites.
However, as noted above in section 2, it has no impact on
long-term biases at each site. Figure 9 examines the impact
of alternative rain products and 	 estimation techniques by
replicating Figure 8 except that CONUS-wide averages are
now replaced by analogous averages obtained at three
AMMA supersites.

[52] As in CONUS (Figure 8), the alternative strategy
of fixing 	 ¼ 0:60 slightly underperforms the explicit opti-
mization of 	, and SMART-corrected 3B40RT ‘‘micro-
wave-only’’ results are close to the uncorrected 3B42RT
microwave-TIR product in terms of RMSE and R2. This
equivalence suggests that on average among the AMMA
supersites, soil moisture information contributes as much
information to coarse-scale rainfall accumulation estimates
as TIR remote sensing. In addition, because of sparse rain
gauge coverage in West Africa, SMART-corrected
3B42RT microwave-TIR results outperform the 3B42
microwave–TIR–rain gauge product in terms of R2 fit to
AMMA rain gauges. Therefore, over West Africa at 3 day,
1� resolutions, soil moisture data provide as much informa-
tion as satellite-based TIR measurements and, at least for

R2-based evaluations, more information than sparse rain
gauge data ingested by the 3B42 product in the region.
However, SMART-based corrections still lag in terms of
RMSE correction because of long-term biases in the
TRMM 3B42RT product that are corrected via rain gauge
comparisons but neglected by SMART (Table 5).

5.7. Quasi-global SMART Algorithm Implementation
[53] Verification of SMART results in areas lacking

extensive rain gauge data is difficult, but a preliminary
analysis is possible using the TMPA 3B42 product as a
source of ground truth. Here SMART is evaluated on the
basis of its ability to correct real-time, satellite-only
3B40RT accumulations to more closely resemble the retro-
spective, gauge-corrected 3B42 product. Figure 10 illus-
trates such comparisons by plotting the impact on RMSE
and R2 for 3 day 3B40RT accumulation estimates between
50�S and 50�N. Figure 10 (top) shows results based on the
optimization of 	 assuming the availability of the entire
3B42 retrospective data set. Since such historical data may
not be available in many operational circumstances, Figure

Table 5. Impact of Applying SMART to the Correction of 3 Day
TRMM 3B40RT Rainfall Accumulation Products Over the Three
AMMA Supersites in Figure 1a

Site Product R2 RMSE (mm) Bias (mm)

Mali 3B40RT 0.286 11.89 2.22
3B40RT þ SMART 0.489 9.23 2.22

Niger 3B40RT 0.284 21.77 5.79
3B40RT þ SMART 0.414 16.15 5.79

Benin 3B40RT 0.510 16.77 4.75
3B40RT þ SMART 0.573 14.63 4.75

aAMMA, African Monsoon Multidisciplinary Analysis.

Figure 8. CONUS-averaged RMSE and R2 for case 3–corrected 3 day accumulations associated with
various Tropical Rainfall Measuring Mission (TRMM) Multisatellite Precipitation Analysis (TMPA)
products and 	 strategies.
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10 (bottom) show similar results obtained for the fixed
	 ¼ 0:60 case. Regardless of the method applied to esti-
mating 	, relative RMSE changes demonstrate almost uni-
form improvement. While large R2 improvement is
generally limited to lightly vegetated areas (e.g., the west-

ern United States, the Iberian Peninsula, the Middle East,
and Australia), even densely vegetated areas show either
small improvements or no net change.

[54] It is worth noting the impact of uncertainty in the
3B42 product used as the benchmark in Figure 10. When

Figure 9. AMMA site-averaged RMSE and R2 for case 3–corrected 3 day accumulations associated
with various TMPA products and 	 strategies.

Figure 10. Quasi-global impact of SMART on the correction of 3 day 3B40RT accumulation products
relative to 3B42. Results are shown for the estimation of 	 using fitting against both 3B42 and the fixed
case of 	 ¼ 0:60. � RMSE is normalized by the uncorrected 3B40RT RMSE, and the color bar is con-
structed so that blue (red) shading always indicates improvement (degradation) relative to the uncor-
rected 3B40RT product.
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results are averaged across all three AMMA supersites,
application of SMART to the 3B40RT data set improves
the R2 fit of 3 day accumulations to the AMMA baseline
(for the optimal 	 case) by about 0.13 (Figure 9). Changing
only the benchmark rain gauge data from AMMA rain
gauge observations to the lower-quality 3B42 product
reduces the apparent R2 improvement to less than 0.01.
This reduction suggests that our ability to observe incre-
mental improvement associated with SMART is partially
dependent on the availability of relatively accurate bench-
mark rain gauge observations for evaluation. Therefore, in
poorly instrumented areas of the world, the improvements
seen in Figure 10 are likely conservative (i.e., larger
improvements would likely be noted if higher-quality refer-
ence data were available for verification).

6. Summary and Conclusions
[55] This analysis improves upon the rainfall correction

algorithm presented by Crow et al. [2009] and broadens its
application to areas outside of CONUS. Specific modifica-
tions made to the soil moisture scaling (section 3.1), rainfall
error parameterization (section 3.2), and filter calibration
(section 3.3) components of the core data assimilation sys-
tem led to substantial improvements in the ability of the
algorithm to correct coarse-scale rainfall accumulation prod-
ucts (Figures 2, 3, and 4). However, no improvement was
associated with the incorporation of non-Gaussian rainfall
errors and/or the application of ENKF and PF sequential
filters (Figure 5). In addition, prospects for improving cor-
rections using a more complex land surface model are
uncertain given the lack of apparent value for more complex
evapotranspiration modeling approaches (Figure 6) and
challenges associated with basing the algorithm on a multi-
layered model with finite soil water capacities (Figure 7).

[56] On the basis of these results, the optimal set of mod-
ifications identified in Figures 2–7 were formalized into the
Soil Moisture Analysis Rainfall Tool (SMART) and
applied to TMPA data products within CONUS and
AMMA West African super-sites. For both locations,
coarse-scale rainfall accumulation improvements associ-
ated with SMART implementation were shown to be as
large, if not larger than, comparable improvements based
on the integration of TIR satellite observations into a multi-
satellite rainfall product (Figures 8 and 9). In addition, for
sparsely gauged regions of West Africa, SMART provides
more R2 correction than reprocessing to match monthly
rain gauge totals (Figure 9). It should be stressed that these
assertions of relative value are valid only for the particular
spatial and temporal scales examined here (3 days and 1�).
TIR satellite products, for instance, would almost certainly
have greater relative value if rainfall accumulation esti-
mates were evaluated at finer spatial and temporal scales.
Nevertheless, these results demonstrate that remotely
sensed surface soil moisture sensors should be considered a
viable input into multisensor precipitation data products
based on a backbone of TRMM or GPM observations.
When applied at a quasi-global domain between 50�S and
50�N, SMART offers nearly uniform improvement to real-
time TMPA rainfall products (Figure 10).

[57] Despite the methodological advances presented
here, a number of other potential approaches exist to incor-

porate soil moisture information into rainfall estimates. For
instance, Pellarin et al. [2009] report good results over
West Africa using a data assimilation system to tune event-
scale multiplicative factors for satellite-based rainfall accu-
mulations so that C band (6.9 GHz) TB predictions made by
a simple water balance model and microwave emission
algorithm match observed TB. Relatively little is known
about the relative benefits of SMART versus such an
approach. It is also worth considering how results in Figure
7 (which demonstrate the degrading impact of imposing a
finite soil capacity) might vary when (1) is replaced by a
more complex, multilayer land surface model. In a multi-
layer soil water balance model, antecedent rainfall informa-
tion is not strictly lost during periods of surface saturation
but rather transferred into either surface runoff or drainage
flux. Therefore, some additional benefit could be gained by
implementing the flux correction algorithm of Pan and
Wood [2007] to explicitly update runoff (in addition to soil
moisture states) in more complex land surface models.
Likewise, our approach for conditioning API with uncer-
tain precipitation estimates (section 3.2) remains relatively
simple and may benefit from existing approaches for gener-
ating realistic stochastic rainfall replicates conditioned on
satellite observations [e.g., Wojcik et al., 2009]. Finally,
while preliminary evidence (see section 5.3) suggests that
it does not lead to large improvements, the implementation
of two-dimensional filtering approaches has not been fully
explored. Future work should be aimed at exploring these
issues and possibilities.

[58] The amount of improvement associated with soil
moisture–based corrections is directly proportional to the
accuracy of soil moisture retrievals and inversely propor-
tional to the accuracy of the precipitation product being
corrected (see, e.g., Table 4). Satellite-based precipitation
estimates are expected to become significantly more accu-
rate as the deployment of the GPM constellation unfolds.
Likewise, the future use of low-frequency SMAP (and/or
the European Space Agency Soil Moisture Ocean Salinity
Mission) L band (1.4 GHz) observations, as opposed to X
(10.6 GHz) and C band (6.9 GHz) observations available
from current satellite sensors, will minimize the degrading
effect of both atmospheric and vegetation canopy water on
soil moisture retrievals and extend the range of circumstan-
ces under which retrievals can be accurately obtained [Kerr
et al., 2001]. Consequently, future trends in the additive
value of SMART will likely be based on the interplay
between these two accuracy trends.
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