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ABSTRACT

High-resolution rain fields are a prerequisite to many hydrometeorological studies. For some applications,

the required resolution may be as fine as 1 km in space and 5 min in time. At these scales, rainfall is strongly

intermittent, variable in space, and correlated in time because of the propagation of the rainy systems. This

paper compares two interpolation approaches to generate high-resolution rain fields from rain gauge mea-

surements: (i) a classic interpolation technique that consists in interpolating independently the rain intensities

at each time step (Eulerian kriging) and (ii) a simple dynamic interpolation technique that incorporates the

propagation of the rainy systems (Lagrangian kriging). For this latter approach, three propagation models are

tested. The different interpolation techniques are evaluated over three climatically contrasted areas in West

Africa where a multiyear 5-min rainfall dataset has been collected during the African Monsoon Multidisci-

plinary Analyses (AMMA) campaigns. The dynamic interpolation technique is shown to perform better than

the classic approach for a majority of the rainy events. The performances of the three propagation models

differ from one another, depending on the evaluation criteria used. One of them provides a satisfactory time

of arrival of rainfall but slightly smooths the rain intensities. The two others reproduce well the rain in-

tensities, but the time of arrival of the rain is sometimes delayed. The choice of an appropriate propagation

algorithm will thus depend on the operational objectives underlying the rain field generation.

1. Introduction

Producing high-resolution rain fields is a key element

in several domains: (i) studying the climatology of rain-

fall at fine space–time scales (e.g. Krajewski et al. 2003;

Moszkowicz 2000; Bacchi and Kottegoda 1995); (ii)

modeling the hydrological processes on the continental

surface because hydrologic, agronomic, or soil–vegetation–

atmosphere transfer models require high-resolution forcing

rain fields as input (e.g. Michaud and Sorooshian 1994;

Gourley and Vieux 2006; Vischel and Lebel 2007; Vischel

et al. 2009); and (iii) calibrating/validating satellite rain-

fall algorithms (e.g. Wolff et al. 2005; Turk et al. 2009).

The relevant resolutions for these various purposes may

be as fine as 1 km in space and 5 min in time to resolve

the convective scale.

Studies dealing with rainfall at small space–time scales

are usually based on data obtained from recording rain

gauge (RG) networks and/or meteorological radars. The

latter provide valuable estimation of rainfall spatial pat-

tern but yield rainfall intensity estimations subject to

strong uncertainties (Wilson and Brandes 1979; Krajewski

et al. 2010). Rain gages remain so far the most reliable
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sensor producing a direct and accurate measurement of

rainfall intensities. However these point measurements

need to be spatially interpolated to obtain the areal rain

fields required for most of the applications listed above.

This interpolation process must take into account two fea-

tures characterizing small time step rain fields: (i) their great

spatial variability, including an important intermittency,

and (ii) a nonnegligible autocorrelation in time. These fea-

tures are especially marked for regions where rainfall is

mainly due to organized propagative convective systems

as in tropical regions (Moron et al. 2007). In West Africa,

which is the region studied in this paper, Mathon et al.

(2002) have calculated that 90% of the annual rainfall is

produced by mesoscale convective systems (MCS) for the

Sahelian band.

Very few studies dealing with rainfall interpolation at

subdaily time scales incorporate information about the

rain kinematics (Amani and Lebel 1997; Cheng et al. 2007;

Spadavecchia and Williams 2009). Most interpolation

methods process each time step independently, neglecting

to take into account the valuable information contained in

the time autocorrelation of rain fields (e.g. Tsanis et al.

2002; Haberlandt 2007; Tao et al. 2009). Several studies

have shown the importance of taking into account the

propagation of rainy systems for describing the space–time

correlation of rain fields (e.g. Zawadzki 1973; Waymire

et al. 1984; Bacchi and Kottegoda 1995).

Acknowledging this, the goal of our study is first to

propose and implement a simple dynamic interpola-

tion technique incorporating information on the statistical

structure associated with the propagation of the rainy sys-

tems. This is done by building on the theoretical framework

laid out by Amani and Lebel (1997). The second objective is

to assess the performances of this dynamic interpolation

approach compared to a classic interpolation technique

with no propagation included. More specifically, the paper

focuses on the following aspects: (i) three different methods

for deriving and accounting for the fields kinematics are

tested; (ii) a robust multicriteria evaluation of the in-

terpolation methods is presented, based on a multiyear

rainfall dataset from the international African Monsoon

Multidisciplinary Analysis (AMMA) project; and (iii) the

results are compared over the three dense monitoring

networks of the AMMA Couplage de l’Atmosphère

Tropicale et du Cycle Hydrologique (AMMA-CATCH;

Lebel et al. 2009) observing system to test them under

different rainfall regimes.

2. Region and data

a. The AMMA-CATCH observatory

During the 1970s and 1980s, West Africa experienced

a generalized drought that is recognized as one of the

most significant regional-scale climate anomalies of the

twentieth century. This drought associated with a strong

anthropogenic pressure has had devastating effects on

water resources and agricultural yields, leading to dra-

matic food and health crises. The AMMA-CATCH ob-

serving system, whose data are used here, is a major

component of the AMMA field campaigns (Lebel et al.

2010). It has been specifically designed to document the

surface processes and their interaction with the atmo-

spheric processes. It is composed of three intensively

instrumented mesoscale sites in Mali (Gourma region),

Niger (Niamey region), and Benin (Upper Ouémé catch-

ment) that sample the various components of the water

cycle across the north–south bioclimatic gradient associ-

ated with the West African monsoon (Fig. 1 and Table 1).

The Mali and Niger sites are characterized by a Sahelian

climate with 150–400 mm (from north to south) and 470–

570 mm, respectively, of mean annual rainfall falling

within a single monsoon rainy season lasting from June to

October and peaking in August. The Benin site is char-

acterized by a Sudanian climate with an annual rainfall

ranging from 1200 to 1300 mm and falling from March

to October. The rainy season is characterized by two

stages: a premonsoon stage (March–mid-June), repre-

senting about one-third of the annual total, and the strictly

speaking monsoon season (mid-June–October), repre-

senting the other two-thirds of the annual total. Over the

three studied regions, rainfall is mainly produced by me-

soscale convective systems. The associated rain fields dis-

play a strong intermittency in time and a strong spatial

variability of the intensities.

b. Rainfall data

The AMMA-CATCH rainfall monitoring network

is composed of tipping-bucket recording rain gauges

available in Mali, Niger, and Benin since 2005, 1990, and

2000, respectively. One tip of the bucket corresponds to

0.5 mm of rain, with its timing being recorded with an

accuracy of 1 s. The so-obtained series of tipping times are

post treated to produce 5-min rainfall series [see Balme

et al. (2006) and Russell et al. (2010) for the detailed al-

gorithm]. In this treatment, a time step is considered

as nonrainy when the rain rate is lower than 0.01 mm

per 5 min.

The density of the rain gauge networks has varied over

the years, but all networks have been reinforced for the

extended observed period of AMMA that started in

2005 (for details, see Lebel et al. 2010). The Niger and

Benin networks consist of 33 stations in 2005 and 52–56

from 2006. In Mali, 18 rain gauges are available since

2008. The selected periods to evaluate the interpolation

methods are 2005–08 for the Niger and the Benin sites

and 2008–09 for the Mali site.

1466 J O U R N A L O F H Y D R O M E T E O R O L O G Y VOLUME 12

Unauthenticated | Downloaded 11/03/21 08:17 AM UTC



Additionally to rain gauges, meteorological radars

were installed during the intensive observation period of

AMMA in 2006: a C-band radar in Niger [the Massa-

chusetts Institute of Technology (MIT) radar; Russell

et al. 2010] and an X-band radar in Benin (X-port radar;

Gosset et al. 2010). Radars potentially provide a great

potential in characterizing rainfall variability, but specific

data treatment is needed to estimate rainfall intensities

TABLE 1. The AMMA-CATCH observatory.

Niger Benin Mali

Acronym AMMA-CATCH Niger AMMA-CATCH Benin AMMA-CATCH Mali

Location Niamey square degree Ouémé catchment Benin site Gourma Mali site

Position 138–148N 98–108N 14.88–17.38N

1.68–38E 1.58–38E 28–18W

Surface 16 000 km2 14 200 km2 27 000 km2

Environment Sahelian climate with semiarid

vegetation and crops

(millet, fallows, and tiger bush)

Sudanian climate

(different types of rain

systems) and Guinean

savanna vegetation

North Sahelian climate

(between isohyets 400 and

100 mm); semiarid natural

vegetation composed of annual

grasses and a sparse tree layer;

crops only present in the

southern part of the area

Mean annual rainfall 470–570 mm (from north

to south)

1200–1300 mm (from north

to south)

150–400 mm (from north

to south)

Study period 2005–08 2005–08 2008–09

No. of RGs From 33 (2005) to

56 (2006–08)

From 36 (2005) to

52–54 (2006–08)

18 (2008–09)

FIG. 1. Region, catchments, and data. The network density is at a maximum in the maps, but the number of RGs

varied over the study periods (see Table 1).
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from the raw radar fields. Because the present paper is

focused on the evaluation of interpolation methods, radar

data will only be used here for a qualitative evaluation of

the interpolated rain field patterns.

c. Selection of the rainfall events

The interpolation techniques will be applied to rainy

events associated with MCS that passed over the different

areas during the periods of study. The identification of

these events is based on a two-step process applied on the

5-min rainfall data (adapted from Balme et al. 2006):

(i) The beginning of an event is determined as the first

5-min time step of a period for which at least 30% of

the rain gauges record more than 0.5 mm of rain

and when at least one station records 1 mm.

(ii) The end of the rain event is defined as the first 5-min

time step when no rain is recorded at any of the

network stations.

This event definition selects the major rainy systems cross-

ing over the study areas and avoids rainfall due to isolated

rain cells. The selected events represent 91% of the total

cumulative rainfall in Niger, 85% in Mali, and 88% in

Benin. For the period 2005–08, 201 events were identified

for the Niger site and 445 events for the Benin site. For

the period 2008–09, 88 events were identified for the Mali

site.

3. Methodology

a. Classic and dynamic interpolations process

1) PRINCIPLE

The principle of the interpolation methods is illustrated

in Fig. 2 with a simplified example. For a comprehensive

mathematical formalization, the reader is referred to

Amani and Lebel (1997). The system simulated in Fig. 2

FIG. 2. Interpolation process illustrated for an idealized case study. (a) An ideal MCS with a stationary shape propagates over a four RG

network. One wants to estimate rainfall at the pixel Pi. (b) Two types of interpolations are tested: classic interpolation and the dynamic

interpolation. In this example, dynamic interpolation has clear advantages over the classic interpolation; real rainy events present much

less simple structures, and a systematic comparison between both approaches is carried out in the paper.
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is an MCS characterized by a convective band and a

stratiform trail. The system is propagating by translation,

with a constant speed and direction. The event hyeto-

graph is stationary in space. The system propagates over

four imaginary gages (RG 1–4). The four ‘‘measured’’

hyetographs are plotted in Fig. 2a. They have an identical

shape but are delayed in time because of the MCS prop-

agation. In this idealized case, one wants to interpolate the

rainfall at the pixel location Pi. With this simplified model,

the retrieved hyetograph at Pi should have the same shape

as the measured hyetographs RG 1–4 but with a delay in

time comprised between RG 2 and 3. The process de-

scribed for pixel i can be generalized to any pixel or grid

in the domain of interest.

Two types of interpolation approaches are compared

in the paper (Fig. 2b):

(i) With the classic interpolation approach, each in-

terpolated 5-min rain field is constructed indepen-

dently of the other time steps.

(ii) The dynamic interpolation approach is a two-step

process. First, (Fig. 2b, step 1) the measured hyeto-

graphs are shifted in time to maximize the temporal

concomitancy or alignment between their shapes.

Then the 5-min intensities of the time-shifted hyeto-

graphs are interpolated at the pixel of interest.

Qualitatively speaking, these shifted hyetographs cor-

respond to the rain intensity signals that an observer

would see by following the propagating rainy system.

This shifting in time comes down to implicitly defining

a Lagrangian coordinate system replacing the Euler-

ian coordinate system used in the classic interpolation

technique. The second step (Fig. 2b, step 2) consists in

projecting back the interpolated Lagrangian hyeto-

graph into the Eulerian coordinate system. To do so, a

time of arrival of the interpolated Lagrangian hyeto-

graph is defined by interpolating the time of arrival of

the measured hyetographs. This time of arrival is thus

a proxy for modeling the propagation of the rainy

system.

In the dynamic interpolation approach, several methods

can be used to derive the time shift to be applied to each

observed hyetograph to produce the field of Lagrangian

hyetograph and thus to retrieve the times of arrival map.

Different methods are tested in the paper. They are

presented in the following.

2) LAGRANGIAN ORIGIN AND RAIN FIELD

PROPAGATION IN THE DYNAMIC

INTERPOLATION APPROACH

Two techniques are commonly used to estimate rainfall

propagation from a rain gauge network (Johnson and Bras

1979; Upton 2002; Tsanis et al. 2002). The first technique is

based on the detection of the propagation of particular

features on the observed hyetographs. The second tech-

nique is based on space–time correlation techniques used

to assess the velocity and direction propagation of the

rainy system. Both techniques are tested here. In our

dynamic interpolation approach, we compare three

methods for defining the time of arrival of the interpolated

Lagrangian hyetographs: two methods (FirstRain and

MaxRain) pertain to the first technique, whereas the third

method [average synchronized hyetograph (ASH)] per-

tains to the family of space–time correlation techniques.

These methods are illustrated in Fig. 3 for a real case

study, a typical MCS that passed over the AMMA-

CATCH Niger site on 22 July 2006.

(i) FirstRain method: it is based on the detection at

each rain gauge of the first nonzero rain intensity of

the event hyetographs. In step 1 of the dynamic in-

terpolation technique (see Fig. 2b), the origin of the

Lagrangian coordinate system is defined by adjust-

ing the hyetographs on the first nonzero 5-min rain

intensity (Fig. 3a, FirstRain). In step 2, the times of

arrival of the first nonzero intensities are then in-

terpolated over the interpolation grid to get a field

of propagation of the rainy system.

(ii) MaxRain method: it is based on the detection of

the time of arrival of the maximum rain intensity

of the hyetographs. The hyetographs are adjusted in

the maximum rain intensity to define the Lagrangian

coordinate system (Fig. 3a, MaxRain). The field of

propagation is obtained by interpolating the times of

arrival of the maximum rain intensities (Fig. 3b,

MaxRain).

(iii) ASH method: this method was developed by

Depraetere et al. (2009) to track the rainfall events

over the Benin site. This global method uses an

optimization technique to fit a simplified propagat-

ing MCS model on the observed hyetographs. The

fitted model is similar to the one in Fig. 2, a straight

convective band propagating with a constant velocity

y and direction d. By exploring the velocity–direction

parameter space, the observed hyetographs are shifted

in time according to different sets of kinematics pa-

rameters (yk, dk). The average hyetograph is com-

puted for each parameter set. It is characterized by its

peakness defined as the maximum value obtained by

a 30-min moving average (Depraetere et al. 2009).

The Lagrangian system is determined by the optimal

set (yopt, dopt) that maximizes the peakness. Then,

(yopt, dopt) are used to derive the map of time shifts

(Fig. 3b, ASH) to be applied to the interpolated

Lagrangian rain intensities to come back in the

Eulerian coordinate system.
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The three models are based on a simplified representa-

tion of the rain systems kinematics. In reality, the MCS

motion results from a combination of the mean system

propagation with the inner movement and life cycle of

the rain cells. By assuming a constant propagation speed of

the MCS, the ASH method ignores the rain cell move-

ment. Conversely, the FirstRain and MaxRain methods

focus on the identification of the rain cells. The FirstRain

method can thus be sensitive to isolated cells preceding the

main front of the system; the MaxRain method can be

influenced by successive rain cells within the front that

might produce multipeak hyetographs. The performances

of the dynamic interpolations are expected to be better for

well-organized systems without scattered and multiple cell

developments and collapses. The dynamic methods will

work better for systems with a well-defined space–time

organization.

3) CHOICE OF THE INTERPOLATOR

Spatial interpolation is required to produce the fields

of rainfall intensities (for both classic and dynamic in-

terpolation techniques) and the fields of time of arrival.

From the large variety of existing mathematical inter-

polators, kriging interpolation has been chosen because

FIG. 3. (left) Eulerian and (right) Lagrangian coordinate systems and associated models of rainfall propagation illustrated for the event

of the 22 Jul 2006 in the Niger. (a) Hyetographs of the event in Eulerian coordinates (used in the classic interpolation) and in Lagrangian

coordinates (used in the dynamic interpolation). The Lagrangian system can be defined according to the adjustment of the first rain rate

(FirstRain method), the maximum rain rate (MaxRain method), or an optimal speed and direction of propagation (ASH method). (b) Models

of propagation associated with the three Lagrangian coordinate systems for the FirstRain and MaxRain methods the maps are obtained by

interpolating the time of arrival of the first and maximum rain rates, respectively. For the ASH method, a relative time shift (in minutes) is

computed from the optimal speed and direction by taking as reference the time of the first intensity of the first station hit by the system.
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(i) it gives an unbiased estimation of rainfall and (ii) it is

data driven, meaning that it takes into account the

spatial structure of the process (here the variogram

function is used). Kriging also provides the estimation

variance, which is valuable to assess the kriging error;

however, this property will not be used here because the

transfer of the kriging error from the Lagrangian to the

Eulerian coordinate system is theoretically not straight-

forward and will not be treated in the present paper.

In both Eulerian and Lagrangian coordinate systems,

ordinary kriging is used to interpolate the rainfall in-

tensities. Eulerian and Lagrangian empirical climatologi-

cal variograms of rainfall intensity were computed for the

Niger and Benin sites as follows (Lebel and Bastin 1985):

g* 5
1

Ne

�
N

e

k51

1

Tk

�
T

k

t51

g*kt

s2
kt

, (1)

where g* is the empirical climatological variogram, g*kt is

the empirical variogram of the rain field at the time step t

of the kth event, Tk is the total number of time steps of

event k, and Ne is the total number of events. Exponential

models were used to fit the experimental variograms (see

example of the climatological variograms computed from

the entire event dataset for the Niger site in Fig. 4). The

Niger variogram is also used for the Mali site for which an

insufficiently long period of measurement hindered a ro-

bust estimation of the climatological variogram. The con-

vective and trailing stratiform parts of the rain fields were

treated separately. Based on the study of Balme et al.

(2006), a mean threshold of 0.5 mm per 5 min was used to

separate the convective and the stratiform intensities.

The propagation of the rainy system induces a trend in

the fields of the rainfall time of arrival. Therefore, a uni-

versal kriging interpolation was preferred. Climatological

residual variograms have been estimated by assuming a

linear trend adjusted by an ordinary least squares regres-

sion. In accordance with the previous works of Guillot and

Lebel (1999), an exponential variogram with a 30-km

range has been used to represent the structure of the re-

siduals. After kriging, the continuous interpolated values

of time of arrival are rounded to the nearest 5-min

time step.

The whole data treatment achieved in this study has been

coded in the Python programming language (http://www.

python.org/) interfaced with the package gstat (Pebesma

2004) implemented in the R environment (R Develop-

ment Core Team 2009), used here for our kriging-related

needs.

4) SUMMARY OF THE COMPARED INTERPOLATION

METHODS

Four interpolation methods are compared in this study:

one classic interpolation method based on an Eu-

lerian ordinary kriging of the rain intensities re-

ferred to as Eulerian kriging (Eul.Kri) and

three dynamic interpolation methods based on a La-

grangian ordinary kriging (Lag.Kri) of the rain inten-

sities; these dynamic methods differ from one another

by the propagation technique used: namely First-

Rain, MaxRain, and ASH. These interpolations are

referred to as Lag.Kri FirstRain, Lag.Kri MaxRain,

and Lag.Kri ASH.

FIG. 4. Climatological semivariograms of the (top) convective and (bottom) stratiform 5-min rain intensities into (left) the Eulerian and

(right) Lagrangian coordinates for the Niger site.
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b. Evaluation of the interpolation methods

The methodologies to evaluate interpolation perfor-

mances usually make use of (i) independent reference

data (e.g., meteorological radar), (ii) a secondary rainfall

network, and (iii) a cross-validation process. The first

method was in appropriate here for a systematic evalu-

ation because radar data were only available on a lim-

ited period and on only two of the three studied regions

(see section 2b). The second method would imply to split

the rain gauge network into two subnetworks, which would

make the evaluation strongly sensitive to the spatial sam-

pling effects (which can be significant as discussed in section

5b). The performances of the four interpolation techniques

were thus assessed by a leave-one-out cross-validation

procedure. The cross validation is computationally time

consuming, but it limits the spatial sampling effect.

The evaluation will first focus on the way the inter-

polation methods reproduce the main features of the rain

fields (propagation, intermittency, and intensity distribu-

tion; results presented in section 4b). Then, an event-based

evaluation of the best interpolation method will be carried

out (results presented in section 4c). The different criteria

used for this evaluation and comparison process are pre-

sented in the following.

1) EVALUATING THE REALISM OF THE

PROPAGATION MODELS

The realism of the propagation model is evaluated by

analyzing the simulated time of propagation of the events

compared to the observed time of propagation. This anal-

ysis must help in selecting the events that do not satisfy the

preconditions required by the dynamic interpolation con-

cerning the organization of the rainy systems.

2) EVALUATING HOW THE INTERPOLATION

METHODS REPRODUCE THE INTERMITTENCY

OF RAINFALL

The ability of the interpolation methods to model

the rainfall intermittency is evaluated on the basis of bi-

nary rain–no-rain contingency tables. Through the cross-

validation procedure, one contingency table per event is

built by accounting for all the time steps of all the rain

gauges. The contingency tables are analyzed through the

computation of the false alarms ratio (FAR), which is

defined for a given event as

FAR 5

�
T

t51
�
N

i51
FalseAlarms[Ri*(t), Ri(t)]

�
T

t51
�
N

i51
Hits[Ri*(t), Ri(t)] 1 �

T

t51
�
N

i51
FalseAlarms[Ri*(t), Ri(t)]

, (2)

where T is the number of time steps of the event, N is the

number of rain gauges, and Ri(t) is the rain intensity at

time step t for the station i.

Hits correspond to positive rain for both observation

and prediction,

Hits[Ri*(t), Ri(t)]

5
1 if Ri*(t) . 0 and Ri(t) . 0

0 otherwise
.

(
(3)

FalseAlarms corresponds to no rain for observation and

rain for prediction,

FalseAlarms[Ri*(t), Ri(t)]

5
1 if Ri*(t) . 0 and Ri(t) 5 0

0 otherwise
.

(
(4)

FAR gives a measure of the model’s tendency to predict

rain where none was observed, which is the main draw-

back of most interpolation methods to produce rain in

nonrainy areas. The prediction of zero rain where positive

rain was observed is negligible. FAR was thus consid-

ered consistent to evaluate the ability of the methods

to reproduce a realistic intermittency. A 0 value of FAR

indicates that the interpolation method satisfactorily

estimates the rainfall intermittency, whereas a 1 value

indicates a complete inability to predict the zeros. To be

coherent with the definition of nonrainy time steps in the

observations (see section 2b), all interpolated intensities

lower than 0.01 mm per 5 min were considered as 0

values.

3) EVALUATING THE DISTRIBUTION OF RAIN

INTENSITIES

The distributions of rain intensities resulting from the

interpolation are compared to the observed intensity

distribution through quantile–quantile plots.

4) DETERMINING THE BEST INTERPOLATION

METHODS

Electing the best interpolation method depends upon

the user objectives: what are the rain features that must
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be well reproduced for the targeted application? For in-

stance, for the modeling of long-term water resources,

one will be interested in predicting the rain intensities

that are responsible for the partition between infiltration

and runoff; in agricultural applications, the rainfall in-

termittency will probably be the targeted feature; and,

for designing a flood warning system in operational hy-

drology, one will be interested in well predicting both

the timing and the magnitude of the rainy system. There is

thus a need to (i) define criteria to compare the observed

and modeled hyetographs based on the cross-validation

procedure and then (ii) assess which method performs the

best according to the user requirements. Three objective

functions are used to that end.

(i) The determination coefficient r2

The determination coefficient r2 is

r2 5

�
T

t51
�
N

i51
f[Ri(t) 2 R][Ri*(t) 2 R*]g2

�
T

t51
�
N

i51
[Ri(t) 2 R ]2 �

T

t51
�
N

i51
[Ri*(t) 2 R*]2

, (5)

where T is the number of time steps of the event, N is the

number of rain gauges, Ri(t) is the rain intensity at time

step t for the station i (in mm per 5 min), and R is the

mean rain intensity averaged over the whole stations and

the whole time steps of the event (in mm per 5 min). The

determination coefficient is a good indicator of the time

concordance between the observed and modeled hyeto-

graphs and is mostly sensitive to the position of the peak of

intensity of the hyetograph. It is thus tailored to evaluate

the capacity of the interpolation methods to reproduce the

timing of the hyetographs.

(ii) The KGE

The Kling–Gupta efficiency (KGE) is

KGE 5 1 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(1 2 r)2

1 (1 2 a)2
1 (1 2 b)2

q
, (6)

where r is the linear correlation coefficient [square root

of the determination coefficient in Eq. (4)], a is a mea-

sure of relative variability, which is defined as

a 5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�
T

t51
�
N

i51
[Ri*(t) 2 R*

vuut
]2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�
T

t51
�
N

i51
[Ri(t) 2 R]2

vuut
; (7)

and b is the bias, which is defined as

b 5

�
T

t51
�
N

i51
Ri*(t)

�
T

t51
�
N

i51
Ri(t)

. (8)

KGE evaluates the interpolation by equally weighting

the correlation, the relative variability, and the bias. It

can thus be seen as a compromise between a fair modeling

of both timing and shape of the hyetographs. Gupta et al.

(2009) proposed it as an alternative objective function to

overcome the problems associated with the widely used

mean-square error (MSE) and its related normalization,

the Nash–Sutcliffe efficiency (NSE; Nash and Sutcliffe

1970). Gupta et al. (2009) indicate that, to maximize the

MSE or the NSE, the variability has to be underestimated,

which is not the case for the KGE. As a consequence, for a

given bias, the MSE and the NSE are much more influ-

enced by the correlation component than by the relative

variability. This has been verified in the present study

because the MSE and NSE were tested and were shown

to behave similarly to r2 (not shown here).

(iii) KGE_move

Both r2 and KGE remain sensitive to the hyetograph

timing. This can be seen as a limitation because, if a hy-

etograph is modeled with a shape similar to the observed

hyetograph but slightly delayed in time, despite an ob-

vious skill of the interpolation to correctly predict the

rainfall intensities, the cross-validation will produce low

values of r2 and KGE because of the time lag between

prediction and observation. To strictly evaluate the

modeling of the hyetograph shapes independently of the

timing, a new objective function called the moving Kling–

Gupta efficiency (KGE_move) has been defined.

KGE_move is the KGE value obtained by replacing

Ri*(t) by Ri*(t 1 Dti) in Eqs. (8), (7), and (5), with Dti being

a time shift adjusted independently at each station i to

maximize the correlation between the observed and the

predicted hyetographs.

4. Results

a. Qualitative comparison for the case study of 22 July
2006 in Niger

Figure 5a shows three successive rain fields estimated

from the MIT radar data for the event of 22 July 2006

over the Niger. The radar-derived rain fields have their

own uncertainties, linked essentially to ambiguous con-

version between radar reflectivity and rain rates (Russell

et al. 2010). However, radar provides a good rending of

the spatial structure of the fields with a frequent time

DECEMBER 2011 V I S C H E L E T A L . 1473

Unauthenticated | Downloaded 11/03/21 08:17 AM UTC



FIG. 5. Rain fields at (left) 0810 local time (LT), (middle) 0900 LT, and (right) 0950 LT 22 Jul 2006 estimated by (a) the

MIT meteorological radar; (b) classic interpolation: Eul.Kri; (c) dynamic interpolation: Lag.Kri with the ASH kinematic

model; (d) dynamic interpolation: Lag.Kri with the MaxRain propagation model; and (e) dynamic interpolation: Lag.Kri

with the FirstRain propagation model.
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sampling. The fields are characterized by extended non-

rainy areas, particularly ahead of the convective front (left

of the radar images) and in the rear part of the stratiform

trail mainly associated with the external intermittency of

the system. Some of the spatial variability and the occur-

rences of patch of lower rain rates, behind the convective

cells, might be exaggerated by the effect of attenuation.

Within the system, rainfall intensities are strongly variable

in space, but the overall pattern, marked by a line of con-

vective cells and more widespread rain behind, exhibits

some similarities among the three images. This illustrates

the time correlation between successive rain fields.

Figures 5b–e show the interpolated fields obtained

from the different interpolation methods at a 5-min time

step. Figure 5b shows that Eul.Kri fails in retrieving the

inherent characteristics of the rain fields at small time

scales. The intermittency is not correctly reproduced,

especially where the rain gauges density is low (see, e.g.,

the westernmost part of the AMMA-CATCH Niger area).

This is linked to the basic property of ordinary kriging,

which tends to the mean value of the interpolated pro-

cess, when the nearest measurement points are too re-

mote to provide information. The lack of resemblance

between the spatial patterns of the successive rain fields

illustrates the consequence of ignoring the space–time

correlation in the interpolation technique. The Lag.Kri

methods (Figs. 5c–e) reproduce much better the features

of the rain fields: the modeling of the intermittency and

the similarity of the successive spatial patterns is im-

proved, and the rainfall intensities are more clearly orga-

nized within the convective front and the stratiform trail of

the MCS, which are now more clearly distinguishable. The

fields are still smooth compared to the higher-resolution

radar data but much improved compared to the static in-

terpolation. The three tested propagation models produce

different rainfall patterns. The ASH method (Fig. 5e) pro-

duces a rectilinear pattern that seems to be a bit artificial

as the front of the observed system is obviously not a

straight line. The MaxRain and FirstRain methods pro-

duce more variable spatial patterns more resembling the

radar patterns. A quantitative and systematic character-

ization and evaluation of the interpolation methods is

presented in the following.

b. Retrieval of the features of the rain fields:
Propagation, intermittency, and intensity
distributions

1) EVALUATION OF THE PROPAGATION MODEL

REALISM

A pre-analysis of the propagation fields revealed some

difficulties of the FirstRain, MaxRain, and ASH models

to retrieve realistic times of propagation for some events.

For these events, the models produced unexpectedly long

times of propagation (event duration of several days over

the study areas instead of the usually observed 3–12 h).

Most of these events were associated with scattered rain

cells with no clearly organized propagation patterns. As

explained in section 3a, for such disorganized systems the

use of a dynamic interpolation technique does not make

sense and the classic interpolation is preferable by default.

It was then considered that a propagation field is failing

when a significant part of the total event rain amount is

predicted out of the time boundaries of the observed event.

The proportion of failing events is reported in Table 2

for different percentages of rainfall amount interpolated

outside of the observed temporal boundaries. For each

of the three sites, the ASH propagation model has the

highest rates of failures. For instance, 12% of the events

in Niger have 10% of their rainfall predicted outside of the

TABLE 2. Evaluation of the realism of the models of propagation ASH, FirstRain, and MaxRain. An event is considered as failing when

a given percentage of rainfall (first column) is interpolated outside of the temporal boundaries of the observed rainfall.

Niger Benin Mali

Percentage of rain

interpolated outside

of the observed

event temporal

boundaries

Percentage

of failing

events

Corresponding

percentage of

the total

cumulative

rainfall

Percentage

of failing

events

Corresponding

percentage of the

total cumulative

rainfall

Percentage

of failing

events

Corresponding

percentage

of the total

cumulative

rainfall

ASH 10 11.9 2.9 21.8 11.0 45.5 26.3

FirstRain 6.0 2.4 9.0 3.9 25.0 10.9

MaxRain 3.5 1.1 7.9 8.3 22.7 11.9

ASH 5 23.4 6.9 35.3 21.1 63.6 50.3

FirstRain 16.4 7.8 18.7 11.9 37.5 22.6

MaxRain 11.0 4.1 15.5 17.8 37.5 26.3

ASH 1 49.3 23.0 67.2 56.1 86.4 75.3

FirstRain 36.3 19.3 53.9 49.1 69.3 53.2

MaxRain 40.3 26.1 51.0 55.2 71.6 59.6
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observed time boundaries, with 22% in Benin and 46%

in Mali. However, the low percentage of the associated

cumulative rainfall (3%, 11%, and 26% for Niger, Benin,

and Mali, respectively) shows that these events are more

likely to be associated with small rainy systems, which are

also the most disorganized. According to the statistics of

Table 2, the methods MaxRain and FirstRain seem to have

less difficulty to keep the time of propagation in a realistic

order of magnitude. One will note, however, that this result

is not a guarantee against a possible unrealistic modeling

of the timing of the rain intensities within the event. The

present evaluation just allows the identification of events

for which the dynamic approach produces unrealistic prop-

agation fields. The results presented in the following were

obtained by selecting for each method only those events

for which less than 5% of the total interpolated event

rainfall amount is out the observed time boundaries.

2) EVALUATION OF THE RAINFALL

INTERMITTENCY

FAR [Eq. (2)] was computed for events of increasing

intensities (Fig. 6) for each of the four interpolation meth-

ods. As a common behavior over the three study areas,

the FAR values are always lower for the three Lag.Kri

methods than for the Eul.Kri method, demonstrating

that incorporating some information of the rainy system

propagation into the interpolation improves the mod-

eling of the nonrainy areas. In average, the FirstRain

method reproduces the best the intermittency, whereas

ASH and MaxRain perform variably, depending on the

study area (MaxRain always performs better than ASH

for the Mali site, whereas ASH performs better than

MaxRain for intense events in Niger and Benin). FAR

values decrease when the intensity of the event increases,

which is coherent with the fact that the most intense events

have the greatest spatial extension; for these events, there

is thus more chance to correctly predict the intermittency,

which is obviously smaller. However, FAR computed on

the Benin site displays a singular behavior for the most

intense events (quantile 95% corresponding to events with

mean cumulative rainfall greater than 50 mm) because

the values of all methods surprisingly increase and modify

the ranking of the method performances. This trend is

associated with a complex space–time organization of

the MCS in Sudanian regions, which makes it difficult to

identify the rainy structures and the propagation of the

system. This aspect will be further discussed in section 5a.

3) RAIN INTENSITY DISTRIBUTION

To assess how the interpolation methods reproduce the

rain intensities, quantile–quantile plots comparing the ob-

served and interpolated rain intensities are presented in

Fig. 7. For all plots, the curves are above the first bisector

for the lowest rain intensities and below for the highest.

This behavior is a well-known shortcoming of the krig-

ing process that tends to smooth the rainfall patterns

(see, e.g., Vischel et al. 2009). The underestimation affects

the intensities greater than 1 mm per 5 min (12 mm h21

in 5 min, corresponding roughly to the quantile 90%),

meaning the highest intensities, which are of first impor-

tance to characterize the climatology (Balme et al. 2006)

as well as the hydrology in the region (Vischel and Lebel

2007). Comparing the observed values in Niger, the quantile

99% (corresponding to the observed intensity of 3.2 mm

per 5 min or 38 mm h21) is 38% lower for Eul.Kri, 27%

lower for Lag.Kri ASH and FirstRain, and 19% lower for

FIG. 6. FAR characterizing the ability of the interpolation method to predict correctly the rainfall intermittency. A 0 value indicates

a perfect skill of the interpolation methods to predict the rainfall intermittency. A 1 value indicates a complete inability to predict the

intermittency. The FAR values are computed for the events with mean rainfall greater than the quantiles reported on the x axis: (left)

Niger, (middle) Benin, and (right) Mali.
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Lag.Kri MaxRain. From Fig. 7, it can be noted that, for

the three sites Eul.Kri underestimates the most, the rain

intensities. The ASH method is in between the Eul.Kri

and the FirstRain method, except for the Mali site, where

ASH is under the Eul.Kri curve. For all sites, the under-

estimation is less pronounced for the MaxRain method.

This behavior is coherent with the adjustment of the hy-

etograph within the Lagrangian coordinate system: by

adjusting the maximum intensities all together, it is quite

logical that the MaxRain method favors the interpolation

of the highest intensities.

c. What is the best interpolation method?

The previous results showed that, although the Lag.Kri

approach performs significantly better than the Eul.Kri

approach, none of the three dynamic interpolation methods

satisfactorily predicts both the intermittency and the in-

tensity distribution of the rainy systems; also, there is not

a method that is always performing better than the others.

To gain more insight into the behavior of each method,

they were ranked for each event and each of the three

criteria. The resulting statistics are reported in Table 3.

Whatever the objective function used to compare the

methods, most of the time the Lag.Kri techniques perform

better than Eul.Kri for the three studied regions. From

82% to 86% of the events (depending on the criterion) are

better interpolated by the Lag.Kri techniques over the

Niger site. These percentages vary from 53% to 75% in

Benin. The performances of the Lag.Kri approach are

lower for the Mali site: except for the KGE_move crite-

rion (61%), only 40% (for r2) and 37% (for KGE) of the

events are best modeled by the Lag.Kri methods. These

lower percentages are mainly explained by the difficulty

of the Lag.Kri techniques to detect the rainfall propaga-

tion over the Mali network: indeed, a fourth of the events

are interpolated with the Eul.Kri by default.

FIG. 7. Quantile–quantile plots comparing the observed and the interpolated rainfall intensities: (left) Niger, (middle) Benin, and (right) Mali.

TABLE 3. Best methods of interpolation according to the r2, KGE, and KGE_move criteria. Eul.Kri default corresponds to the per-

centage of events for which the propagation modeled by ASH, FirstRain, and MaxRain were considered as nonrealistic in a sense defined

in section 4b and Table 2.

r2 KGE KGE_move

Percentage of events Percentage of events Percentage of events

Niger Eul.Kri default 17.9 6.0 17.5 6.0 14.0 6.0

— 11.9 11.5 8.0

Lag.Kri ASH 82.1 59.2 82.5 34.3 86.0 1.0

FirstRain 14.4 14.9 5.9

MaxRain 8.5 33.3 79.1

Benin Eul.Kri default 42.7 7.2 46.3 7.2 24.5 7.2

— 35.5 39.1 17.3

Lag.Kri ASH 57.3 40.7 53.7 18.0 75.5 0.7

FirstRain 10.3 9.9 4.3

MaxRain 6.3 25.8 70.5

Mali Eul.Kri default 59.1 25.0 62.5 25.0 38.6 25.0

— 34.1 37.5 13.6

Lag.Kri ASH 40.9 18.2 37.5 9.1 61.4 1.2

FirstRain 11.3 11.4 10.2

MaxRain 11.4 17.0 50.0
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Among the three dynamic techniques, the ASH method

is the most often selected as the best method according to

the r2 criterion. According to KGE, MaxRain is the most

frequent best method, but ASH remains a reliable inter-

polation for a large portion of events, especially in Niger.

MaxRain is mostly selected for the KGE_move criterion.

These differences results from the varying capacity of the

methods to model both the shape and the timing of the

hyetographs. In Fig. 8, MaxRain and ASH performances

are compared for the case of Niger (similar behaviors

were noticed for the two other sites; not shown here).

The KGE_move values were lower for ASH than for

MaxRain for all events. This means that the hyetograph

shapes modeled by ASH are less realistic than those

produced by the MaxRain method. Actually, by imposing

a constant average propagation of the system, the ASH

method tends to spread the rain intensities over the

time. This produces less ‘‘peaky’’ hyetographs than the

MaxRain method for which the Lagrangian origin ad-

justed on the maximum rain intensity accentuates the

peaks of intensities. However, the better values of r2

obtained by the ASH method show that the timing is

more appropriately modeled by ASH than by MaxRain.

ASH thus behaves as if seeking a compromise between

reproducing the hyetograph shapes and reproducing

their time of arrival, whereas MaxRain produces more

realistic hyetograph shapes at the price of less accuracy

in their timing. The FirstRain method displays an in-

termediate behavior between ASH and MaxRain.

5. Discussion

Different interpolation performances over the three

studied regions have been noticed in section 4. These

differences are clearly visible in Fig. 9, where box plots

are summarizing the distribution of the values obtained

for each criterion on the three sites. Only the values of

the best method (regardless of the type) were retained

for each event site. Significantly better scores are ob-

tained for the Niger site than for the Benin or Mali

sites. Two factors explain this: (i) a larger variety of rain

events in Benin and (ii) a pattern and density of the rain

gauge network producing larger sampling errors on the

Mali site.

FIG. 8. Intercomparison of the Lag.Kri techniques MaxRain and ASH according to the (left) r2, (middle) KGE, and (right) KGE_move

criteria for the Niger events. (left) The bisector corresponds to the line of equal performance of the two interpolation methods.

FIG. 9. Box plot of the (left to right) r2, KGE, and KGE_move of the best interpolation methods (regardless their type). The box plot width

is proportional to the number of rainfall events for each studied region.
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a. Effect of rainfall typology on interpolation
performances

In the Sahelian region, it has long been known that the

fast and well organized MCS are the most active in term

of rainfall (see Mathon et al. 2002; Laing et al. 1999). In

average, the organized convective systems defined by

Mathon et al. (2002) produce 80% of the annual rainfall

on the Niger site. The superiority of the Lag.Kri tech-

niques for these rain fields is quite intuitive. Such sys-

tems are also responsible for a significant share of the

annual rainfall on the Ouémé catchment of Benin, but

Depraetere et al. (2009) have shown that large event

rainfall may also be produced by situations where several

midsize MCS hit different parts of the region of study at

close time intervals. The resulting space–time pattern of

the rain fields is somewhat complex, with strong changes

from one time step to the next and no clear kinematics

identifiable from a network of gauges. Two remarkable

examples of such events are given in Fig. 10. They are

characterized by successive rainy structures spread over

several days, but our algorithm of event separation could

not distinguish these various rainy structures because it

kept raining over at least some part of the area during the

whole period. Such events are characterized by a signifi-

cant intermittency at small time steps, an intermittency

that no interpolation method can retrieve properly. How-

ever, they are also characterized by a large amount of

cumulative rainfall (more than 50 mm). In our sample of

445 Benin site events, more than 10 major events are

presenting characteristics similar to those of the events of

Fig. 10; they are responsible for the singular shape of the

FAR curves in Fig. 6. This relatively small but still sig-

nificant proportion of ‘‘multi MCS’’ rain is part of the

larger diversity of rainy systems characterizing the Suda-

nian regions, in comparison to the Sahelian region. Rain

gauge networks are less suitable for studying these com-

plex rainy structures, and it is difficult to find suitable

methods to dissociate these rainy structures from the rain

gauge data.

b. Effect of network density and pattern on
interpolation performances

Although both the Mali and the Niger sites are char-

acterized by a similar Sahelian rainfall regime where fast

moving and well organized MCS dominate, the pattern

and density of the rain gauge networks operated on

these two sites are very different (Fig. 1). Keeping in

mind that the MCS are moving from east-northeast to

west-southwest, it is obvious from Fig. 1 that the Mali site

network is much less fitted to capture the dynamics of these

systems, and it is thus not surprising to obtain significantly

less good interpolation scores over this site (Fig. 9), with

a large part of the events being by default interpolated

by Eul.Kri (25% against 6% for the Niger site; Table 3).

Keeping aside the pattern influence, the sole effect of

the density was tested on the Niger site by decreasing the

number of rain gauges from the initial total of 33 in 2005

and 52–56 in 2006–08 to 30 in a first step and then to 20 (a

number close to the 18 rain gauges available on the Mali

site). As expected, decreasing the number of rain gauges

decreases the interpolation performances. In Fig. 11, the

differences of r2, KGE, and KGE_move values between

the 20 gauges and the full rain gauge networks are on the

same order of magnitude of the differences between the

Niger and Mali site reported in Fig. 9. This confirms that a

large part of the low performances of the interpolation in

Mali is due to sampling effect. The spatial undersampling

FIG. 10. Two examples of major events in Benin characterized by a complex succession of rainy structures that cannot

be dissociated by the method used to select the rainfall events.
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also increases the proportion of the event interpolated by

the Eul.Kri (Fig. 12). This proportion reaches 17% for the

20 gauges network, which indicates that the still higher

proportion (25%) obtained on the Mali site is indeed due

to the additional effect of the pattern of the network. It

may be concluded that a regular pattern of rain gauges

separated by a distance on the order of 20 km allows us to

retrieve some useful information on the dynamics of the

MCSs, an information allowing dynamic interpolation

methods to perform better than classic methods.

6. Conclusions

Rain field estimation at small time steps remains both

a key requirement and a challenge in regions of the world

where the water cycle is strongly sensitive to small time

scale processes, even more so when rainfall is charac-

terized by a strong space–time variability and intermit-

tency. Making use of a large dataset of 734 rain events

collected in three climatically contrasted West African

regions (Ouémé catchment in Benin, 10.58N; Niamey re-

gion in Niger, 13.58N; and Gourma region of Mali, 14.58N),

it was shown here that, in most cases, interpolation

methods incorporating some information about the time

structure of successive 5-min rain fields perform signif-

icantly better than a classic interpolation method treat-

ing each rain field independently of the previous and

next rain fields.

Three algorithms were proposed to account for the time

structure of rainfall. Rather than identifying explicitly a

time autocorrelation or a 3D covariance function, these

three algorithms are based on propagation models allow-

ing us to (i) define a Lagrangian coordinate system in

which rainfall intensities are interpolated and (ii) shift the

interpolated intensities back into the Eulerian coordinate

system. The three propagation algorithms differ by the

way the origin of the Lagrangian coordinate system is

defined: in the MaxRain and the FirstRain algorithms

the hyetographs are adjusted on the maximum and the

first rain rates, respectively, and in the ASH algorithm the

hyetographs are adjusted according to the determination

of a mean and unidirectional speed of the rainy system.

Different criteria have been used to intercompare their

results, based on a cross-validation procedure. The dy-

namic interpolation (all algorithms taken together) was

shown to perform better than the classic interpolation for

82%–86% of the 201 events in Niger, 57%–75% of the

445 events in Benin, and 40%–61% of the 88 events in

Mali, depending on the evaluation criterion used. Among

the three algorithms, the MaxRain method is the best in

modeling the shape of the hyetograph but the timing is

sometimes delayed, and the ASH method provides a good

compromise between the shape and the timing but tends

to smooth the shape of the hyetographs. The FirstRain

method behaves in between the two methods.

Despite their good performances, one should notice that

none of the three dynamic algorithms succeeds entirely in

accounting properly for the three important properties of

the small time step rain fields: that is, rainfall propagation,

rain field intermittency, and rain intensity distribution.

Also, it was shown that these algorithms fail for some

type of rain fields for which the Eulerian ordinary

FIG. 11. Box plot of (left to right) r2, KGE, and KGE_move for a decreasing RG density in Niger.

FIG. 12. Bar plot of the best interpolation methods for a decreasing

RG density in Niger.
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kriging performed better and that their performances

depend on the pattern and density of the measuring

network. For these reasons, it would be unwise to blindly

use any of these algorithms. One important factor to keep

in mind is the user’s requirements: in some applications,

a good estimation of the rainfall propagation is a priority,

whereas, in others, a good simulation of the intensities

and/or of the intermittency is more important.

The significantly better accuracy of the rain fields in-

terpolated through the dynamic method proposed here

led to use them as reference rain fields for the ongoing

AMMA Land Surface Model Intercomparison Project

Phase 2 (ALMIP-2) (Boone et al. 2009) . The validation of

high-resolution rain products derived from indirect mea-

surements such as weather radar or satellite is another

potential use for our dynamically interpolated rain fields.

It is indeed unsound to compare the ‘‘instant’’ rain maps

produced by remote sensing with the smooth interpolated

rain field traditionally derived from gages. The dynami-

cally interpolated rain fields produced 5-min rain fields are

much better suited as a reference ground product for these

applications, and it is planned to use them in future ground

validation exercise, such as for the future Megha-Tropiques

mission (Desbois et al. 2007; http://meghatropiques.ipsl.

polytechnique.fr/).

In the present study, the ordinary kriging interpolation

has been used in both Eulerian and Lagrangian coordinate

systems. Obviously, a large variety of other interpolation

methods might also provide a suitable framework to

model the characteristics of high-resolution rain fields

(for a review, see Amani and Lebel 1997). A strong argu-

ment for adopting the three proposed dynamic algorithms

is that they do not require inferring a complex 3D structure

function, making their numerical implementation rel-

atively easy.

Future developments will focus on four aspects: (i)

comparing the dynamic kriging with other interpolation

methods, (ii) incorporating into the dynamic interpolation

methods radar and satellite information, (iii) studying the

dependence of the dynamic interpolation performances

to the time step of the rainfall data, and (iv) defining a

theoretical framework to define an interpolation error

model allowing the development of a 5-min rain field

stochastic generator conditioned by point values.
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satellite hydrométéorologique Franco-Indien. Meteorologie,

57, 19–27.

Gosset, M., E. Zahiri, and S. Moumouni, 2010: Rain drop size

distribution variability and impact on x-band polarimetric

radar retrieval: Results from the AMMA campaign in Benin.

Quart. J. Roy. Meteor. Soc., 136, 243–256.

Gourley, J., and B. Vieux, 2006: A method for identifying sources

of model uncertainty in rainfall-runoff simulations. J. Hydrol.,

327, 68–80.

Guillot, G., and T. Lebel, 1999: Disaggregation of Sahelian meso-

scale convective system rain fields: Further developments and

validation. J. Geophys. Res., 104 (D24), 31 533–31 551.

Gupta, V. H., H. Kling, K. K. Yilmaz, and G. F. Martinez, 2009:

Decomposition of the mean squared error and NSE perfor-

mance criteria: Implications for improving hydrological mod-

elling. J. Hydrol., 377, 80–91.

Haberlandt, U., 2007: Geostatistical interpolation of hourly pre-

cipitation from rain gauges and radar for a large-scale extreme

rainfall event. J. Hydrol., 332, 144–157.

Johnson, E., and R. Bras, 1979: Real-time estimation of velocity

and covariance structure of rainfall events using telemetered

raingage data—A comparison of methods. J. Hydrol., 44,

97–123.

Krajewski, W. F., G. J. Ciach, and E. Habib, 2003: An analysis of

small-scale rainfall variability in different climatic regimes.

Hydrol. Sci. J., 48, 151–162.

DECEMBER 2011 V I S C H E L E T A L . 1481

Unauthenticated | Downloaded 11/03/21 08:17 AM UTC



——, G. Villarini, and J. A. Smith, 2010: Radar-rainfall uncertainties:

Where are we after thirty years of effort? Bull. Amer. Meteor.

Soc., 91, 87–94.

Laing, A., J. M. Fritsch, and A. J. Negri, 1999: Contribution of

mesoscale convective complexes to rainfall in Sahelian Africa:

Estimates from geostationary infrared and passive microwave

data. J. Appl. Meteor., 38, 957–964.

Lebel, T., and G. Bastin, 1985: Variogram identification by the

mean-squared interpolation error method with application to

hydrologic fields. J. Hydrol., 77, 31–56.

——, and Coauthors, 2009: AMMA-CATCH studies in the Sahe-

lian region of West-Africa: An overview. J. Hydrol., 375, 3–13.

——, and Coauthors, 2010: The AMMA field campaigns: Multi-

scale and multidisciplinary observations in the West African

region. Quart. J. Roy. Meteor. Soc., 136, 8–33.

Mathon, V., H. Laurent, and T. Lebel, 2002: Mesoscale convective

system rainfall in the Sahel. J. Appl. Meteor., 41, 1081–1092.

Michaud, J., and S. Sorooshian, 1994: Effect of rainfall-sampling

errors on simulations of desert flash floods. Water Resour. Res.,

30, 2765–2775.

Moron, V., A. W. Robertson, M. N. Ward, and P. Camberlin, 2007:

Spatial coherence of tropical rainfall at regional scale. J. Cli-

mate, 20, 5244–5263.

Moszkowicz, S., 2000: Small-scale structure of rain fields—Preliminary

results based on a digital gauge network and on MRL-5 legio-

nowo radar. Phys. Chem. Earth, 25B, 933–938.

Nash, J. E., and J. V. Sutcliffe, 1970: River flow forecasting through

conceptual models. Part I—A discussion of principles. J. Hy-

drol., 10, 282–290.

Pebesma, E. J., 2004. Multivariable geostatistics in S: The gstat

package. Comput. Geosci., 30, 683–691.

R Development Core Team, 2009: R: A Language and Environ-

ment for Statistical Computing. R Foundation for Statistical

Computing, 409 pp.

Russell, B., and Coauthors, 2010: Radar/rain-gauge comparisons

on squall lines in Niamey, Niger for the AMMA. Quart. J. Roy.

Meteor. Soc., 136, 289–303.

Spadavecchia, L., and M. Williams, 2009: Can spatio-temporal

geostatistical methods improve high resolution region-

alisation of meteorological variables? Agric. For. Meteor.,

149, 1105–1117.

Tao, T., B. Chocat, S. Liu, and K. Xin, 2009: Uncertainty analysis of

interpolation methods in rainfall spatial-distribution—A case

study of small catchment in Lyon. J. Water Resour. Prot., 2,

136–144.

Tsanis, I., M. Gad, and N. Donaldson, 2002: A comparative analysis

of rain-gauge and radar techniques for storm kinematics. Adv.

Water Resour., 25, 305–316.

Turk, F., B.-J. Sohn, H.-J. Oh, E. Ebert, V. Levizzani, and E. Smith,

2009: Validating a rapid-update satellite precipitation analysis

across telescoping space and time scales. Meteor. Atmos.

Phys., 105, 99–108.

Upton, G., 2002: A correlation-regression method for tracking

rainstorms using rain-gauge data. J. Hydrol., 261, 60–73.

Vischel, T., and T. Lebel, 2007: Assessing the water balance in the

Sahel: Impact of small scale rainfall variability on runoff. Part

2: Idealized modeling of runoff sensitivity. J. Hydrol., 333,

340–355.

——, ——, S. Massuel, and B. Cappelaere, 2009: Conditional

simulation schemes of rain fields and their application to

rainfall-runoff modeling studies in the Sahel. J. Hydrol., 375,

273–286.

Waymire, E., V. Gupta, and I. Rodriguez-Iturbe, 1984: A spectral

theory of rainfall intensity at the meso-beta scale. Water Re-

sour. Res., 20, 1453–1465.

Wilson, J. W., and E. A. Brandes, 1979: Radar measurement

of rainfall—A summary. Bull. Amer. Meteor. Soc., 60, 1048–

1058.

Wolff, D., B. Fisher, J. Wang, D. Marks, E. Amitai, D. Silberstein,

and J. Pipitt, 2005: Ground validation for the Tropical Rainfall

Measuring Mission (TRMM). J. Atmos. Oceanic Technol., 22,
365–380.

Zawadzki, I., 1973: Statistical properties of precipitation patterns.

J. Appl. Meteor., 12, 459–472.

1482 J O U R N A L O F H Y D R O M E T E O R O L O G Y VOLUME 12

Unauthenticated | Downloaded 11/03/21 08:17 AM UTC


