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Compagnie Nationale du Rhône, Direction de l’Energie, Lyon, France

ABDELATIF DJERBOUA

RHEA, Nanterre, France

(Manuscript received 3 January 2011, in final form 10 October 2011)

ABSTRACT

Heavy-rainfall events are common in southern France and frequently result in devastating flash floods.

Thus, an appropriate anticipation of future rainfall is required: for early flood warning, at least 12–24 h in

advance; for alerting operational services, at least 2–3 days ahead. Precipitation forecasts are generally

provided by numerical weather prediction models (NWP), and their associated uncertainty is generally es-

timated through an ensemble approach. Precipitation forecasts also have to be adapted to hydrological scales.

This study describes an alternative approach to commonly used limited-area models. Probabilistic quanti-

tative precipitation forecasts (PQPFs) are provided through an analog sorting technique, which directly links

synoptic-scale NWP output to catchment-scale rainfall probability distributions. One issue concerns the latest

developments in implementing a daily version of this technique into operational conditions. It is shown that

the obtained PQPFs depend on the meteorological forecasts used for selecting analogous days and that the

method has to be reoptimized when changing the source of synoptic forecasts, because of the NWP output

uncertainties. Second, an evaluation of the PQPFs demonstrates that the analog technique performs well for

early warning of heavy-rainfall events and provides useful information as potential input to a hydrological

ensemble prediction system. It is shown that the obtained daily rainfall distributions can be unreliable. A

statistical correction of the observed bias is proposed as a function of the no-rain frequency values, leading to

a significant improvement in PQPF sharpness.

1. Introduction

Catchments of southern France are regularly subject

to flash floods generated by intense-rainfall events—

generally in the autumn (i.e., from September to Decem-

ber). Thus, flood forecasting requires an appropriate

anticipation of future rainfall: to issue an early flood

warning, at least 12–24 h before the event; to alert op-

erational or safety services, at least 2–3 days ahead. Such

quantitative precipitation forecasts (QPF) are generally

provided by numerical weather prediction (NWP) models

or systems. The chaotic atmospheric processes imply

that uncertainty is intrinsic to meteorological fore-

casting, but NWP systems also introduce uncertainties

associated with the dynamical and physical representa-

tion of the atmosphere, especially related to subgrid pa-

rameterizations. Another source of uncertainty arises

from the characteristics of our hydrological targets: in

our flash-flood context, we are concerned with small to

midsized catchments (100–1000 km2) in mountainous or

Mediterranean regions. Medium-range NWP systems are

generally run at coarse vertical resolution, smoothing the

topography, and provide QPFs on grids at horizontal res-

olutions from 15 up to 30 km, which is often inadequate

for such catchments. Thus, it is preferable for precipita-

tion forecasts to be probabilistic (PQPF), so as to express

related uncertainty. These PQPFs can be given either in

the form of probabilities of exceeding a given precipitation
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threshold or as precipitation amounts by percentiles. The

latter form is considered here, and PQPFs are given in

terms of cumulative distribution functions of precipita-

tion amount.

The most common source of PQPFs comes from en-

semble prediction systems that expand the classical

deterministic approach by taking into account the ini-

tial conditions and the model uncertainties (Kalnay

2003; Leutbecher and Palmer 2008). Such systems are

operational at the Canadian Meteorological Center

(Houtekamer et al. 1996), at the National Centers for

Environmental Prediction (NCEP; Toth and Kalnay 1997),

and at the European Centre for Medium-Range Weather

Forecasts (ECMWF; Molteni et al. 1996; Buizza et al.

2007). They can eventually be coupled with a limited-area

model (LAM) to provide meteorological ensemble fore-

casts at lower spatiotemporal scales; in general, only a few

representative members of ensemble prediction systems

are put into a LAM (Marsigli et al. 2001, 2005; Brankovic

et al. 2008). Such an approach adds additional sources of

uncertainty due to the coupling of two meteorological

models and because of the LAM’s own uncertainty.

Nevertheless, such ensemble prediction systems require

a large amount of numerical resources, and, even if the

ensemble members provide useful information about

future rainfall and its uncertainty, ensemble forecasts

are frequently biased and underdispersive, especially for

precipitation.

Local-scale forecasts can also be obtained by statistical

postprocessing of NWP output, with the advantage that

these statistical methods generally correct a substantial

part of the bias. Multiple linear regression is a widely used

method for generating high-resolution forecasts (e.g.,

Murphy 1999; Wilby et al. 2003). Other methods aim at

reconstructing the subgrid spatiotemporal variability

from NWP by providing PQPFs at spatiotemporal scales

required by hydrological modeling. These include the

Schaake shuffle of Clark et al. (2004) and the analog

sorting technique proposed by Obled et al. (2002). We

have recently seen a growing interest in this latter tech-

nique, which adapts well-forecast synoptic variables issued

by meteorological models to provide a conditional distri-

bution for more local variables like the expected rainfall

(Bliefernicht and Bárdossy 2007; Gibergans-Báguena

and Llasat 2007; Diomede et al. 2008). Also, Hamill et al.

(2006, 2008) highlight that statistical calibration of NWP

output can also be done to improving NWP predictive

skill by using a long set of reforecasts.

In this paper, the focus will be on an improved version

of the analog technique proposed by Bontron and Obled

(2005), adapted for midsized catchments of southern

France and described in section 2. Section 3 details further

developments required to implement the most-recent

version into an operational context. Then, in section 4,

PQPFs provided in real time are assessed as early-

warning predictors, as well as potential input for hydro-

logical ensemble prediction systems. Section 5 is devoted

to reliability evaluation and correction of the internal

bias of the analog method.

2. An analog approach adapted to flash-flood
catchments

a. Flash-flood catchments in the Cévennes-Vivarais
region

Although the approach proposed hereinafter is gen-

eral, this study will focus on six flash-flood-prone catch-

ments in the Cévennes-Vivarais region (see details in

Fig. 1 and Table 1). These catchments are part of the

Cévennes-Vivarais Mediterranean Hydrometeorological

Observatory (CVMHO; see online at http://www.ohmcv.fr;

Delrieu et al. 2005), which collects the observed data

and supports research to improve understanding of in-

tense events.

FIG. 1. Considered flash-flood catchments in the Cévennes-Vi-

varais region. Rain gauges are shown by a blue flag, and catchment

boundaries are in red. Shown from north to south are Ardèche,

Chassezac, Cèze, Gardon at Alès, Gardon at Anduze, and Vidourle

(from SEVnOL; Boudevillain et al. 2011).
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b. General principles of the analog sorting approach

The analog sorting approach considers a given tar-

geted situation, characterized by some synoptic meteo-

rological fields, and attempts to provide a probability

distribution of some local variables, such as catchment-

averaged rainfall, conditional to the given synoptic sit-

uation. The targeted situation may be a past situation,

for which the synoptic situation is known but the rainfall

is lacking (reconstruction or gap filling of past data), or,

as in our case, it is a future situation, for which a more or

less reliable synoptic forecast is available but the cor-

responding rainfall is unknown and has to be predicted.

To do that, the method assumes that 1) synoptic situa-

tions similar to the targeted one have been observed in

the past, 2) local variables are linked to synoptic ones,

and 3) variability due to the local effects is contained

in the observed rainfall archive. The selected synoptic

variables have to be well forecast by meteorological

models and, of course, physically interrelated with the

local variable that is to be forecast, here catchment-

averaged rainfall. The forecast synoptic fields of the

targeted situations are first compared with the past ones.

The similarity is determined by an analogy criterion

applied over a given analogy domain. Thus, a cluster of

the best similar situations is extracted. Precipitation

values collected during those past situations over each

catchment of interest provide a sample that is directly

defined at the catchment hydrological scale. This allows

one to derive the expected conditional rainfall distri-

bution for the targeted situation. Last, a classical prob-

ability model can be fitted on the different samples

(here, a gamma law has been chosen). The method re-

quires that both a long meteorological archive and the

concurrent rainfall archive be available.

c. Optimized algorithms and performance in
perfect-prognosis conditions

Bontron and Obled (2005) have developed the ana-

log method for midsized catchments in mountainous

regions and hilly landscapes. Only results correspond-

ing to flash-flood catchments in the Cévennes-Vivarais

region are detailed in this paper. The optimization of

the method was performed in perfect-prognosis con-

ditions. This means that target and analog situations

are extracted from the same archive, here made up

of NCEP–National Center for Atmospheric Research

(NCAR) reanalyses (Kalnay et al. 1996), laying down

the constraint that an analog situation cannot belong

to the same year as the target situation to avoid se-

lecting as the best analog of a situation the situation

itself. The meteorological archive considered here

covers the period 1953–2001. Two algorithms have

been elaborated by Bontron and Obled (2005) and are

summarized in Fig. 2. The first one, called ana24-M2,

uses a single level of analogy that is based on geo-

potential fields only. The second one, called ana24-M3,

TABLE 1. Study catchment descriptions.

Catchment Area (km2) Alt (m)

Ardèche at Vogüé 635 140–1467

Cèze at Tharaux 665 115–1580

Chassezac at Gravières 498 172–1680

Gardon at Alès 316 123–1347

Gardon at Anduze 545 132–1567

Vidourle at Sommières 618 27–960

FIG. 2. Schema of one- and two-level algorithms of the analog approach.
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completes the selection of analog situations extracted

at the first level with a second level of analogy based on

more local information from humidity fields, namely

the product of precipitable water available (PW) and rel-

ative humidity at 850 hPa (RH850). Precipitable water

gives information about the absolute amount of water

vapor content in the atmospheric column, and the rela-

tive humidity adds information on how close the air is to

saturation and then on how water vapor tends to con-

dense. The combination of these two meteorological

variables has been shown by Bontron and Obled (2005)

to be a better explanatory variable than PW itself.

The first algorithm, ana24-M2, considers a domain

that has been optimized over southern Europe (37.58–

47.58N, 98W–158E) with a 2.58 grid. It selects the most

similar situations according to the Teweless–Wobus or

S1 score (Jolliffe and Stephenson 2003), which evaluates

the similarity in shape of geopotential fields:

S1 5 100 3

�
i
jDx̂i 2 Dxij

�
i

max(jDx̂ij, jDxij)
, (1)

where the sums are determined over the analogy grid. In

Eq. (1), Dx̂i and Dxi are, respectively, the forecast pressure

difference and the candidate analog pressure difference

for the ith pair of adjacent points. The S1 value is equal to

0 for identical fields and is 200 for totally opposite fields;

small values of S1 are desirable. In perfect-prognosis con-

ditions, the optimum number of analogs to retain by the

ana24-M2 algorithm has been optimized to 30.

The second algorithm, ana24-M3, first selects the best

60 analog situations following the same algorithm as in

ana24-M2. Then, it applies a second level of analogy on

humidity fields over a smaller analogy domain (42.58–

458N, 2.58–58E), where again the 30 most-similar situa-

tions are extracted from the 60 best situations retained

at the first level. This time, the chosen similarity crite-

rion for humidity is the root-mean-square error (RMSE)

(Jolliffe and Stephenson 2003) and is applied locally on

the four nearest grid points surrounding the targeted

catchments:

RMSE 5

�
1

4
�

4

i51
(x̂i 2 xi)

2

�1/2

, (2)

where x̂
i

and x
i

are respectively the forecast and the

candidate analog values at the ith point of the humidity

field.

For both algorithms, the search for similar situations is

restricted to a 4-month period around the target forecast

date to cope with seasonal effects. For each selected

analog situation, the corresponding catchment-averaged

rainfall is extracted from the hydrological archive, and

the resulting sample allows one to build an empirical

rainfall distribution that constitutes the PQPF provided

by the analog method. In fact, PQPFs are given in terms

of a transformed variable R, defined as

R 5 (P/P10)1/2, (3)

where the P are the analog precipitation values, P10

is the catchment-averaged 10-yr return-period rainfall

amount estimated by extreme values analysis (EVA)

on the hydrological archive data by classical methods

(e.g., Gumbel 1958; Castillo 1988), and the R are the

transformed precipitation values. The division by P10 is

a form of adimensional scaling that allows comparison

between catchments that are different in size and/or cli-

matological characteristics, and the square root reduces

the skewness of the rainfall distribution.

Last, the empirical PQPFs are fitted by a gamma law

with two parameters (l and r) adjusted on the strictly

positive transformed rainfall values, conditional to the

empirical no-rain frequency value:

F(r) 5 F(0) 1 [1 2 F(0)]F
1

(r, l, r), (4)

with

F
1

(r, l, r) 5
1

G(l)

ðr

0
e2z/r z

r

� �
l21

dz. (5)

In the previous two equations, F(r) is the cumulative

transformed rainfall distribution, F(0) is the frequency

of no rain, F1 is the cumulative distribution of strictly

positive transformed rainfall values, r are the trans-

formed rainfall values, l and r are the adjusted gamma-

law parameters, and G is the gamma function of l.

All of the ingredients in this analog approach—that

is, the retained predictive variables, the shape and the

position of the synoptic-fields analogy windows for

the synoptic fields, and the number of retained analog

situations—result from an intensive calibration by learn-

ing from the past archive. For that, the performance has

been evaluated by the continuous ranked probability

skill score (CRPSS) derived from the continuous ranked

probability score (CRPS) as shown in Eqs. (6) and (7)

below. As described by Jolliffe and Stephenson (2003),

this score assesses the proposed rainfall distribution or

PQPF as a whole in comparison with the observed rainfall.

The CRPSS value represents the prediction gain provided

by the analog-based PQPFs relative to a reference prob-

abilistic forecast, taken here as the climatological rainfall

distribution given on each considered catchment:
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CRPS 5
1

N
�
N

j51

ð‘

0
[Fj(x) 2 H(x, xo

j )]2 dx, (6)

where N is the number of issued forecasts, Fj is the

probability of occurrence of the transformed precipi-

tation x value, xo
j is the transformed rainfall observation

value, and H(x, xo
j ) is the Heaviside function, equal to 1

if x $ xo
j and 0 otherwise. So,

CRPSS 5 1 2
CRPS

CRPSclim

, (7)

where CRPSclim is the CRPS obtained by taking for F(x)

the climatological rainfall distribution calculated on the

basis of the observed rainfall archive values [once again,

after transforming the observed values P into trans-

formed values R, following Eq. (3)].

In perfect-prognosis conditions and for the whole

period 1953–2001 (taking into account all days), the

CRPSS, averaged over all catchments, is 39.0% for the

analog method ana24-M2; the ana24-M3 algorithm

increases the performance up to 42.7%. These results

outline that the analog approach is a very useful ad-

aptation method for estimating precipitation at catch-

ment scale in perfect-prognosis conditions. The next

section is devoted to the assessment of the analog-based

statistical adaptation’s skillfulness in predicting rainfall

distributions in a real-time context.

3. The ‘‘RainFAST’’ system: Toward operational
PQPFs

a. Adaptation to real-time forecasts

Up to now, the analog approach has been developed

and optimized in perfect-prognosis conditions. When

moving to real-time forecasts, the first choice to be

made is to select the NWP model from which the me-

teorological forecasts will be collected. In the ideal

case, these forecasts should be issued by the same

model as the one used to provide the reanalyses that

constitute the meteorological archive, at the same

spatial and temporal resolutions. This would guarantee

that the statistical structures of both the reanalyzed

situations in the archive and the forecast ones would be

similar. The NWP model will have different forecast

performance depending on the choice of the lead time

and the considered synoptic variables. For example,

the model may be reasonably good at predicting the

geopotential fields at lead times of 5 or 7 days whereas

it may lose its capacity to predict relative humidity

fields beyond 2 or 3 days only. These two aspects—1)

the consistency between the synoptic fields provided by

the forecast and those in the meteorological archive

and 2) the decrease in the performance of the NWP

model with increasing lead time—may influence the

efficiency of the analog approach for successive lead

times. Therefore, some further optimization and learn-

ing in true forecast conditions are necessary.

Long archives of forecasts are not readily accessible,

however, not to mention that NWP model versions

are changing very often. In our case, the most readily

available archive of meteorological forecasts was that

proposed by ECMWF. It was derived from the En-

semble Prediction System (EPS), which is made of 51

members, including a deterministic or control forecast

(Molteni et al. 1996). We have collected an EPS-based

forecast archive for a 5-yr period (1997–2001), in which

the forecasts associated with each targeted day are

considered up to 10 days ahead (from 0 to 240 h ahead),

with a 12-h time step. The extracted variables are those

selected in the previous optimization process, that is,

the 1000- and 500-hPa geopotential fields, relative hu-

midity at 850 hPa, and total column precipitable water

(Thévenot 2004).

1) HOW DO THE FORECAST PREDICTIVE

VARIABLES DEPEND ON THE CHOSEN NWP
MODEL AND ON THE LEAD TIME?

EPS is proposed by ECMWF at a finer spatial reso-

lution than NCEP–NCAR reanalyses (1.1258 during

1997–2000 and 0.78 during 2000–01 vs 2.58, respectively).

Therefore, because the continental topography is better

resolved in the ECMWF simulations, EPS is potentially

more informative than NCEP–NCAR reanalyses are,

even after having aggregated them at the same spatial

resolution (i.e., 2.58), as we did. Indeed, a comparison

of the NCEP–NCAR reanalyses and the forecast EPS

control member issued on the same day has been per-

formed to detect a possible dependency of the analog-

based PQPFs on the source of meteorological forecasts.

The comparison has been made over the whole period

1997–2001. For a given date (e.g., 1 January 2000), we

have the EPS situations, either analyzed at 0000 UTC or

forecast for 1, 2, or more days in advance. In the ideal

situation, when we search the NCEP–NCAR reanalyses

for the most similar situation to that analyzed by the

EPS, we get the same date (here 1 January 2000). When

we move to what EPS has forecast for the 1-day lead

time, and if we look at the most similar situation in the

NCEP–NCAR archive, we expect to find the day im-

mediately after (i.e., 2 January 2000), and this is most

generally the case, because at 1-day lead time the EPS

forecast is very good and is consistent with the true sit-

uation observed (and reanalyzed) as it appears in the

NCEP–NCAR archive for 2 January 2002. When we
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move to longer lead times (e.g., the 6-day lead time),

then what has been forecast by the EPS model on 1

January 2000 for 7 January 2000 may not match what

has been observed, as it appears in the NCEP–NCAR

archive for 7 January 2000, and we may consider that its

most similar observed situation corresponds to another

date (e.g., 17 February 1999). Figure 3 shows this match-

ing rate when only the geopotential fields are considered

(first-level analogy curve) and when the relative humidity

is added as a predictive variable (second-level analogy

curve). When considering only geopotential fields, there

is no difference between the NCEP–NCAR reanalyses

and the EPS analyses with a lead time equal to 0 (day D):

the best analog is always the day D itself. This behavior

remains similar when 1-day lead-time EPS control mem-

bers are compared with NCEP–NCAR reanalyses (98%

agreement), but the performance decreases with in-

creasing lead time (50% agreement for day D 1 3).

The analogy on 500-hPa fields apparently performs

better than on 1000-hPa fields (not shown in Fig. 3). This

is probably due to the more-precise topography used by

ECMWF. When humidity fields are used for the second

level of analogy, however, the differences between EPS

control members and NCEP–NCAR reanalyses become

immediately more significant. Only 35% of the days during

1997–2001 prove to be analogs of themselves in the two

meteorological archives, even at lead time 0. In fact,

differences in the humidity field statistics explain these

results. For example, the mean value of RH850 calcu-

lated over the whole considered period is 66% with the

EPS forecast but declines to 62% with the NCEP–NCAR

reanalyses, and the standard deviations are respectively

21.5% versus 22.5%. Moreover, the correlation squared

R2 between the two sources is only 0.8.

This shows that the implementation of the analog ap-

proach is dependent on the selected NWP model, first

because of a possible departure in the consistency be-

tween the same fields, either reanalyzed or forecast by

the model (differences in resolutions and/or parameteri-

zation), and second because of its own decay in perfor-

mance with lead time.

2) REOPTIMIZATION OF THE ANALOG APPROACH

FOR REAL-TIME APPLICATIONS

The available forecast archive is too short for reoptimiz-

ing the whole analog approach, that is, to reconsider which

are the best predictive variables, the best analogy windows,

and the best hours of observations. Thus, these parameters

were kept as selected in the perfect-prognosis learning

context and only the decay in performance with extending

lead times has been addressed here by reoptimizing the

optimal number of analogs to select. To assess the impact of

lead time on performance, the analog approach was per-

formed each day D and for each lead time, from D up to D

1 10. For each lead time, the number of analogs to select

has been reoptimized, either for the single-level forecast

(ana24-M2, using geopotential only) or the two-level fore-

cast (ana24-M3, using also relative humidity information).

Table 2 highlights that the decay in performance of the

NWP model must be compensated by a progressive and

nonlinear increase in the number of analogs to be re-

tained. Forecasts are less and less accurate with lead time,

and therefore the number of analogs should increase to

account for uncertainty, and the forecast distribution

comes progressively closer and closer to the climatolog-

ical case: for the first lead time, 30 analogs are selected

with the one-level analogy algorithm, representing about

1/200th of the climatological sample; when a 6-day lead

time is considered, up to 860 analogs (one-eighth of the

climatological sample) have to be taken into account for

the two-level analogy. In the case of longer lead times,

forecasts would provide no information and the best

PQPF becomes therefore the climatological distribution of

the catchment-averaged precipitation, which can be em-

pirically approached by selecting all of the members of the

meteorological archive as analogs. Next, although this will

not be detailed here, it appears that the inclusion of rel-

ative humidity information in the second level of analogy

FIG. 3. Percentage evolution with the lead time of the matching

rate between the date proposed by the EPS forecast’s control

member and the date of its best observed analog found in the

NCEP–NCAR archive.

TABLE 2. Evolution of the best number of analogs to select with

lead time.

Lead time (days)

0 1 2 3 4 5 6

One-level analogy 30 30 40 60 120 680 820

Two-level analogy First level 60 60 80 120 230 500 860

Second level 30 30 40 60 170 350 860
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is no longer useful beyond 3 days: although this informa-

tion has proven to be valuable in perfect-prognosis con-

ditions, its forecasts by NWP become too poor to be

useful beyond this lead time.

b. Operational implementation

The operational version of the analog approach, called

RainFAST, has been implemented at the Laboratoire des

Études des Transferts en Hydrologie et Environnement

(LTHE) to provide PQPFs by the analog technique in

real time since autumn of 2002. The meteorological fields

used for the adaptation are downloaded by a file transfer

protocol (ftp) connection to the National Oceanic and

Atmospheric Administration (NOAA) Operational Model

Archive and Distribution System (NOMADS) servers

(Rutledge et al. 2006). The fields are extracted from the

0000 UTC run of the Global Forecast System (GFS)

NWP model, over a grid with a horizontal resolution of

18, and then are regridded to match the 2.58 resolution

of the NCEP–NCAR reanalysis that constitutes our

meteorological archive. Next, the two ana24-M2 and

ana24-M3 algorithms are activated to provide daily rain-

fall distributions given from 0600 UTC for 24 h ahead

(day D), for the next 24 h (day D 1 1), and so on, until

day D 1 6, for each of our targeted catchments.

Some of these PQPFs are displayed on the Cévennes-

Vivarais Mediterranean Hydrometeorological Obser-

vatory (CVMHO) Internet site (http://www.ohmcv.fr/

P751_analogues.php). This prototype runs automatically

every day at about 0700 UTC since September 2002. The

real-time PQPFs archive unfortunately contains some

misses that may be due to the unavailability of GFS

output, to failure of the ftp connection, and/or to a default

in the local computer network. Nevertheless, all of the

misses since January 2005 have been filled in with data

from the NOMADS server at the National Climatic Data

Center (NCDC; http://nomads.ncdc.noaa.gov/), allowing

a continuous record and a complete evaluation in time.

4. Evaluation of daily PQPF

Hydrological operational services need to anticipate

future precipitation, which can be provided by PQPFs.

The PQPFs can be useful for detecting the coming storm

events in two respects: early warning is generally based

on the exceedance of a given rainfall amount threshold,

and the whole rainfall distribution is needed by ensemble

hydrological prediction systems aimed at forecasting fu-

ture discharges at some particular outlets. Thus, an eval-

uation attempting to bring to forecasters an informative

measure of the PQPF quality needs to take into account

these two different aspects: early-warning verification and

rainfall-distribution verification. It also has to provide an

objective way to improve the whole forecasting system,

notably if any bias is detected. These two points are dis-

cussed in sections 4a and 4b.

a. The reference: Observed rainfall dataset

The observed daily precipitation dataset is extracted

from the CVMHO database by means of the System for

Data Extraction and Visualization On Line (SEVnOL)

interface (Boudevillain et al. 2011). The database is made

up of data from 103 hourly rain gauges displayed in Fig. 1

over the catchments detailed in section 2a. This dense

rain gauge network of about one station per 15–20 km2

allows one to compute catchment-averaged rainfall by

kriging hourly rainfall observations and then aggregating

the obtained hourly rainfall fields into daily ones. The

archive is only available for autumn months (September–

December) over the period 2000–08. Thus, the forecast

evaluation has been accomplished over the autumns of

2005–08, which is the common period of avalability of

observed rainfall fields and real-time PQPFs.

b. Early-warning verification

1) CONTINGENCY TABLES AND SCORES

Early-warning verification is based on the determi-

nation of the best quantile to be used to detect a rainfall

event as defined by a given threshold on the transformed

precipitation R. Verification scores derived from contin-

gency tables (Table 3) are commonly applied to assess

categorical forecasts of an event. Here, three different

scores are used to evaluate operational PQPFs provided

by the analog approach (Joliffe and Stephenson 2003):

the probability of detection (POD), the specificity (SPE;

often called PODn, i.e., probability of detecting a no

event, which is also equal to 1 2 POFD, where POFD is

the probability of false detection), and the true skill sta-

tistic score (TSS; also called the Hanssen–Kuipers dis-

criminant or Peirce skill score):

POD 5
a

a 1 c
, (8)

SPE 5
d

b 1 d
, and (9)

TSS 5
ad 2 bc

(a 1 c)(b 1 d)
5 POD 2 (1 2 SPE), (10)

TABLE 3. Contingency table.

Obs

Forecast Yes No

Yes a b

No c d
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with a, b, c, and d defined in Table 3 and a 1 b 1 c 1 d

equal to the total number of evaluated forecasts.

POD is the proportion of events that are correctly

forecast. SPE corresponds to the probability of correctly

issuing a nonevent conditional to the event not being

observed. TSS summarizes the previous scores by assess-

ing the correct alert and the correct rejection: it is equal to

1 when the forecasts are perfect. In the following, TSS is

used to determine which quantiles are the best quantiles

to be used for rainfall-event detection—that is, to deter-

mine the ones that maximize the probability of event

detection and minimize the probability of false alerts.

2) WHAT ARE THE BEST QUANTILES FOR EARLY

WARNING?

Figure 4 displays the evolution of TSS scores for the

ana24-M2 and ana24-M3 algorithms as a function of the

transformed precipitation R threshold, for several

PQPF quantiles and a lead time of 24 h ahead (day D).

It emerges that the upper quantile value Q60% is the

best indicator for forecasting rain/no rain. Indeed, this

quantile is a good compromise between event detection

and false-alert issuance. TSS scores for the upper quantile

value Q60% reach 55% for ana24-M2 and 60% for ana24-

M3. The upper quantile value Q90% is more convenient

for intense-rainfall events, here defined as events with

R $ 0.5 (i.e., P $ 0.25P10, or one-quarter of the 10-yr

rainfall). The corresponding TSS values are respectively

81% and 78% for ana24-M2 and ana24-M3, showing that

the analog method performs better for intense-rainfall-

event detection and that the relevance of using relative

humidity information from EPS remains debatable.

Figure 5 shows the evolution of TSS for Q60% and Q90%,

respectively, with lead times from 1 day ahead (D) to 7

days ahead (D 1 6). As expected, TSS drops away with

lead time: D and D 1 1 have similar performance for both

quantiles; the TSS scores then decrease slightly for D 1 2

and D 1 3 and significantly fall beyond D 1 4.

To summarize, forecasters should look at Q60% to

detect rain/no rain and at Q90% to forecast events with

high rainfall amounts. The global performance of the

analog-based PQPFs decreases with lead time and es-

pecially after day 5 (D 1 4; i.e., from 196 to 1120 h).

c. Daily rainfall distribution verification

Hydrological ensemble prediction systems require

ideally the complete rainfall distributions as input (e.g.,

Marty et al. 2008). Thus, PQPFs have to be assessed as

a whole in comparison with the observed rainfall. The

verification score applied here is the CRPSS already

used for optimizing the method. Reference forecasts are

taken again as the climatological observed rainfall dis-

tributions for each considered catchment.

When all the days of the archive are considered for the

verification, the two analog algorithms (ana24-M2 and

ana24-M3) have similar performance with respect to the

reference climatological conditions (Fig. 6). The maximum

skill scores are obtained for day D, where CRPSS values

are 42%. Then, the CRPSS decreases with lead time and

reaches only 5% on day D 1 6. On the contrary, when a

25% threshold is considered on the observed R (i.e., when

only the more intense rainy days are considered), the per-

formances of the two algorithms differ. For day D, CRPSS

values are 62% and 55% for ana24-M2 and ana24-M3,

respectively. From this lead-time D to day D 1 4, the

CRPSS departures between the two algorithms are about

10%. The CRPSSs become equal on day D 1 6, when the

score is about 20% for both methods.

Once again, one can conclude that PQPFs provided by

the analog approach are more efficient with high rainfall

amounts. This could be expected from the calibration

process itself. Indeed, the criterion used for optimizing

FIG. 4. TSS (%) evolution, according to a considered threshold on the transformed rainfall R, for the (left) ana24-M2

and (right) ana24-M3 algorithms. The considered lead time is D (1 day).
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the method was to minimize over the whole learning

period the average of each daily CRPS. These values can

be much higher for rainy days, with a widespread distri-

bution, rather than for days without rain or days that are

slightly rainy, where the distribution is sharp, close to

zero, and often close to the observed value. Thus, the

optimization algorithm tends to favor the reduction of the

criterion mainly on rainy days, therefore giving a better

performance when only these days are looked at.

Note also the performance calculated for days D and

D 1 1 over the whole evaluation period (i.e., without

fixing a threshold on R), which is higher than that of the

perfect-prognosis conditions. This is certainly due to the

evaluation sample, which is based on the rainiest season

of the Cévennes-Vivarais region (autumn).

5. Reliability evaluation and bias correction

a. Reliability definition

To feel confident about a probabilistic forecasting sys-

tem, forecasts have to be statistically consistent with the

observations. This implies that the forecast probabilities

are statistically reliable (i.e., that they match the ob-

served ones).

In general, the reliability of continuous-type prob-

ability forecasts is evaluated by considering different

forecast classes i: the forecasting system is called reliable

if the forecast frequency distributions Fi are consistent

with the corresponding frequency distributions of ob-

servations Oi for all of the considered classes i. The great

variety of rainfall distributions issued by the analog

approach makes such an analysis difficult, as highlighted

by Jolliffe and Stephenson (2003): ‘‘For example, when

evaluating the reliability of continuous-type probability

forecasts one has to decide when two forecast distribu-

tions are considered as the same. Grouping (pooling)

more diverse forecast cases into the same category will

increase sample size but can potentially reduce useful

forecast verification information.’’

Here, reliability evaluation is based on a more acces-

sible process that is applied on quantiles rather than on

the whole distribution: each quantile frequency and the

relative observed frequency are compared. Quantiles

are considered at regular intervals of 10% and are

FIG. 5. TSS (%) evolution, according to a considered threshold on the transformed rainfall R, for lead times

D (1 day) up to D 1 6 for (left) ana24-M2 and (right) ana24-M3, and for the upper (top) Q60% and (bottom) Q90%

quantiles.
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extracted from the forecast distributions of transformed

rainfall R, namely F, by considering the two terms F(0)

(the cumulative distribution of no rain) and F1 (the

cumulative distribution of strictly positive transformed

rainfall values), according to Eq. (5). Three different

reliability analyses can then be made: on F(0), on F1,

and on the cumulative distribution of strictly positive

transformed rainfall values, conditioned to the no-rain

frequency: F1 j F(0).

b. Reliability of real-time PQPFs

Figure 7, applied to day D (24 h ahead), shows that

both F(0) and F1 are biased. The no-rain forecast prob-

ability F(0) is globally underestimated with regard to that

FIG. 6. CRPSS (%) of real-time PQPFs provided by the ana24-M2 and ana24-M3 algorithms: (left) without

threshold and (right) with a threshold on the transformed precipitation R: R $ 0.25. The considered reference is the

climatological rainfall distribution issued from the available catchment-averaged precipitation archive. Lead time is

expressed in days.

FIG. 7. Reliability evaluation of (top) F(0) and (bottom) F1 for (left) ana24-M2 and (right) ana24-M3 in real-time

conditions. Lead time is set to D (1 day), and all catchments are considered.
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observed. For example, the observed probabilities asso-

ciated with the forecast 0% quantile are 3% and 5% for

the ana-M2 and the ana24-M3 algorithms, respectively.

This bias is more obvious with greater values of F(0).

About 70% (for ana24-M2) and 65% (for ana24-M3) of

days corresponding to the forecast 50% quantile of F(0)

are days with no observed rain.

On the contrary, the forecast positive rainfall values

probabilities F1 are overestimated. Indeed, the observed

probabilities associated with a given forecast quantile are

always lower than expected. For instance, observed pre-

cipitation is lower than or equal to the forecast 50%

quantile over about 32% of time for both the ana24-M2

and ana24-M3 algorithms. This again confirms that the

optimization of the method has favored forecasts of

high rainfall rather than a good estimation of the rain/

no-rain frequency F(0).

In conclusion, even if PQPFs have proven to be useful

with respect to climatological values (see section 4), they

are not reliable (i.e., they are not consistent with the ob-

servations). Correction of the observed bias requires

long and homogenous real-time PQPFs archives that are

difficult to collect because of the perpetual evolution of

NWP models. Indeed, statistical correction of reliability

can only be applied here on PQPFs in perfect-prognosis

conditions. This means that only the internal part of the

bias (i.e., the bias directly due to the analog approach,

not the one that is dependent on the NWP model) will be

corrected. The external part, which is due to the NWP

model used for generating meteorological forecasts,

cannot be assessed here.

c. Reliability of PQPF in perfect-prognosis
conditions

1) DIAGNOSIS IN PERFECT-PROGNOSIS

CONDITIONS

The evaluation is then performed in perfect-prognosis

conditions, on the NCEP–NCAR reanalyses archive,

over the period 1953–2001. Unlike the real-time context,

both components of the F distribution are mostly un-

biased (Fig. 8): the F(0) and F1 curves are close to the

bisector. This means, for example, that when F(0) is

expected to be equal to 50%, then one-half of the cor-

responding days in the observed catchment-averaged

rainfall archive are actually days with no rain.

The analysis has been completed by evaluating the

term F1 conditional on the F(0) value. This additional

step reveals that the overall lack of bias of F1 is due to

a compensation of bias, depending on the F(0) value, as

shown at the bottom of Fig. 8. As an example, when F(0)

is equal to 0 (i.e., the day is expected to be rainy), ob-

served rainfall is lower than or equal to the 50% quantile

only about 40% of the time, instead of 50%, as expected,

suggesting that forecasts underestimate the precipita-

tion. To adjust this frequency to 50%, the forecast 50%

quantile has to be increased. In a general way, when the

targeted day is expected to be wet [i.e., F(0) / 0], then

the F1 quantiles seem to be underestimated; on the

other hand, when the targeted day is expected to have

no or little rain [i.e., F(0) / 1], the F1 quantiles appear to

be overestimated. In the following, we have taken ad-

vantage of this finding by proposing a correction factor

for the F1 quantiles, depending on the dry or wet char-

acter of the targeted day.

2) CORRECTION OF THE INTERNAL BIAS OF THE

ANALOG APPROACH

A first attempt at correcting this bias is to assume that

a perfectly reliable a posteriori distribution F9
1

exists

and that it can be determined from the a priori distri-

bution F1 by transforming the latter into a new a pos-

teriori distribution, through a given function Q:

F9
1

5 Q(F
1

). (11)

Such a function is difficult to obtain because of the

wide spectrum of a priori functions F1. Thus, another

possible way (followed here) is to correct each quan-

tile Qx% by a coefficient aF0, x% function of F(0) and of

the associated F1 probability x% (Déqué 2007):

"x 2 [0, . . . , 100] Q9x% 5 aF
0
, x%Qx%. (12)

Then, the a posteriori distribution F9
1

is fitted with a

gamma law by the L-moments method.

The obtained remedial factors confirm the previous

comment on F1 bias. As an example, Fig. 9 gives the

Gardon at Anduze catchment’s factors. When the tar-

geted day is expected to be wet [F(0) / 0], these are

greater than 1, corroborating the a priori under-

estimation of the forecast F1 quantiles. On the other

hand, for F(0) / 1, factors are lower than 1, showing

the a priori overestimation of the F1 quantiles. The

particular behavior for Q $ 80% could be explained by

the low dispersion of PQPFs when the day is expected

to be without rain.

The a posteriori PQPFs obtained after the quantiles

correction have in turn to be evaluated to verify their

reliability. The reliability charts show that the a posteriori

distributions are more reliable than the a priori ones, for

all of the study catchments (Fig. 10). For F(0) # 0.40

(thus, F1 $ 0.60), the a posteriori distributions are almost

perfectly reliable. When F(0) increases (i.e., F1 decreases

in Fig. 10), this comment becomes less and less true for the

lower part of the distributions, because of the gamma-law
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fitting by L moments, which introduces some residual

errors for lower frequencies.

3) IMPACT ON DAILY RAINFALL DISTRIBUTIONS

As an example, Fig. 11 illustrates the impact of such

a statistical correction for the PQPF provided in perfect-

prognosis conditions around 4 November 1994 for the

initial ana24-M3 version (continuous lines with boxes).

The corrected PQPF, ana24-M3cb (continuous lines),

corresponds to distributions corrected with catchment-

specific remedial factors and shows a reduced interquan-

tile range. The a priori 60% quantile is similar to the

20% a posteriori quantile. This example shows that the

reliability correction improves also the distribution

sharpness. Another version, ana24-M3ce (not shown

here), corresponds to distributions using remedial factors

common to all catchments and appears to be slightly less

efficient.

4) INFLUENCE ON REAL-TIME PQPF
PERFORMANCE

The previous statistical correction also improves the

real-time PQPF efficiency. Figure 12 displays the CRPSS

gain between the original versions (ana24-M2 or ana24-

M3) and the corrected ones (ana24-M2cb and ana24-

M2ce or ana24-M3cb and ana24-M3ce) for the autumns

of 2005–08. Algorithms ana24-M2cb and ana24-M3cb

correspond to PQPFs corrected by catchment-specific

FIG. 8. Reliability evaluation on (top) F(0), (middle) F1, and (bottom) F1 conditional on F(0) for (left) ana24-M2 and (right) ana24-M3 in

perfect-prognosis conditions and considering all of the catchments.
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remedial factors. A posteriori PQPFs provided by ana24-

M2ce and ana24-M3ce are issued after correction with

factors common to all of the study catchments. The gain

in CRPSS is very slightly positive for all lead times,

whatever the correction factors used (either common or

catchment specific). The improvement is more significant

with higher rainfall amounts, however. With a threshold

on R (i.e., R $ 0.25), the gain reaches 5% with catchment-

specific factors and reaches 3% with common factors.

This gain decreases after day D 1 1 and becomes nega-

tive beyond day D 1 4, however.

The PQPF sharpness can be assessed through the

CRPSS value obtained by substituting the medium

quantile for the observed rainfall. Figure 12 outlines

that the CRPSS gain is related to a sharpness gain

in the skill score. CRPSS gains are about 8% for the

first lead times and increase with lead time to reach

13% for day D 1 6 at the cost of a small decrease in ac-

curacy. To summarize, the statistical correction improves

the reliability of PQPFs provided by the analog tech-

nique and also increases the sharpness of the rainfall

distributions.

6. Discussion and conclusions

The analog approach has proven to be a very useful

adaptation method for estimating precipitation at the

catchment scale, by complementing usefully the in-

formation provided by NWP models. Our effort was

mainly devoted to the implementation of a daily ver-

sion into operational real-time conditions on the basis

of two different algorithms [making use (ana24-M3) or

not (ana24-M2) of relative humidity forecasts] to pro-

vide probabilistic quantitative precipitation forecasts.

In perfect-prognosis conditions, relative humidity at

850 hPa did appear to be a useful and significant pre-

dictor beyond the geopotential fields. When moving

to the real-time operational context, M2 showed itself

to be more skillful at forecasting high precipitation

amounts, whereas M3 seemed to be more powerful for

forecasting of no rain or low precipitation amounts.

The poorer performance of M3 in the case of heavy-

precipitation events, which was initially unexpected,

was explained by the fact that relative humidity and

precipitable water fields forecast by NWP are less

FIG. 9. Remedial factors obtained for the Gardon at Anduze catchment for (left) ana24-M2 and (right) ana24-M3.

FIG. 10. Reliability evaluation on a posteriori F1 conditional on F(0) for (left) ana24-M2 and (right) ana24-M3. All catchments

are considered.
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reliable, and are even useless beyond 3-day lead time,

than are the geopotential forecasts (these remain pow-

erful up to 8–10 days ahead). Indeed, both the ana24-M2

and ana24-M3 precipitation distributions were kept as

guidance, especially for the first few days of lead time,

because of the complementary strengths and weaknesses

of the two algorithms.

First, we have examined the dependence of the analog

approach on the NWP model performance. A compar-

ison of predictive variables issued from NCEP–NCAR

reanalyses by NOAA and by ECMWF EPS control fore-

casts shows the dependence of analogs on the selected

NWP, because of possible differences in terms of trun-

cation, parameterization, and analysis techniques from

one NWP model to another. This dependence proves

to be more sensitive for thermodynamic variables like

relative humidity than for synoptic variables like geo-

potential fields. Accordingly, the implementation of the

analog approach under real-time conditions has required

a reoptimization of the numbers of analogs to retain as

a function of lead time, because of the growing uncer-

tainty of the NWP output.

Second, the evaluation of the two operational algo-

rithms reveals that this approach is efficient for issuing

early warnings by looking at the quantiles Q60% and

Q90% to detect rain/no rain and heavy rainfall, respec-

tively. PQPFs assessed through the continuous ranked

probability score prove to be more efficient in compar-

ison with the climatological distribution, especially for

higher rainfall amounts. The performance of PQPFs

used as early-warning tools or as input into hydrological

ensemble prediction systems decreases, as expected, with

lead time. PQPFs provided by this method unfortunately

appear still to be biased. In fact, it is suspected that the

CRPS and the choice of the optimization procedure could

explain this bias in favor of large rainfall amounts.

Last, the internal part of this bias (i.e., the part directly

related to the analog approach and not dependent on

the NWP model) has been statistically corrected. This

postprocessing improves the PQPF reliability by re-

ducing the rainfall distribution dispersion, because cor-

rected PQPFs are sharper than the original ones. Thus,

there are favorable grounds for applying such an ap-

proach that runs already in real-time conditions at Elec-

tricité de France, at the Compagnie Nationale du Rhône,

and in several French flood-forecasting services (Ser-

vice de Prévision des Crues) in the Alps and in the Loire

catchments.

Note that we have looked here at the average perfor-

mance of our analog algorithms, using classical scores for

forecast verification, to quantify simply the performance

we have qualitatively assessed from our own experience

with real-time forecasts. Thus, this study constitutes a first

step before more detailed analyses: further works using

more recent techniques could improve our understanding

of the analog-approach behavior but would require an

extensive statistical analysis for hypothesis verification.

Notably, we have not considered any confidence interval

on our results, nor have we used hypothesis testing, as

suggested by Jolliffe (2007) and Gilleland (2010). Also,

an EVA-based score such as the extreme dependency

score of Stephenson et al. (2008) could have been used

to evaluate the performance of the forecasts in terms

of extremes, as a complement to our analysis on upper

quantiles.

Among the often-raised questions on analog tech-

niques, common ones are that the targeted situation has

no exact equivalent in the archive and that no rainfall

larger than the maximum contained in the archive can

be forecast. This last question is wrong, since our hy-

pothesis is that we provide a conditional distribution

based here on a sample of 30. After the fitting of a pro-

bability model to this sample, we can issue for instance

the 99% quantile, which has never been observed but

which has a 1% chance to appear, in much the same

way that one derives the 100- or even the 500-yr rainfall

by EVA methods from a 50-yr sample of the annual

maximum. The first question seems to be more prob-

lematic, however, in that our analog rainfall samples

are not fully similar to a classical sample of the theo-

retical expected distribution, since they come from an-

alogs that are individually more or less similar to the

targeted situation. This means that only the most sim-

ilar situations, below a certain threshold in terms of the

Teweless–Wobus S1 score, should be kept or that a

weighting should be used according to the similarity

criterion of each selected analog.

FIG. 11. PQPF provided around 4 Nov 1994 in perfect-prognosis

conditions by the ana-M3 (continuous lines with boxes) and the

corrected ana24-M3cb (continuous lines) versions. The gray his-

togram represents observed rainfall. The forecast is given for the

Gardon at Anduze catchment.
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Several other ways could also be explored for this

alternative approach to provide more efficient PQPFs.

Up to now, the targeted synoptic situation has always

been defined on a fixed 0–24 h (UTC) temporal window

and the analogs have only been searched among situa-

tions defined also on the same 0–24-h window. Relaxing

this constraint by allowing a moving temporal window

during the analog searching procedure would allow one

to select, for example, a 6–30-h situation, with a better

match to the targeted one. This should also improve the

similarity of the retained analog situations. Neverthe-

less, this would require being able to propose the cor-

responding 24-h rainfall on a moving temporal window

and therefore also having a 6- or 12-h rainfall archive,

which is difficult to build up far back in the past (e.g.,

over a 50-yr period).

Another question raised by the bias in the estimation

of the F(0) rain/no-rain frequency is whether the ap-

proach can be optimized for the correct estimation of

both high rainfall amounts and rain/no-rain probability.

It could not be the same variables that control these two

different phenomena, and therefore one may think of a

splitting into a two-level procedure, using different pre-

dictive variables that are optimized separately depend-

ing on the forecast variable. Therefore, on the basis of

the above discussion, our major conclusion is that many

further aspects remain to be explored and that there is

promising potential in the development and the evalu-

ation of the analog approach.
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