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Biogeochemical modelling of anaerobic vs. aerobic methane oxidation in a meromictic crater lake (Lake Pavin, France)

Methane is a powerful greenhouse gas and its concentration in the atmosphere has increased over the past decades. Methane produced by methanogenic Archae can be consumed through aerobic and anaerobic oxidation pathways. In anoxic conditions found in freshwater environments such as meromictic lakes, CH 4 oxidation pathways involving different terminal electron acceptors such as , , and oxides of Fe and Mn are thermodynamically possible. In this study, a reactive transport model was developed to assess the relative significance of the different pathways of CH 4 consumption in the water column of Lake Pavin. In most cases, the model reproduced experimental data collected from the field from June 2006 to June 2007. Although the model and the field measurements suggest that anaerobic CH 4 oxidation may contribute to CH 4 consumption in the water column of Lake Pavin, aerobic oxidation remains the major sink of CH 4 in this lake.

Introduction

Methane can be considered both as an energy resource and as an atmospheric contaminant contributing to the greenhouse effect. Almost 2/3 of the current CH 4 emissions are anthropogenic and the present CH 4 concentration of 1.77 ppmv is more than twice its preindustrial value. This global increase has contributed to an increase in radiative forcing [START_REF] Solomon | Contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change. Technical summary[END_REF]. Emission from wetlands is an important source of CH 4 , dominating natural sources of CH 4 in the atmosphere. In the past decade the overall annual rate of CH 4 growth has been reduced to nearly zero and has become highly variable. The decrease is attributed to a temporary reduction in anthropogenic emissions, while the increased variability is attributed to wetland emission [START_REF] Van Huissteden | Summer soil CH 4 emission and uptake in taiga forest near Yakutsk, Eastern Siberia[END_REF]. For northern wetlands, it has been shown that at relatively high water tables, the CH 4 flux can change from net emission to net uptake [START_REF] Van Huissteden | High CH 4 flux from an arctic floodplain (Indigirka lowlands, Eastern Siberia)[END_REF]. Owing to the importance of this reversibility at the global scale, permanent or transient (seasonal) biogeochemical sink pathways need to be characterized.

In wetlands (watercourses, swamps, ponds and lakes) with anoxic, highly reductive conditions, the final stage of natural organic matter decomposition is CH 4 production (methanogenesis). Methanogens are strictly anaerobic microorganisms of the Archaea type utilizing very simple C compounds like acetic acid, CO 2 and methanol for their energy production [START_REF]Seasonally-induced fluctuations in microbial production and consumption of methane during bioremediation of aged subsurface refinery contamination[END_REF]. The rate of CH 4 production by Archae is however limited when alternative electron acceptors (e.g., , , Fe(III) and Mn(IV)) are available [START_REF] Lovley | A rapid assay for microbially reducible ferric iron in aquatic sediments[END_REF]. Nevertheless, according to Crowe et al. (2010, and associated references), methanogenesis may account for a large part of organic matter recycling even in the presence of significant Fe(III) particle content, due to surface deactivation by Fe(hydro)oxides.

The CH 4 produced is partly consumed by methanotrophs, CH 4 -oxidising bacteria (Whiticar, 1993). Methane oxidation can occur aerobically or anaerobically in a wide variety of subsurface and surface environments. Anaerobic oxidation of methane (AOM) is a wellknown mechanism in marine sediments [START_REF] Elvert | Archaea mediating anaerobic methane oxidation in deep-sea sediments at cold seeps of the eastern Aleutian subduction zone[END_REF]. For instance SO 4 -dependent methane oxidation (SDMO) (using as electron acceptor) has been reported in marine systems.

However, only a few lakes show the occurrence of anaerobic CH 4 oxidation [START_REF]Oxidation of ammonia and methane in an alkaline, saline lake[END_REF] , [START_REF] Eller | Cooccurrence of aerobic and anaerobic methane oxidation in the water column of lake Plusssee[END_REF] and [START_REF] Ertefai | Vertical distribution of microbial lipids and functional genes in chemically distinct layers of a highly polluted meromictic lake[END_REF] ). Recently, and have been found as suitable substrates for AOM in a freshwater canal sediment [START_REF] Raghoebarsing | A microbial consortium couples anaerobic methane oxidation to denitrification[END_REF]. Moreover, Fe and Mn dependent anaerobic CH 4 oxidation (Fe/Mn-AOM) are presented as possible pathways of CH 4 consumption [START_REF] Valentine | Biogeochemistry and microbial ecology of methane oxidation in anoxic environments: a review[END_REF]. Recently, [START_REF] Crowe | The methane clycle in ferruginous Lake Matano[END_REF] suggested that anaerobic CH 4 oxidation coupled to Fe or Mn reduction may occur in Lake Matano. Extreme conditions, such as high alkalinity or hypersalinity characterize most continental settings exhibiting anaerobic CH 4 oxidation, e.g., Big Soda Lake [START_REF] Iversen | Big Soda Lake (Nevada). 3. Pelagic methanogenesis and anaerobic methane oxidation[END_REF], hypersaline Solar Lake [START_REF] Cytryn | Distribution and diversity of Archaea corresponding to the limnological cycle of a hypersaline stratified lake (Solar Lake, Sinai, Egypt)[END_REF] or continental mud volcanoes [START_REF]Microbiological investigation of methane-and hydrocarbon discharging mud volcanoes in the Carpathian Mountains, Romania[END_REF].

Meromictic lakes are usually small and widespread [START_REF] Pourriot | Limnologie Générale[END_REF]. They represent excellent field laboratories to follow biogeochemical reactions in permanently stratified ecosystems. Such a situation is found in Lake Pavin ( [START_REF] Michard | Geochemical study of a crater lake: the Lake Pavin, Franceidentification, location and quantification of chemical reactions in the lake[END_REF] and [Viollier et al., 1995] ) and makes this lake a unique microbial habitat allowing the study of biologically mediated redox processes. With an intense in situ production of Fe and Mn oxides (Viollier, 1995) and the presence of and in the water column, chemical conditions potentially allow aerobic methanotrophy above the oxycline and anaerobic CH 4 oxidation beneath the oxycline. Based on the characterization of microbial communities ( [START_REF] Lehours | Anaerobic microbial communities in Lake Pavin, a unique meromictic lake in France[END_REF] and [START_REF] Lehours | Phylogenetic diversity of archae and bacteria in the anoxic zone of a meromictic lake (Lake Pavin, France)[END_REF] ) and the utilization of a conservative tracer, [START_REF] Assayag | Hydrological budget, carbon sources and biogeochemical processes in Lac Pavin (France): constraints from d18O of water and d13C of dissolved inorganic carbon[END_REF] suggested that anaerobic CH 4 oxidation might explain the apparent CH 4 consumption in the mesolimnion of Lake Pavin. In order to numerically test the hypothesis of the CH 4 consumption pathways in Lake Pavin, field CH 4 oxidation rates were measured and a reactive transport model was developed. The model incorporates for the first time the CH 4 oxidation pathways coupled to the reduction of O 2 , , , Mn and Fe (hydr)oxides, with a set of classical primary and secondary redox reactions. In this study, the relative significance of the different CH 4 sink pathways in the water column of Lake Pavin are discussed.

Methods

Site description

Lake Pavin (elevation 1197 m above the sea level) is located in the French Massif Central at 45°29.74′N and 2°53.28′E in a volcanic area. It is circular in shape and has a diameter of 750 m and an area of 0.44 km 2 . Its maximum depth is 92 m. It is a crater lake characterized by the presence of two stratified layers: the upper layer (the mixolimnion) which extends from the surface to 60 m depth and is affected by fall and spring turnover, and the deepest layer (monimolimnion) below approximately 70 m depth is permanent (the major physical and chemical parameters do not change seasonally) and anoxic. A transition zone, the mesolimnion (ca. 60-70 m depth), which separates the mixolimnion from the monimolimnion, is characterized by a strong increase in specific conductivity and by an increase in temperature of about 1 °C.

Within the mixolimnion three different layers can be identified based on seasonal depth variations of dissolved O 2 , pH, temperature and conductivity: (1) The epilimnion corresponds to the surface mixed layer, with seasonal variations in temperature and thickness (0-20 °C and 5-15 m), (2) the metalimnion (ca. 15-20 m depth) is characterized by a steep temperature gradient, (3) the hypolimnion with a stable temperature close to 4 °C extends approximately from 20 to 60 m depth. Seasonal O 2 depletion down to zero occurs at the bottom of the hypolimnion within the depth range of approximately 58 and 61 m.

Fifteen tributaries, small or temporary, together with atmospheric precipitation contribute to surface water inputs (Table 1). Additional water supply comes from sublacustrine inputs (Table 1) to the mixolimnion (located at 54 ± 2 m depth, typical surface runoff water) and to the monimolimnion (located at 89 ± 2 m depth, typical mineral spring water) [START_REF] Assayag | Hydrological budget, carbon sources and biogeochemical processes in Lac Pavin (France): constraints from d18O of water and d13C of dissolved inorganic carbon[END_REF]. Biological diversity and activity has been described in [START_REF] Quiblier-Lloberas | Impact of grazing on phytoplankton in Lake Pavin (France): contribution of different zooplankton groups[END_REF] and [START_REF] Colombet | Depth-related gradients of viral activity in Lake Pavin[END_REF] and [START_REF] Lemarchand | Community composition and activity of prokaryotes associated to detrital particles in two contrasting lake ecosystems[END_REF]. [START_REF] Boudreau | Diagenetic Models and Their Implementation[END_REF] with CH 4 concentration profiles in sediments collected at 40 and 92 m depth.F_Fe 2+ , F_Mn 2+ , F_ -Fluxes of dissolved Fe, Mn and determined according to Fick's law with data from 1994 (Viollier, 1995).F_ Fep , F_ Mnp -Fluxes of particulate Fe and Mn from field data collected in 1994 (Viollier, 1995.[Fe 2+ ]_monimolimnion, [Mn 2+ ]_monimolimnion -Concentration of dissolved Fe and Mn in the monimolimnion sublacustrine input. Data from previous field campaigns (Viollier et al., 1997. a Based on [START_REF] Taillefert | Reactive transport modelling of trace elements in the water column of a stratified lake: iron cycling and metal scanvenging[END_REF]. b Based on Pourriot and Meybeck (1995. c Assayag et al. (2008) d From this study. e From field data collected in September 1993 (Viollier, 1995). f From field data collected in 1994 (Viollier, 1995). [START_REF] Albéric | Interactions between trace elements and dissolved organic matter in the stagnant anoxic deep layer of a meromictic lake[END_REF]. Depth profiles of , total orthophosphates, dissolved Fe and Mn, total H 2 S and alkalinity were also determined during the same field campaigns. Additionally, chemical ( and ) and physical (flow rate, temperature, conductivity) parameters were measured monthly in tributaries discharging into the lake from June 2006 to June 2007.

Data set: vertical concentration profiles from multiple campaigns

Methane concentrations in the water column and in sediment pore water

Water samples for CH 4 analysis were collected with an automatic laboratory-made 1 L syringe sampler along a vertical profile near the centre of the lake. Water from the oxic mixolimnion (from the surface to 55 m depth) was collected into serum bottles (100 mL) by filling them to overflowing, sealing and poisoning with 1 mL of 0.5 g L -1 HgCl 2 . A 30 mL N 2 headspace was created before analysis, as described in [START_REF] Abril | Methane dynamics in a shallow, non-tidal, estuary (Randers Fjord, Denmark)[END_REF]. In the CH 4rich monimolimnion (from 55 m to 90 m), a different sampling procedure was used in order to limit the loss of CH 4 due to depressurization: 30 mL of water from the sampling syringe were rapidly transferred with a needle through the butyl cap of a pre-weighed 100 mL serum bottles (pre flushed with N 2 gas). With this procedure, most of the depressurization occurred in the vial and the loss of CH 4 could be minimized. Methane concentrations were quantified using a gas chromatograph (GC) equipped with flame ionization detector (FID), according to [START_REF] Abril | Methane dynamics in a shallow, non-tidal, estuary (Randers Fjord, Denmark)[END_REF].

Site sediment cores from 40 and 92 m depth were sampled with a UWITEC corer (D9 × L60 cm) in order to determine CH 4 concentration profiles in sediment pore waters for June 2007. Cores were laterally sub-sampled at 2 cm intervals with 2 mL syringe-based pistons, through pre-drilled holes in the tube corer (holes were initially closed with water-proof tape). Sediment sub-samples were then transferred into pre-weighed 100 mL serum bottles containing 10 mL of 10 N NaOH. The vials were then sealed rapidly with rubber stoppers and Al crimps. They were then weighed and shaken vigorously. The CH 4 concentration in the equilibrated gas phase was determined as for water samples. Methane concentration in pore waters was calculated using the water content (determined gravimetrically on duplicate cores). Methane fluxes from the sediment layer at 40 and 92 m were calculated according to Fick's law [START_REF] Boudreau | Diagenetic Models and Their Implementation[END_REF]; see Section 3.3 in this manuscript, Table 1).

In situ methane oxidation rates

In order to determine in situ anaerobic CH 4 oxidation rates, water samples were collected from 60, 61 and 62 m depths, transferred to serum bottles and incubated at their respective depths using nylon bags attached to a float-wire cable. Additionally, some vials from each depth were poisoned with HgCl 2 (1 mL of 0.5 g L -1 HgCl 2 ), in order to inhibit the activity of CH 4 oxidizers, representing a reference for potential abiotic evolution. Sample bottles were removed from the water column in May 2007. Rates were calculated from the difference in CH 4 concentrations between October 2006 and May 2007.

Aerobic CH 4 oxidation rates were determined at variable CH 4 concentrations. Three litres of water were collected at 50 m depth and about 800 mL were transferred to three 1 L glass vials containing 200 mL of air headspace. A known amount of pure CH 4 was then introduced in the headspace and the vials were vigorously shaken in order to equilibrate the CH 4 in the water and the gas mixture. Three different CH 4 concentrations were tested: 60 × 10 -9 , 171 × 10 -9 and 352 × 10 -9 mol L -1 , covering the range of water CH 4 concentrations in the upper layers of the mixolimnion (from the surface to approximately 55 m). Water samples were then siphoned into 100 mL serum vials that were further sealed. In the assays, O 2 was not limiting. Eight bottles for each CH 4 concentration were incubated at in situ temperature. At 0, 22, 36 and 51 h, duplicate bottles were poisoned with HgCl 2 , and further analyzed for CH 4 initial concentration as described earlier. Rates of aerobic CH 4 oxidation for each CH 4 concentration were calculated as the slope of the decrease in CH 4 concentration with time. The first order constant of the aerobic CH 4 oxidation kinetics was subsequently determined and used in the reactive transport model (see below).

Model description

Overview

A reactive-transport model that accounts for spatial and temporal distribution of chemical species in the lake water column was developed from AQUASIM software (Reichert, 1998).

In the model, dissolved and particulate species are transported through the water column by vertical mixing. Particulate substances are also transported by sedimentation. Moreover, dissolved species are brought to the lake by inflows from small tributaries and by sublacustrine inputs. Dissolved and particulate species are allowed to react in multiple biogeochemical pathways specified through reaction rate equations.

Modelled species (state variables)

The model considers the following state variables: CH 4 , dissolved and particulate Fe and Mn, dissolved O 2 , , , , total dissolved sulfide, dissolved and particulate organic C (DOC and POC, respectively), total orthophosphates and total dissolved CO 2 (DIC). The elemental composition of organic particles is similar to the one reported by [START_REF] Sigg | Metal transfer mechanisms in lakes; the role of settling particles[END_REF] for lake Constance: (CH 2 O) 113 (NH 3 ) 15 (H 3 PO 4 ).

Governing differential equations

Biogeochemical and physical processes, expressed by a set of partial differential transportreaction equations (Reichert, 1998), are implemented in the AQUASIM code. The following equations are solved for each dissolved and particulate state variable, respectively.(1)

(2

)
where C is the concentration of a dissolved compound (M L -3 ), X is the concentration of a particulate compound (M L -3 ), t is the time (T), z is the vertical coordinate pointing downwards (z = 0 at the lake surface) (L), A is the cross-sectional area of the lake (L 2 ), K z is the vertical mixing coefficient (L 2 T -1 ), r are the transformation rates (M L -3 T -1 ), Q is the vertical discharge induced by water inflows in the lake depth (L 3 T -1 ), C in is the inflow concentration of a dissolved compound (M L -3 ), V sed is the sedimentation velocity (L T -1 ), q is the discharge of water per unit depth into the lake (L 2 T -1 ).

In both equations, the first term describes mixing due to eddy diffusion, the second term refers to advection in the water column resulting from inflows, and the third term describes the net effect of all transformations processes. In Eq. ( 1), the fourth term is related to inflows, whereas in Eq. ( 2), it describes sedimentation of particulate species through the water column. Other boundary conditions are the benthic fluxes of iron, manganese and ammonium from sediment pore waters, calculated according to Fick's law [START_REF] Boudreau | Diagenetic Models and Their Implementation[END_REF] and field data from September 1993 (Viollier, 1995). The set of partial differential equations is solved numerically with a vertical resolution of 1 m (Reichert, 1998). Monthly vertical eddy diffusion coefficient (K z ) profiles are calculated based on temperature and conductivity profiles. Water column density and Brunt-Väisälä Frequency (N 2 ) are calculated according to expressions reported by [START_REF] Aeschbag-Hertig | The physical structure and dynamics of a deep, meromictic crater lake (Lac Pavin, France)[END_REF]. The vertical resolution is 1 m. The following expression is used to derive K z values:(3)K Z =α(N 2 ) -q where K z is the vertical eddy diffusion coefficient (M 2 T -1 ) and N 2 is the Brunt-Väisälä (T -2 ) frequency given by The parameter q is set to 0.5 as discussed in [START_REF] Aeschbag-Hertig | The physical structure and dynamics of a deep, meromictic crater lake (Lac Pavin, France)[END_REF] for Lake Pavin. Eddy diffusion coefficient values in Lake Pavin spread over 4 orders of magnitude. The smallest values are calculated for the mesolimnion where K z decreases to nearly 10 -8 m 2 s -1 .

Advection

Advective fluxes are directly related to the sublacustrine inflows. In the mixolimnion, , and O 2 are constantly brought to the water column. In the monimolimnion, the mineral spring located at 89 ± 2 m depth adds dissolved Fe and Mn to the lake [START_REF] Viollier | Geochemical study of a crater lake: Lake Pavin, Puy de Dome, France. Constraints afforded by the particulate matter distribution in the element cycling within the lake[END_REF] (Table 1). Advection appears to be fairly weak with average rates from few centimeters to meters per year when normalized to the lake cross section [START_REF] Michard | Geochemical study of a crater lake: the Lake Pavin, Franceidentification, location and quantification of chemical reactions in the lake[END_REF]. In the epilimnion, advection is also impacted by the small tributaries (Table 1). The equal-density level is used to determine the diving depth of those lateral inputs.

Sedimentation

Sedimentation rate of particulate Fe, Mn and organic C are calculated according to Stokes's law [START_REF] Taillefert | Reactive transport modelling of trace elements in the water column of a stratified lake: iron cycling and metal scanvenging[END_REF]. Monthly sedimentation rate profiles for these species are calculated based on water column density, water viscosity, size and density of the particles. Average density and diameter of particulate Fe, Mn and organic C are presented in Table 1. The increase of the average diameter of the organic C particles from middle March to middle April is taken into account. It corresponds to Diatom spring bloom (main species: Aulacoseira italica, Asterionella formosa) and aggregation-sedimentation processes leading to an increase in sedimentation velocity (Carrias, 1996). The calculated sedimentation velocities of particulate Fe and Mn ranged from 0.55 m day -1 in lower water layers (for all months) to 0.55-0.9 m day -1 in the epilimnion (values for April 2007 andJuly 2006, respectively).

Sedimentation velocities of POC of 0.2-40 m day -1 are described in the literature ( [START_REF] Pourriot | Limnologie Générale[END_REF] and [START_REF] Omlin | Biogeochemical model of lake Zurich: model equations and results[END_REF] ). The calculated POC sedimentation rates in this work ranged from 1.5 m day -1 in the lower water layers to 1.7-2.3 m day -1 in the upper water layers (values for April 2007 andJune 2006, respectively). From March 2007 to April 2007, particulate organic C sedimentation rates ranged from 6 m day -1 for layers below the hypolimnion to around 6-6.4 m day -1 in the epi-and metalimnion.

Additionally, particulate Fe and Mn fluxes from the surface of the lake are also included in the model. Data were measured elsewhere (6 × 10 -5 and 1.6 × 10 -5 mol m -2 day -1 for particulate Fe and particulate Mn, respectively, from the 1994 data set published in Viollier et al., 1995) (Table 1).

Gas exchange at the lake surface

Dissolved O 2 , CO 2 and CH 4 exchange rates are considered as boundary conditions at the lake surface. The dissolved O 2 flux, given by Eq. ( 5), is proportional to the difference between O 2 concentration (O 2 _ Z=0 ) at the lake surface and the saturation concentration (O 2_solubility ) corrected to the elevation above sea level:(5)F O2 =k×(O 2_solublity -O 2_Z=0 )where F O2 is the O 2 flux (mol m -2 day -1 ) and k is the gas exchange velocity, which is proportional to the square of wind velocity (m day -1 ) (Liss and Merllivat, 1986). k equals 1 m day -1 . O 2_Z=0 and O 2_solubility are given in mol m -3 .

The partial pressure of O 2 in air is assumed constant and equal to 0.21 times the atmospheric pressure (about 880 mbar) at the elevation of the lake.

The dependence of the saturation concentration of O 2 (mol L -1 ) on temperature is given by the following expression:(6) where T is the water temperature in °C at the lake surface and H describes the elevation of the lake above sea level (1200 m).

The CO 2 flux across the water-air interface is also proportional to the difference of the current CO 2 (CO 2_Z=0 ) at the lake surface and the saturation (CO 2_solubility ) value.( 7)F CO2 =k×(CO 2_solubility -CO 2_Z=0 )where F CO2 is the CO 2 flux (mol m -2 day -1 ), k (1 m day -1 ) is the gas exchange velocity (the same as Eq. ( 5)). CO 2_Z=0 and CO 2 _ solubility are given in mol m -3 . CO 2_Z=0 is calculated from the DIC (dissolved inorganic C), the water pH and K a1 and K a2 (dissociation constants).

The partial pressure of CO 2 in air is assumed constant and equal to 3.7 × 10 -4 the atmospheric pressure at the elevation of the lake. The saturation concentration of CO 2 is given by the following equation [START_REF] Robie | Thermodynamic properties of mineral and related substances at 298.15 K and 1 bar pressure and higher temperature[END_REF]:(8)CO 2_solubility =0.001×(25.05-0.8249T+0.001132T 2 )where CO 2 _ solubility is given in mol m -3 and T is the water temperature in °C at the lake surface.

The dissolved CH 4 flux (mol m -2 day -1 ) is given by the following expression:(9)F CH4 =k×(CH 4_solubility -CH 4_Z=0 )where(10)CH 4_solubility =K H P CH4 with K H is the Henry's law constant (mol L -1 atm -1 ; Sanders, 1999) and P CH4 is the CH 4 partial pressure in the air (approximately 2 × 10 -6 atm). The set of reactions used in the model is adapted from those proposed by [START_REF] Hunter | Kinetic modelling of microbially-driven redox chemistry of subsurface environments: coupling transport, microbial metabolism and geochemistry[END_REF]] , [ [START_REF] Cappellen | Cycling of iron and manganese in surface sediments: a general theory for the coupled transport and reaction of carbon, oxygen, nitrogen, sulfur, iron and manganese[END_REF] and [START_REF] Omlin | Biogeochemical model of lake Zurich: model equations and results[END_REF] and [START_REF] Reichert | River water quality no. 1 (RWQM1): II. Biochemical process equations[END_REF] for surface and subsurface environments. Table 2 gives an overview of the biogeochemical processes used in the model. The model includes the organic C export reaction (Reaction (1)), primary redox reactions, i.e. organic matter mineralisation of dissolved and particulate organic C (Reactions ( 2)-( 7)) and the secondary redox reactions (Reactions ( 8)-( 19)). Primary reactions include aerobic respiration (Reaction (2)), denitrification (Reaction (3)), Mn oxide reduction (Reaction (4)), Fe (hydr)oxide reduction (Reaction (5)), reduction (Reaction ( 6)) and methanogenesis (Reaction ( 7)). Oxidation of organic matter produces reduced species such as Mn 2+ , Fe 2+ and CH 4 which may participate in secondary redox reactions. The model considers the following secondary reactions: nitrification (Reaction (18)), Fe oxidation (Reaction ( 13)), Mn oxidation (Reaction ( 16)), Fe oxidation through reaction with Mn oxides (Reaction ( 14 3. The degradation of dissolved and particulate organic C is driven by microbially mediated processes. One appropriate expression for the dependence of organic C degradation on the electron acceptor concentration, such as dissolved O 2 or , is the Monod rate law ( [START_REF] Van Cappellen | Biogeochemical transformations in sediments: kinetic models of early diagenesis[END_REF][START_REF] Boudreau | Diagenetic Models and Their Implementation[END_REF] ). The presence of some oxidants may inhibit other metabolic pathways. Inhibition by oxidants is represented by an additional term in rate Eqs. ( 13)-( 27) ( [START_REF] Boudreau | Diagenetic Models and Their Implementation[END_REF] and [START_REF] Regnier | Incorporating geomicrobial processes in reactive transport models of subsurface environments[END_REF] ). Once the concentration of the inhibitory species increases, the value of the inhibition term decreases and the effective rate decreases as well. The use of the limiting and inhibition functions in the model provides a direct coupling between the transformation processes and multiple species. The rate of methanogenesis (Eqs. ( 17) and ( 23)) is modelled as being inhibited by all oxidants. The same principle of inhibition terms is applied to the CH 4 oxidation kinetics. Calculation of the standard Gibbs energy of Reactions ( 8)-( 12) showed that the most energetically favourable pathway is the CH 4 aerobic oxidation, followed by denitrification, Mn, Fe and reductions. Secondary redox reactions (Reactions ( 11)-( 14), Reactions ( 16) and ( 19), Table 2) are represented by bimolecular rate law (Table 3), with apparent rate coefficients ( [START_REF] Hunter | Kinetic modelling of microbially-driven redox chemistry of subsurface environments: coupling transport, microbial metabolism and geochemistry[END_REF]] and [START_REF] Smith | Modeling the transport and reaction of trace metals in water-saturated soils and sediments[END_REF] ).

Table 3. Lake Pavin biogeochemical model: kinetic equations.

r_Fe 2+ _Mn p =K Fe2-Mnp ×Fe 2+ ×Mn p r_Fe 2+ _O 2 =K Fe2-O2 ×Fe 2+ ×O 2 3 2 r_Mn 2+ _O 2 =K Mn2-O2 ×Mn 2+ ×O 2 3 3 3 4 3 5 3 6 r_H 2 S_O 2 =K H2S-O2 ×∑S×O 2 3 7
Where K i -Kinetic parameter, O 2oxygen concentration (M L -3 ), CH 4methane concentration (M L -3 ), Mn pparticulate manganese concentration (M L -3 ), Fe pparticulate iron concentration (M L -3 ), NO 3nitrate concentration (M L -3 ), SO 4sulphate concentration (M L -3 ), DOCdissolved organic carbon concentration (M L -3 ), POCparticulate organic carbon concentration (M L -3 ), H +hydrogen ion concentration (M L -3 ), ∑Stotal dissolved sulfide concentration (M L -3 ), Fe 2+dissolved iron concentration (M L -3 ), Mn 2+dissolved manganese concentration (M L -3 ), ammonium concentration (M L -3 ), NO 3_maxmaximum nitrate concentration in the water column (M L -3 ), O 2_lim_CH4oxygen limiting concentration for aerobic methane oxidation (M L -3 ), O 2limhalf-saturation coefficient or oxygen limiting concentration for organic matter degradation (M L -3 ), SO 4limhalf-saturation coefficient or sulphate limiting concentration (M L -3 ), NO 3_limhalf-saturation coefficient or nitrate limiting concentration (M L -3 ), Mn plimhalf-saturation coefficient or particulate manganese limiting concentration (M L -3 ), Fe plimhalf-saturation coefficient or particulate manganese limiting concentration (M L -3 ), k NH4ammonium half-saturation coefficient for nitrification (M L -3 ), k O2oxygen half-saturation coefficient for nitrification (M L -3 ).

In contrast to the primary and secondary redox reactions described in Table 2 for which rates are shown in Table 3, the organic C export rate (Reaction (1)) is derived from total organic C measurements in sediment traps collected at 23 m depth from May 2006 to May 2007 (Fig. 1). The organic C export reaction generates particulate and dissolved organic C. The fraction of dissolved organic C is arbitrarily set at 10% of the particulate organic C produced in the epilimnion [START_REF] Reichert | River water quality no. 1 (RWQM1): II. Biochemical process equations[END_REF]. 

Acid-base reactions

In contrast to redox reactions, acid-base reactions reach equilibrium almost instantaneously. Although the AQUASIM code can solve algebraic equations, classic calculation of pH in a dynamic system frequently leads to numerical problems. In order to calculate water column pH, the following equations were implemented: (38) where the alkaline reserve, R B , stands for the sum of nonreactive species (Na + , K + , Ca 2+ , Mg 2+ , Cl -) as follows:(39)R B =[Na + ]+[K + ]+2[Ca 2+ ]+2[Mg 2+ ]-[Cl -]and the sum of species which are consumed or produced by the redox reactions: inactive acids or bases ( , ) or species which are assumed as inactive in the conditions of the lake ( , Mn 2+ , Fe 2+ ) (Michard, 1989). In fact, the latter species are only found in the reduced and relatively acid layers where the pH (<7.5) is significantly lower than the pK a of these acids.

is the algebraic sum of the charges of unproduced and/or unconsumed charged species. The only changes with the difference between river inflows and outflows. The subscript "0" indicates the concentration of each chemical species at the initial time.

With R B and DIC values, proton activity is calculated by Eq. ( 40):(40)R B /DIC=(1+2K a2 /H + )/(1+H + /K a1 +K a2 /H + )where K a1 and K a2 are the equilibrium constants of the chemical equilibria between CO 2 and and between and , respectively. It should be stressed that Eq. ( 40) is valid for a water column pH lower than 9.5, which is consistent with the maximum pH values reported in Lake Pavin ( [START_REF] Michard | Geochemical study of a crater lake: the Lake Pavin, Franceidentification, location and quantification of chemical reactions in the lake[END_REF] and [START_REF] Assayag | Hydrological budget, carbon sources and biogeochemical processes in Lac Pavin (France): constraints from d18O of water and d13C of dissolved inorganic carbon[END_REF] ).

Initial conditions

Initial conditions for concentrations of dissolved species in the water column are those observed on June 17, 2006, except for dissolved and particulate Fe and Mn, POC, DIC and pH. Particulate Fe, Mn and DIC concentration profiles were measured in September 1993 (Viollier, 1995). Dissolved Fe, Mn and pH were determined in 1993 (Viollier, 1995). The initial POC profile was determined in June 1973 [START_REF] Devaux | Un écosystème lacustre profond: le lac Pavin[END_REF] but it was not casesensitive.

Modelling approach

Model calculations were performed starting from the 17th of June 2006 and simulations were carried out over 1 year. In model calculations half-saturation coefficients in Monod-type expressions and the maximum rates of the processes described in Table 3 were based on values reported in the literature (e.g. [START_REF] Hunter | Kinetic modelling of microbially-driven redox chemistry of subsurface environments: coupling transport, microbial metabolism and geochemistry[END_REF]] , [START_REF] Smith | Modeling the transport and reaction of trace metals in water-saturated soils and sediments[END_REF]] , [START_REF] Lidstrom | Seasonal study of methane oxidation in lake Washington[END_REF] , [START_REF] Smith | In situ measurement of methane oxidation in groundwater by using natural-gradient tracer test[END_REF] and [START_REF] Omlin | Biogeochemical model of lake Zurich: model equations and results[END_REF] ). The kinetic parameters of the biogeochemical processes (see "a"fitted parameters in Table 4) were iteratively changed by a trial-and-error approach until simulations led to visual fit agreement with measurements of monthly depth profiles of CH 4 , dissolved O 2 , , , and whenever available, dissolved organic C, dissolved Fe, dissolved Mn and . Early diagenesis of organic matter was not implemented in the model and the benthic contribution was taken into account through benthic boundary conditions. For instance, benthic flux of CH 4 had to be increased by a factor of two compared with the field estimation (Table 1 andTable 4). Owing to the large uncertainty of the field derived value (possible CH 4 loss, centimetre-scale gradient resolution only), this adjustment remains acceptable. Following model calibration, depth concentration profiles of particulate organic C predicted by the model were compared with data obtained from field campaigns in 1992 (Carrias, 1996 and[START_REF] Carrias | Seasonal dynamics and vertical distribution of planktonic ciliates and their relationship to microbial food resources in the oligomesotrophic Lake Pavin[END_REF] ). 

K Fe2_Mnp 0.0274 m 3 mol -1 d -1 K Fe2_NO3 0.01 m 3 mol -1 day -1a K NH4_Mnp 0.001 m 3 day -1 K NH4_O2 0.001 mol m -3 day -1a k NH4 0.036 mol m -3 K O2 0.025 mol m -3 K H2S_O2 0. 438 mol -1 m 3 day -1 F_ CH4 _ 92m 5.2 × 10 -3 mol m -2 day -1a
Kinetic parameters values from (1) [START_REF] Hunter | Kinetic modelling of microbially-driven redox chemistry of subsurface environments: coupling transport, microbial metabolism and geochemistry[END_REF], ( 2) [START_REF] Lidstrom | Seasonal study of methane oxidation in lake Washington[END_REF] and [START_REF] Smith | Modeling the transport and reaction of trace metals in water-saturated soils and sediments[END_REF]] ; (4) Raghoebarsing ( 2006), ( 5) [START_REF] Omlin | Biogeochemical model of lake Zurich: model equations and results[END_REF]. a Fitted parameter. b In the model, DOC is assumed highly biodegradable. Therefore, kinetic parameters of DOC degradation were initially assumed to be tenfold higher than those of POC biodegradation. Some of these parameters were then modified in order to achieve a good fit of the data and the model predictions.

Sensitivity analysis

A sensitivity analysis was performed in order to determine the model sensitivity to imperfect knowledge of (1) some kinetic parameters related to the CH 4 pathways (K CH4_Fe , K CH4_Mn , K CH4_DOC , K CH4_NO3 , k CH4_NO3 and NO 3lim ) and (2) vertical mixing (eddy diffusion coefficient K z ). The relative uncertainties of the kinetic parameters were assumed to be 50% and the eddy diffusion coefficients were doubled. In the first step, these parameters were analyzed separately. In the second step, the impact of uncertainties of all the kinetic parameters of the CH 4 degradation pathways was tested (half-saturation coefficients, maximum rates and inhibition factors, see Table 3).

Results

Limnology

From a geochemical point of view, the upper layer of the mixolimnion is oxygenated with a pH that can vary from 8 to 9 above the thermocline [START_REF] Michard | Geochemical study of a crater lake: the Lake Pavin, Franceidentification, location and quantification of chemical reactions in the lake[END_REF]. Temperature at the lake surface varied from 3. [START_REF] Viollier | Geochemical study of a crater lake: Lake Pavin, Puy de Dome, France. Constraints afforded by the particulate matter distribution in the element cycling within the lake[END_REF] and [START_REF] Michard | Vitesses de réaction de dissolution et précipitation au voisinage de l'interface oxydo-réducteur dans un lac méromictique : le lac Pavin (Puy de Dôme, France)[END_REF] ). However, significant increase of CH 4 is also observed in the epilimnion (Fig. 4b). Fig. 6. :Depth profiles of CH 4 , particulate Fe (Fe p ) and Mn (Mn p ) in September 1993 (□ -Fe p , • -CH 4 , Δ -Mn p ).

Methane in sediment

The CH 4 concentration profile in the sediment collected at 40 m depth is presented in Fig. 7. From this profile and the one at 92 m depth (data not shown), CH 4 flux from the sediment was calculated by applying Fick's first law of diffusion. The measured dissolved CH 4 concentration in the water at 40 m depth was about 0.08 × 10 -6 mol L -1 . Using a porosity value of 0.98 (Viollier, 1995), one can calculate the sediment diffusion coefficient of CH 4 (8.2 × 10 -5 m 2 day -1 ) at 4 °C [START_REF] Boudreau | Diagenetic Models and Their Implementation[END_REF]. Resulting benthic fluxes from the sediments at 40 m and 92 m depths were 5.8 × 10 -4 and 2.6 × 10 -3 mol m -2 day -1 (Table 1), respectively. 

Methane oxidation in the water column

Measured rates of aerobic CH 4 oxidation varied between 6.2 × 10 -9 and 4.6 × 10 -8 mol L -1 day -1 for CH 4 concentrations ranging from 0.06 × 10 -6 to 0.35 × 10 -6 mol L -1 . The rate of CH 4 oxidation displayed first-order kinetics with respect to CH 4 concentration (r 2 = 0.92; r CH4-O2 (mmol L -1 day -1 ) = 0.14 × [CH 4 ]) with an excess of O 2 (no limiting effect).

Since O 2 is a key factor in the aerobic CH 4 oxidation, its influence on the kinetics of this reaction is taken into account by considering an additional term O 2 /O 2_solubility (Eq. ( 12), Table 3). This modified kinetics was then implemented in the model (Table 3 andTable 4).

Moreover, at 60 and 62 m depth, a net CH 4 loss of 0.4 × 10 -6 mol L -1 day -1 was measured for 285 × 10 -6 and 785 × 10 -6 mol L -1 initial CH 4 concentrations, respectively. These results suggest that anaerobic CH 4 oxidation may occur in the water column of Lake Pavin.

Model results

Species concentration in the water column

Measured and simulated concentration profiles of CH 4 , , and O 2 in June 2007 are compared in Fig. 8a. General trends are qualitatively reproduced by the simulation. However, higher concentrations of and were encountered between 40 and 60 m depth compared with the values expected from the model. The effect of the sublacustrine input within this depth range, by the addition of and into the water column, may explain these discrepancies. In Fig. 8b, POC concentration profiles in the mixolimnion calculated for August, October, November 2006 and April 2007 were compared to data measured in 1992 (Carrias, 1996 and[START_REF] Carrias | Seasonal dynamics and vertical distribution of planktonic ciliates and their relationship to microbial food resources in the oligomesotrophic Lake Pavin[END_REF] ). It can be seen that POC model predictions are of the same order of magnitude as the data measured at 1, 5, 10, 15 and 40 m depths in the field campaigns of 1992. Fig. 8b. : Simulated POC vs. POC measured in 1992.

Methane oxidation in the water column

Fig. 9 shows calculated rates of CH 4 oxidation in February and in June 2007. These two examples were chosen in order to evaluate the effect of winter mixing in CH 4 consumption and production pathways. An overlap between aerobic and anaerobic pathways is observed. Additionally, a seasonal difference between aerobic and anaerobic rates can be detected. In June 2007, aerobic CH 4 oxidation occurs in a narrow zone at the boundary of oxic-anoxic layers. In contrast, in February, aerobic CH 4 oxidation occurs in the upper layers of the mixolimnion. Winter mixing led to higher flux of CH 4 towards the upper layers of the mixolimnion and consequently to higher CH 4 concentrations (Fig. 10). This allows aerobic CH 4 oxidation to occur at higher rates compared to those of the stratified period. 3.5.3. Sources and sinks of methane in Lake Pavin

In order to have a broader picture of methane sinks and sources in Lake Pavin, depthintegrated rates of CH 4 production and consumption for the entire water column in February and in June 2007 are presented in Table 5 Accordingly, a net consumption of CH 4 in the water column is reported. Aerobic CH 4 oxidation is the most significant CH 4 consumption pathway, contributing to 74% and 67% of the total CH 4 degradation in the water column in February and in June 2007, respectively, followed by denitrification (21% and 27% in February and in June, respectively) and Fe reduction (4% and 5% in February and June, respectively). Model calculations estimated a net flux of CH 4 to the atmosphere in February (0.2 × 10 -3 mol m -2 day -1 ) and a negligible flux to the lake in June (3 × 10 -6 mol m -2 day -1 ). Methane production in the water column is also proposed by the calculations (Table 5). Methanogenesis and oxidation rates are normalized to volume and depth integrated.Benthic fluxes are normalized to the sediment surface and depth integrated.Air-water fluxes are normalized to the area at the surface of the lake.Stocks are calculated from concentration profiles.Negative sign stands for sinks and positive sign for sources.

Sensitivity analysis

Simulations showed that variability in the tested kinetic parameters did not significantly affect the modelled species profiles. Moreover, changes in the CH 4 concentration profiles were observed when the eddy diffusion coefficients were doubled. Slight changes were detected in the modelled profiles of the other dissolved parameters and particulate species. The aerobic and anaerobic CH 4 oxidation rates were also sensitive to vertical mixing variability.

A sensitivity analysis was performed to evaluate the effect of the combination of all kinetic parameters of the CH 4 oxidation pathways on the rates of CH 4 oxidation. The possibility of compensation of an effect on the results caused by a change of one parameter in the set by an appropriate change of the other parameter may occur. 

Discussion

Aerobic methane oxidation

According to measurements and model results, both aerobic and anaerobic CH 4 oxidation likely occur in the water column of Lake Pavin but are clearly spatially and seasonally dependent. As a result of the interplay of transport and biogeochemical processes, maximum rates of aerobic CH 4 oxidation are located at the transition zone between oxic and anoxic conditions, from hypoxia to anoxia (from 50 m to 62 m depth).

Maximum rates of aerobic CH 4 oxidation calculated by the model at approximately 60 m depth (1.7 × 10 -6 mol L -1 day -1 and 9.0 × 10 -7 mol L -1 day -1 in February and June respectively), are lower by about a factor of 10 than those expected from the experimentally derived CH 4 -dependent kinetics (14 × 10 -6 mol L -1 day -1 ). This is explained by the addition of an O 2 -dependent term to the kinetic expression implemented in the model and, therefore, by the very low amount of O 2 available at this depth.

Finally, calculated values are in very good agreement with results reported previously within the oxycline of stratified lakes by [START_REF]Measurement of microbial oxidation of methane in lake water[END_REF] (3.8 × 10 -6 mol L -1 day -1 ) and by Guérin and Abril (2007) (0.8-200 × 10 -6 mmol L -1 day -1 ). Much lower aerobic rates were also observed in hypersaline lakes such as Mono Lake [START_REF] Carini | Aerobic methane oxidation and metanotroph community composition during seasonal stratification in Mono Lake, California (USA)[END_REF] and Big Soda Lake [START_REF] Iversen | Big Soda Lake (Nevada). 3. Pelagic methanogenesis and anaerobic methane oxidation[END_REF], likely due to low methanotrophic activity as a consequence of their high salinity and pH ( [START_REF] Zehnder | Anaerobic methane oxidation: occurrence and ecology[END_REF] , [START_REF] Nauhaus | In vitro demonstration of anaerobic oxidation of methane coupled to sulphate reduction in sediment from a marine gas hydrate area[END_REF] and Bastviken, 2009).

Anaerobic pathways of methane oxidation

The highest calculated rate of AOM is reported in the vicinity of 60 m depth (0.2 × 10 -6 mol L -1 day -1 ) and is very close to the one measured at this depth. Rates of AOM reported by [START_REF] Iversen | Big Soda Lake (Nevada). 3. Pelagic methanogenesis and anaerobic methane oxidation[END_REF][START_REF]Oxidation of ammonia and methane in an alkaline, saline lake[END_REF] in the monimolimnion of Big Soda Lake (CH 4 concentration of 50 × 10 -6 mol L -1 ) and in the bottom layer of Mono Lake (CH 4 concentration of 8.4 × 10 -6 mol L -1 ), respectively, were 2-4-fold lower (48 × 10 -9 mol L -1 day -1 and 48-85 × 10 -9 mol L -1 day -1 ). In contrast, an anaerobic CH 4 oxidation rate of 3.5 × 10 -6 mol L -1 day -1 was reported in the anoxic waters of the Gulf of Mexico brine pool, characterized by a lower concentration than seawater and CH 4 concentrations as high as in Lake Pavin [START_REF] Wankel | New constrants on methane fluxes and rates of anaerobic methane oxidation in a Gulf of Mexico brine pool via in situ mass spectrometry[END_REF].

Beside published anaerobic oxidation of CH 4 with as electron acceptor, AOM coupled to has been recently reported [START_REF] Raghoebarsing | A microbial consortium couples anaerobic methane oxidation to denitrification[END_REF] , [START_REF] Islas-Lima | Evidence of anoxic methane oxidation coupled to denitrification[END_REF]] and [START_REF] Modin | Denitrification with methane as external carbon source[END_REF] . In the present study, anaerobically mediated CH 4 oxidation is mainly coupled to denitrification for the two time periods studied (Fig. 9 and Fig. 11).

AOM with oxides of Fe and Mn are presented in the literature as possible pathways of CH 4 consumption [START_REF] Valentine | Biogeochemistry and microbial ecology of methane oxidation in anoxic environments: a review[END_REF]. These reactions would provide a greater free energy yield than -dependent CH 4 oxidation. Stimulation of potential anaerobic CH 4 oxidation by Mn oxides in anoxic sediments from Lake Mendota has been reported previously [START_REF] Zehnder | Anaerobic methane oxidation: occurrence and ecology[END_REF]. [START_REF] Miura | Methane production and its fate in paddy fields: II. Oxidation of methane and its coupled ferric oxide reduction in subsoil[END_REF] suggested that, in subsoils, CH 4 contributed to a significant proportion of Fe(III) reduction. [START_REF] Kumaraswamy | Methane production and oxidation in an anoxic rice soil as influenced by inorganic redox species. Wetlands and Aquatic Processes[END_REF] have shown a stimulation of CH 4 oxidation under anaerobic conditions when Fe(III) was added to anoxic rice soil samples. More recently, [START_REF] Crowe | The methane clycle in ferruginous Lake Matano[END_REF] suggested that anaerobic CH 4 oxidation could likely be coupled to the reduction of Fe (and/or Mn) (hydr)oxides in the water column of Lake Matano, the world's largest known ferruginous basin. From the latter study, a rate of AOM of 5 × 10 -7 mol L -1 day -1 was estimated. It is 10 times higher than the maximum rate estimated for Fe-AOM in this work. The latter is also several times lower than the rates measured within marine sediments by [START_REF] Beal | Manganese-and iron-dependent marine methane oxidation[END_REF]. Finally, although higher concentrations of particulate Fe are encountered in Lake Pavin compared with those in Lake Matano, denitrification seems to be the preferential CH 4 consumption pathway, followed by Fe, and Mn reductions in order of decreasing importance.

Many studies have reported AOM in freshwater and/or seawater sediments. By far, the fewest have measured AOM occurring in anoxic water columns and the rates reported are generally lower than rates observed for sediments, primarily because microbial density is substantially higher in sediments. Although, there is no direct evidence for those alternative consumption pathways (Fe/Mn-AOM) in Lake Pavin, the model suggests that Fe-dependent CH 4 oxidation may occur in the water column (Fig. 11). These findings are in good agreement with preliminary results of incubations of Lake Pavin water samples from 70 m depth, with Fe oxides showing that CH 4 may be used as electron donor for Fe reduction (Lehours, 2006).

Sources and sinks of methane in Lake Pavin

In February 2007, during the winter mixing period, and to a lesser extent in June 2007, aerobic and anaerobic CH 4 oxidation normalized to the whole water column clearly appear as the major sink for CH 4 (Table 5). [START_REF] Utsumi | Dynamics of dissolved methane and methane oxidation in dimictic lake Nojiri during winter[END_REF] and [START_REF] Guérin | Significance of pelagic aerobic methane oxidation in the methane and carbon budgets of a tropical reservoir[END_REF] showed that CH 4 oxidation in the water column was the dominant CH 4 sink, removing respectively 94% of CH 4 during the overturn period of Lake Nojiri and 90% of CH 4 , on average, throughout the year in the Petit Saut reservoir.

The flux of CH 4 to the atmosphere estimated in February 2007 (0.2 × 10 -3 mol m -2 day -1 ) appears to be lower than the global average flux from lakes: 2.69 (1.06-5.6) × 10 -3 mol m -2 day -1 ; Aselmann and [START_REF] Aselmann | Global distribution of natural freshwater wetlands and rice paddies, their net primary productivity, seasonality and possible methane emissions[END_REF]. The Lake Pavin flux is closer to the one of lake 227 reported in Rudd and [START_REF] Rudd | Methane cycling in a eutrophic shield lake and its effects on the whole lake metabolism[END_REF] (0.34 × 10 -3 mol m -2 day -1 ) or those found at Big Soda Lake (0.036 × 10 -3 mol m -2 day -1 ; [START_REF] Iversen | Big Soda Lake (Nevada). 3. Pelagic methanogenesis and anaerobic methane oxidation[END_REF] or at Mono Lake (0.312 × 10 -3 mol m -2 day -1 ; [START_REF]Oxidation of ammonia and methane in an alkaline, saline lake[END_REF]. In June 2007, CH 4 flux, although reversed, remains within calculation uncertainties and can be compared to the situation of Lake Baikal where CH 4 flux was not significantly different from zero [START_REF] Schmid | Sources and sinks of methane in lake Baikal: a synthesis of measurements and modelling[END_REF]. Once normalized to the whole lake surface, air-water exchange is not an important sink or source of CH 4 for the two time periods studied (Table 5).

Although methanogenesis occurs in the anoxic water layers, CH 4 concentration in Lake Pavin is mainly due to CH 4 flux from the sediment. Methane fluxes from sediments calculated from this study are in good agreement with those reported by [START_REF] Iversen | Big Soda Lake (Nevada). 3. Pelagic methanogenesis and anaerobic methane oxidation[END_REF] in Big Soda Lake (2.9 × 10 -3 mol m -2 day -1 ).

Maximum methanogenic rates of 5 × 10 -8 mol L -1 day -1 were calculated at 90 m depth. [START_REF] Winfrey | Microbial methanogenesis and acetate metabolism in a meromictic lake[END_REF] and [START_REF] Iversen | Big Soda Lake (Nevada). 3. Pelagic methanogenesis and anaerobic methane oxidation[END_REF] also reported water column CH 4 production with maximum rates of 1.2 × 10 -6 mol L -1 day -1 at Knaack Lake and 10.5 × 10 -8 mol L -1 day -1 at Big Soda Lake, respectively. According to [START_REF] Winfrey | Microbial methanogenesis and acetate metabolism in a meromictic lake[END_REF], the existence of a permanent anaerobic habitat enables methanogenic Archae to establish themselves in the anaerobic waters and actively produce CH 4 . Additionally, the water chemistry in meromictic lakes is also an important factor in determining whether methanogenesis occurs in the water column or in the sediment. The absence of and in the bottom waters of Lake Pavin enables methanogenesis. Calculations demonstrate that CH 4 produced in the water column results mainly from the degradation of dissolved organic C. In the model, it is assumed that DOC is highly biodegradable. According to [START_REF] Pourriot | Limnologie Générale[END_REF] the organic matter resulting from phytoplankton lysis presents a high fraction of biodegradable organic C (>80% of DOC).

Interestingly, in the upper layers of the mixolimnion (from the surface to approximately 12 m), significantly higher CH 4 concentrations were measured in June and September 2006 than those from lower layers (from 12 m to 55 m), suggesting CH 4 generation in the photic zone (Fig. 4b). [START_REF] Liu | Methane concentration profiles in a lake with a permanently anoxic hypolimnion (lake Lugano, Switzerland-Italy)[END_REF] also reported higher CH 4 concentrations in surface water of the highly productive Lake Lugano. These CH 4 maxima in the oxic surface layers of lakes may correspond to the presence of anaerobic microhabitats in particulate organic matter [START_REF] Karl | Production and transport of methane in oceanic particulate organic matter[END_REF], and/or aerobic CH 4 production through alternative pathways, analog to methylphosphonate decomposition recently evidenced in the ocean [START_REF]Aerobic production of methane in the sea[END_REF]). An alternative explanation for the higher CH 4 content in surface layers than in the middle layers is proposed by [START_REF] Bastviken | Fates of methane from different lake habitats: Connecting whole-lake budgets and CH 4 emissions[END_REF]: the enrichment may be due to CH 4 diffusion from epilimnetic sediment combined with higher water turbulence in the surface layer.

In June 2007, CH 4 sinks counterbalance sources and participate in maintaining the observed steady state in Lake Pavin (Table 5). In February 2007, the magnitude of the sinks is about twice as large as the sources. However, when compared to the whole stock of CH 4 , seasonal variations in CH 4 sinks are clearly smoothed on the yearly scale. One can also calculate an average biogeochemical renewal time (stock/sinks) ranging from 12 to 30 years for CH 4 . The stock of CH 4 , is essentially located in the monimolimnion which has a water residence time of 70 years [START_REF] Assayag | Hydrological budget, carbon sources and biogeochemical processes in Lac Pavin (France): constraints from d18O of water and d13C of dissolved inorganic carbon[END_REF]. This stresses the importance of biogeochemical processes as main drivers of CH 4 control in Lake Pavin.

Conclusions

A biogeochemical model was developed and applied to data from Lake Pavin in order to assess the most significant pathways of CH 4 consumption in this lake. For instance, aerobic and anaerobic oxidations of CH 4 both occur in the water column of Lake Pavin, with aerobic oxidation being the dominant pathway. The highest rate of anaerobic oxidation of CH 4 is observed at approximately 60 m depth where is the main electron acceptor involved. Iron dependent anaerobic CH 4 oxidation may occur in the water column but remains a minor pathway. Methane oxidation rates seem to be sensitive to vertical mixing and to the combination of all the kinetic parameters of the CH 4 consumption pathways. The main source of CH 4 is always associated with the benthic flux with little water column methanogenesis, while CH 4 sinks are more variable. Methane oxidation is the main sink and CH 4 evasion through water-atmosphere exchange corresponds to less than 10% of the biogeochemical sinks. This detailed study also shows that interpretation of CH 4 monitoring in Lake Pavin has to consider the interannual and decadal time scales.
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  Fep , d Mnp , d POC -Diameter of particulate Fe, particulate Mn and particulate organic C, respectively.d -Diving depth range of the tributaries.ρ Fep , ρ Mnp ρ POC -Density of particulate Fe, Mn and organic C.Q_mixolimnion, Q_monimolimnion -Flow rate of the mixolimnion and monimolimnion sublacustrine inflows (Assayag et al., 2008).Q -Flow rate ranges of the small tributaries determined in field campaigns from June 2006 to June 2007.[ ] input , [ ] input , [O 2 ] input -Average concentrations of , and dissolved O 2 of the tributaries and of the sublacustrine inflow in the mixolimnion.F_ CH4_40m and F_ CH4_92m -Methane fluxes at 40 and 92 m depth calculated according to Fick's law

From

  June 2006 to June 2007, monthly water samples were taken along a vertical profile near the centre of the lake. Additionally, settling particles were collected from May 2006 to May 2007 with sediment traps at 23 m depth in order to determine particulate fluxes (Thiam et al., in preparation). Particles were collected approximately every month, except during winter 2006 (sediment traps were not sampled from November 2006 to mid March 2007). Sodium azide crystals were used as poison in order to prevent particle biodegradation. Immediately after sampling, settled particles were filtered on GF/F Whatmann membranes under a N 2 atmosphere. Temperature, conductivity and dissolved O 2 concentration were measured with a Seabird Seacat Profiler SBE19. Depth profiles of and concentrations were determined monthly. Methane concentration in the water column was determined in June 2006, September 2006, February 2007, April 2007, May 2007, June 2007 and July 2007 (see Section 2.2.1). Depth profiles of dissolved organic C were measured in October 2006, May and June 2007 according to

  2.3.5. Biogeochemical reactions 2.3.5.1. Redox reactions

  )), Fe reduction coupled to denitrification (ferrous denitrification, Reaction (15)), sulfide oxidation (Reaction (19)), nitrification coupled to Mn oxides reduction (17). The following CH 4 consumption pathways are integrated in the model: aerobic CH 4 oxidation (Reaction (8)) and anaerobic CH 4 oxidation associated with denitrification (Reaction (9)), Mn (Reaction (10)), Fe (Reaction (11)) and reduction (Reaction (12)).Table2. Lake Pavin biogeochemical model: set of reactions. Organic carbon export -Reaction (1) the process rates are given in Table

Fig. 1 .

 1 Fig. 1. : Organic C export reaction used in the model.

  Fig. 2. : Measured temperature profiles in the water column.

3. 2 .

 2 Fig. 4a presents CH 4 concentration profiles from June 2006 to June 2007. Methane concentrations increase sharply at approximately 55 m depth to reach 4 × 10 -3 mol L -1 at 92 m depth. Differences in CH 4 concentrations for the deepest layers are observed in June 2007 but globally from 30 years of observations, the monimolimnion is considered to have reached interannual steady state ( [[START_REF] Viollier | Geochemical study of a crater lake: Lake Pavin, Puy de Dome, France. Constraints afforded by the particulate matter distribution in the element cycling within the lake[END_REF] and[START_REF] Michard | Vitesses de réaction de dissolution et précipitation au voisinage de l'interface oxydo-réducteur dans un lac méromictique : le lac Pavin (Puy de Dôme, France)[END_REF] ). However, significant increase of CH 4 is also observed in the epilimnion (Fig.4b). Fig.5a and b show the overlapping concentration profiles of, CH 4 , O 2 , and for June 2006 at the boundary between the mixolimnion and the mesolimnion. Also overlapping concentration profiles of particulate Fe and Mn measured in September 1993 are given in Fig.6for the same layers. These results underline the possibility that CH 4 can react aerobically or anaerobically with multiple substrates in Lake Pavin.

  Fig. 4a presents CH 4 concentration profiles from June 2006 to June 2007. Methane concentrations increase sharply at approximately 55 m depth to reach 4 × 10 -3 mol L -1 at 92 m depth. Differences in CH 4 concentrations for the deepest layers are observed in June 2007 but globally from 30 years of observations, the monimolimnion is considered to have reached interannual steady state ( [[START_REF] Viollier | Geochemical study of a crater lake: Lake Pavin, Puy de Dome, France. Constraints afforded by the particulate matter distribution in the element cycling within the lake[END_REF] and[START_REF] Michard | Vitesses de réaction de dissolution et précipitation au voisinage de l'interface oxydo-réducteur dans un lac méromictique : le lac Pavin (Puy de Dôme, France)[END_REF] ). However, significant increase of CH 4 is also observed in the epilimnion (Fig.4b). Fig.5a and b show the overlapping concentration profiles of, CH 4 , O 2 , and for June 2006 at the boundary between the mixolimnion and the mesolimnion. Also overlapping concentration profiles of particulate Fe and Mn measured in September 1993 are given in Fig.6for the same layers. These results underline the possibility that CH 4 can react aerobically or anaerobically with multiple substrates in Lake Pavin.

Fig. 4 .

 4 Fig. 4. /Methane concentration profiles for June 2006, September 2006, February 2007, April 2007, May 2007, June 2007 and July 2007. No CH 4 concentration profiles are presented in Fig. 4b for April, May and July 2007 because no data are available for depths below 50 m.
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  Fig. 5. : Methane and O 2 depth profiles (a), CH 4 , and concentration profiles (b) in June 2006 (♢ -O 2 , • -CH 4 , Δ -, ♦ -).

Fig. 7 .

 7 Fig. 7. : Methane concentration profile in sediment pore water sampled at 40 m depth.
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  Fig. 8a. : Measured and modelled concentration profiles of CH 4 , , O 2 and in June 2007 (markers represent measurements and lines simulated concentrations).

Fig. 9 .

 9 Fig. 9. : Modelled rates of aerobic and anaerobic CH 4 oxidation in February and June 2007.

Fig. 10 .

 10 Fig. 10. :Modelled CH 4 and O 2 concentration profiles in February and June 2007 (a), zoomed concentration profiles of CH 4 and O 2 (b).

Fig. 11 .

 11 Fig. 11. : Modelled rates of CH 4 oxidation coupled to the reduction of Fe,

Fig. 12

 12 Fig. 12 shows the sensitivity of the CH 4 consumption rates in June 2007 to those kinetic parameters. Iron and dependent AOM seem to be highly sensitive to the combination of the parameters involved in the CH 4 oxidation pathways.

Fig. 12

 12 Fig. 12. : Simulated CH 4 consumption rates in June 2007 with estimated error bounds.

  

Table 1 .

 1 Lake Pavin biogeochemical model: fixed parameters.

	Parameter	Value
	d Fep	5 μm a
	d Mnp	5 μm a
	d POC	10 μm
	d POC (March-April)	100 μm
	ρ Fep , ρ Mnp	2820 kg m -3a

Table 4 .

 4 Lake Pavin biogeochemical model: kinetic constants and adjusted parameters.

	Parameter Value
	K CH4_Fe	0.005 mol -1 m 3 day -1a
	O 2lim	0.02 mol m -3
	O 2lim_CH4 0.02 mol m -3
	NO 3lim	0.005 mol m -3
	Mn plim	0.0032 mol m -3
	NO 3max	0.1 mol m -3
	K CH4_Mn	0.05 m 3 mol -1 day -1a
	K CH4_SO4 0.0274 m 3 mol -1 day -1
	Fe plim	0.0032 mol m -3
	SO 4lim	0.03 mol m -3
	K CH4_NO3 0.03 mol m -3 day -1a
	k CH4_NO3	0.0006 mol m -3
	K CH4_O2	0.14 day -1

Table 5 .

 5 Depth integrated sources (positive values) and sinks (negative values) of CH 4 in February and June 2007, compared with CH 4 stock in the water column.

Process (mol day -1 ) February 2007 June 2007

  

	Aerobic CH 4 oxidation	-17 × 10 2	-6 × 10 2
	Anaerobic CH 4 oxidation	-6 × 10 2	-3 × 10 2
	CH 4 production in the water column 1 × 10 2	1 × 10 2
	CH 4 flux from the sediment	8 × 10 2	8 × 10 2
	CH 4 water-air exchange	-0.7 × 10 2	0.02 × 10 2
	CH 4 stock (mol)	10 × 10 6	10 × 10 6
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