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Abstract:  
 
 
The presence of gas is a common feature in many seismic sections. However, the origin of the gas is 
often difficult to determine. Recently acquired very high resolution seismic profiles using an IKB Seistec 
boomer provide useful insight to the understanding of the gas origins in a range of environmental settings 
including sea lochs and coastal lagoons. The gas features are described both from a qualitative point of 
view through their acoustic facies, and quantitatively through the associated seismic signal (polarisation, 
amplitude). Acoustic facies include acoustic turbidity, gas “curtains” and “blankets” as well as “white 
fringes” and “black shadows”. All the features encountered have been related to specific gas nature 
generated by different sources (organic matter degradation in paleo- valley infillings, waste material 
effluent). 

  



 

Introduction : 
Gas in seafloor sediments has been recognized for a number of years (Emery & Hoggan, 1958; 

Hovland and Judd, 1988) and continues to be actively studied (Garcia-Gil et al., 2002;  Missiaen 

et al., 2002. In shallow sediments, gas occurence is often associated with an acoustic turbidity 

phenomenon, particularly in association with soft sediments resulting in an almost total blanking 

of the underlying geological structure (Taylor, 1992 ; Missiaen et al., 2002 ; Gorgas et al., 2003). 

Gas charged sediments are manifest in seismic data by an abrupt decrease of acoustic velocity 

combined with a strong ringing or reverberation accompanied by a decrease in the amplitude of 

full waveforms that is not observed in gas-free sediments (Gorgas et al., 2003). The abundance of 

free gas bubbles in the sediment is controlled by temperature, salinity and pressure which in turn 

control bioactivity and chemical processes within the water and sediment column (Wever & 

Fiedler, 1995). Two potential origins have been postulated, namely gas derived from organic 

material, with the biogenic process relying on bacterial activity, or gas derived from thermogenic 

methane at depths greater than 1000 m (Davis, 1992).Despite these observations on the 

occurrence of gas, the origin of the gas remains difficult to define on seismic data. 

In the framework of several projects dealing with recent nearshore sediment Holocene infillings 

and wedges, very high resolution seismic data have been acquired in different environmental 

settings (fig. 1) such as lochs (e. g. Creran and Sunart Lochs, west coast of Scotland) and lagoons 

(e.g. Leucate and Thau Lagoons, Mediterranean Sea). In all cases, despite differing geological 

and climate context, seismic signatures reflecting the occurrence of gas in shallow sediment 

layers have been found. Typical gas-related seismic signatures, similar to those reported in the 

literature, include acoustic blankets, acoustic curtains, acoustic plumes† (Taylor, 1992; Garcia-

Gil et al., 2002) and acoustic turbidity (Hovland & Judd, 1988) (fig. 2). Gas curtains and gas 

blancket are characterised by a similar dark and diffuse buried facies, topped by a clear horizontal 

limit and abrupt lateral facies changes (fig. 2). The main difference between these two facies 

consists in shorter extension for the curtain facies. Two additional signatures were also 

recognized: the “black shadow” and the “white fringe” facies. The black shadow facies differs 

from the gas curtain facies as it reaches the sea floor (not buried) (fig. 2). The white fringe facies 

appears very different, as its top limit follows the seafloor morphology (fig. 3C). 

 

For each case study, the gas-related acoustic facies is characterized by a particular seismic 

signature. 

This paper presents three of these characteristic seismic gas facies, the blanket facies, the white 

fringe and the black shadow facies, identified from signal analysis. We show that the seismic 



signal shape and geometry, can provide important clues about the gas origin. 

 

Seismic data acquisition 

All the data presented in this paper have been acquired using the boomer  based IKB-Seistec 

profiler (Simpkin & Davis, 1993). This profiler has been designed specifically for collecting very 

high-resolution data in shallow water environments but can be used as well in water depth > 

200m (Simpkin & Davis, 1993; Mosher & Simpkin, 1999). The Seistec profiler comprises a 2.5 

m long catamaran supporting both the boomer source and receiver. The source is an IKB model 

B3 wide band electrodynamic "Boomer" producing a single positive peak pressure impulse with a 

peak pressure of 5 x 1010 μPa  measured on-axis and referred to a distance of 1m (214 dB // 1 μPa  

@ 1 m ) with a pulse duration in the range from 90 to 200 μs. This is very important as the 

narrower a pulse is, the broader (or wider) the band of frequencies that exist. So to be able to 

resolve two close spaced reflectors, it is necessary to have a narrow pulse so that the echoes 

separate sufficiently. Thus a narrow pulse width which possesses a wide frequency band is 

essential. That means it is bandwidth and not frequency that determines resolution.The receiver is 

a line-in-cone receiver located adjacent to the boomer plate (70 cm). The source emits useful 

frequencies in the range 1-10 kHz and gives a resolution down to 25 cm. Penetration is up to 100 

m in soft sediments, and 200 m in deep water soft sediments. As we used the signal processed 

outpout from the SPA3 (the signal conditioning unit) for digitization, the high cut is reduced to 10 

Khz.  

During the surveys, carried out on board of small boats at a speed of about 3 knots, a SIG 

Energos power supply was used with a power of 50, 100 or 200 J (mainly 100 J) and a shooting 

rate of 2†shots/s. The seismic data were recorded with an Elics-Delph digital acquisition system 

with 4000 bits per sample, a sampling frequency of 20 kHz and a recording length of 200 ms. The 

position was determined by a differential GPS directly connected to the Delph. 

The exceptional time resolution and the fixed source-receiver geometry of the Seistec profiling 

system, together with its high sub-bottom penetration, allow a quantitative analysis of the 

different seismic signature shapes and geometries and signal amplitudes. 

 

 

Seismic processing 

Signal processing, including signal polarity and relative amplitude analysis were performed using 

the SithËre-Sisbise software, developed at IFREMER, for all the main reflectors along the 

seismic lines. 

 



Seismic polarisation analysis 

A reflector with a reversed polarity (or phase inversion) indicates a sediment layer of higher 

acoustic impedance overlying a sediment layer of lower acoustic impedance. Since acoustic 

impedance is a product of sound speed and density, such a reflector implies a decrease in P-wave 

velocity or/and in bulk density which can generally be attributed to gas occurrence. 

Since the data were digitally recorded, it was possible to study the raw signal (unfiltered or 

stacked) and to access the original phase of the signal. Thus, signal polarisation analysis of the 

recorded signals was conducted for several survey cases. This analysis involved comparing the 

phase of the sea-floor signal with the phase of the “selected” (presumably gassy) reflector signal. 

As the seafloor signal is assumed to be characterised by a “normal polarisation”, due to the 

positive water/sediment impedance contrast (fig. 4), a phase inversion (reversed polarity) reveals 

a negative contrast, which in turn indicates possible presence of gas. Numerous signal analyses 

were conducted along the profiles but for presentation reasons we will only discuss a single shot 

signal (fig. 4), chosen as the most representative sampled signal for the facies. 

It must be noted that the source signal could be slightly different for each shot. However, for a 

single shot, it is considered that the comparison of the phase between two different reflectors is 

valid (Nouzé and Baltzer, 2003). As the frequency band of the data is between 2.5 and 6.0 kHz , 

at a 20 kHz sampling frequency, this means there are about 4 data points per cycle. Thus, a visual 

examination of the signal polarity seems valid (even though some signals are truncated). 

The Sithère software enables the selection of the seafloor reflector signal, and the gas reflector 

signal, along a vertical axis (a single shot) together with a visualisation of the appropriate phases 

(fig. 4). The signal and phase inversion can be clearly observed for each case. Amplitudes given 

here are normalised and thus represent a relative amplitude value. To obtain a reliable amplitude 

value, additional software was developed (Sisbise) providing another amplitude analysis, based 

on extraction of  the instantaneous amplitude. 

 

 

Seismic amplitude analysis  

The instantaneous amplitude of the signal was analysed for selected reflections on each seismic 

profile. After geometrical attenuation correction, the amplitudes provide information about the 

relative reflectivity of the interface responsible for each reflection. The relative reflectivity is then 

plotted along each profile.  

Along any reflecting horizon, two analyses are performed: 

1/ Amplitude analysis was made by extracting the maximum value of the instantaneous amplitude 

of the signal for a given reflector. Low sampling frequency with respect to the central frequency 



of the signal might lead to underestimation of the amplitude values: peaks of the signal might not 

be properly sampled. Computing the instantaneous amplitude of the signal lowers the frequency 

content of the signal and minimizes this problem. No examples of these analysis are presented 

here, as we were confronted to the irregular (non continuous) aspect of the gas reflector. Thus, we 

preferred the second method, described below. 

2/ Where gas occurs in the sediments, the signal is diffracted and there is no single reflector that 

can be easily followed. In such a case, in order to get a representative value of the strength of a 

given reflector, an average of the instantaneous amplitude over a time window was computed. 

This average can be regarded as a numerical value representative of the “darkness” of the seismic 

section on a narrow band along the reflector. This second method offered the possibility to 

determine the acoustic areas characterised by a facies of acoustic turbidity (no continous top 

reflector) and to quantify the signal amplitude (figs. 5 & 6). Thus, amplitude values were 

integrated between + 0.5 ms above the selected reflector to -2 ms below it in order to obtain an 

integrated instantaneous amplitude value . 

 

 

Case histories 

 

Infilling sequences of Leucate and Thau Lagoons (Gulf of Lyon, France) and Lochs Creran and 

Sunart (Scotland) 

Figures 3A & 3B show different Seistec profiles marked by characteristic facies associated with 

gas occurrence. These facies include the following:  

- acoustic turbidity facies in Leucate and Thau lagoons,  

- gas curtain facies in Loch Creran, 

- gas blanket facies in Loch Sunart.  

The Leucate and Thau lagoons are part of a lagoonal system located on the Rhone Delta, Western 

Gulf of Lions, near the border with Spain (fig. 1). These lagoons are separated and protected from 

the sea by sandy barriers, or lidos, and are characterised by very shallow waters from 2 to 5 m 

water depth. Most lagoons of the system started to infill around 6000 years BP as sea level 

stabilized and the lido could settle. The infilling of the lagoons reflect the progressive closure by 

the barriers and is typically composed of alternative deposits of lagoonal clays and marine sands. 

The acoustic turbidity reaches up to the sea floor but appears to be diffuse. The often sharp lateral 

contact with the gas-free sediments appears to correspond with a greater thickness of sediment 

infill of the lagoonal depression. The result is that gassy sediments predominantly occupy the 

deeper part of the channels. Signal analysis was unsuccessful on these data because of the diffuse 



aspect of the sea floor. 

 

Loch Creran and Loch Sunart are situated on the west coast of Scotland, north of Oban (fig.1). 

They are typical of fjord style sea lochs with large water depth variations and narrow, steep sides. 

The gas curtain facies observed in Loch Creran (fig. 3B) is marked by a diapiric shape. The 

occurrence of this facies coincides with the buried valley axis which is draped by a stratified 

sequence and buried below a thick transparent unit. Gas blanket facies is observed in many places 

at Loch Sunart (figs 3B, 4A, 6). It is similar to the gas curtain facies except that it extends 

laterally over a much greater distance. This acoustic facies was observed by Taylor (1992) where 

very sharp contacts exist with the overlying sediments. Seismic polarisation analysis of the gas 

blanket facies in Loch Sunart shows a gas blanket with relative amplitudes varying from -500 to 

1000 for the seafloor reflector (fig. 4A). Although this seafloor reflector appears discontinuous, 

the signal (note the phase) shows an important positive peak (amplitude of 950) between two 

negative peaks, which is typical of bottom reflectors (see also fig. 4C).  The gas reflector shows 

very high amplitude values (from -1500 to 1500) and is characterised by a phase inversion 

confirming the presence of gas.   

The signal of the gas reflector is diffracted and there is no single reflector that can be easily 

followed. In order to obtain a representative value of the strength of this reflector an average of 

the instantaneous amplitude over a time window (+ 0.5 ms above the selected reflector and 2 ms 

below it) was computed. Figures 5 & 6 show the integrated amplitude data along two profiles in 

Loch Sunart and Loch Creran, revealing amplitude values for the gas reflector varying from 100 

to 300. Note that in these examples seismic amplitude analysis was able to distinguish between 

the morainal seismic facies, characterised by high amplitude values (from 400 to 700), and the 

gas facies showing lower amplitude values (< 300). 

 

White fringe facies in Loch Sunart 

Seistec profiles acquired in the relatively deep parts of Loch Sunart between 40 and 50 m water 

depth, show a facies that is characterised by a transparent fringe overlying an acoustically turbid 

facies (fig. 3C). This facies is marked by a relatively constant thickness of about 1.3 m, except on 

its extremities . No clear reflector delineates the top of the acoustically turbid facies.  

The polarisation analysis reveals a seafloor signal with relative amplitude values from -500 to 500 

(fig. 4B). The continuous, dark bottom reflector corresponds to a signal with a first important 

negative peak, between two small positive peaks. This bottom signal appears different from the 

bottom signals observed in figs. 4A & 4C, which may suggest an important water content of the 

superficial sediments (NouzÈ & Baltzer, 2003).  



The gas reflector corresponding to the white fringe facies shows relative values ranging from -

1200 to 700, with no clear phase inversion, but with a typical signature of acoustic turbidity 

(chaotic reflection) (fig. 4B). These relative amplitude values are two times less than the relative 

amplitudes observed in the gas blanket facies (fig. 4A). 

No integrated instantaneous amplitude analysis was conducted in this case because of the 

irregular morphology of this facies which did not allow a clear definition of the time window. 

 

Black shadow facies in Loch Creran 

Loch Creran contains several fish farms that emit waste material into the loch close to the area 

where seismic profiles were acquired. At theses locations, a unique phenomenan is observed on 

the seismic profiles: a very dark facies with distinct multiple reflections (figs. 2, 4C and 5). The 

lateral extent of this facies is about 300 m and the lateral boundaries are abrupt. 

The signal polarisation analysis shows very high relative amplitude values (from - 60 000 to 60 

000) with no underlying reflectors (fig. 4C). All of the signal energy seems to be reflected by the 

surficial sediments.  

Taken from the same time window, the seismic amplitude analysis reveals extremely high values 

of the integrated instantaneous amplitudes ranging from 1000 to 1600 (fig. 5). Such large values 

are not observed in any of the previous cases, even for morainal facies or rocky outcrops.  

 

 

Discussion  

 

Acoustic turbidity, gas blanket and gas curtain facies in Lagoons of Leucate and Thau 

(Gulf of Lyon, France) and Lochs Creran and Sunart†(Scotland) 

Results of the signal analysis show that the facies of the gas blanket and gas curtain are 

characterised by: 

- a relative seafloor amplitude from -500 to 1000 with a first significant positive peak 

(fig. 4A) 

- a strong relative gas reflector amplitude from -1500 to 1500 (fig. 4A) 

- a phase inversion for the gas reflector (fig. 4A) 

- an integrated gas reflector amplitude varying from 100 to 400 (fig. 5 & 6) 

 

Gas blanket and gas curtain facies were observed in Loch Creran and Loch Sunart (fig. 3B), only 

when a suffisant thickness of sediments is reached†above a rich organic sedimentary deposit 

usually in valley bottoms or depressions. Thus, blanket and curtain facies do appear only where 



the sediment infilling is the most important (pressure conditions), and usually not on the sides of 

the depressions. Similar observations were made for the acoustic turbidity facies in Thau and 

Leucate lagoons: acoustic turbidity facies occurs within the deeper part of the lagoons: they 

correspond to the thickest part of the infilling sequences.These observations agree with those 

made by Taylor (1992) where the occurrence of gas curtains (100 to 500 m of lateral extension) 

and gas blankets (> 500 m of lateral extension) in the Firth of Forth was also linked to thicker 

accumulations of sediment in the centre of channels. But for Loch Sunart, the phase inversion 

observed at the top of the gas blanket seems to suggest that the quantity of gas contained in the 

sediments is larger compared to Taylor's observations.  

 

According to Taylor (1992), the mode of formation of gas curtains could be a combination of 

biogenic factors (deposition of organic matter in the channels) and thermogenic factors (through 

structural joints and faults) as the Firth of Forth and the river Clyde are situated along a major 

fault.In most of our examples,Thau and Leucate lagoons, the eastern parts of Loch Creran and 

Sunart, the gas likely has a biogenic origin resulting from the decay of organic matter in shallow 

waters and confined areas. For the deeper part of Loch Sunart (still very confined and narrow 

sides), the seismic data do not seem to give any evidence of faulting (even on neighbour profiles) 

and  the geological map of this area doesn't show any fault going along the lochs in these places. 

Thus it could not be exluded as faults exist in all this area, but lochs are different from rivers 

systems, and so do not follow pre-existing fault pattern: the faults occuring in Loch Sunart and 

Loch Creran are faults perpendicular to the main lochs axis, and don't seem to influence the 

spatial repartition of the gas blanket and gas curtain facies. 

It is postulated that the gas blanket at Loch Sunart is just another expression of acoustic 

turbidity, but here it is sealed by an impermeable layer. Most likely the acoustic turbidity, 

gas curtains and gas blankets observed here are a similar expression of the occurrence of 

biogenic gas, derived from the deposition and decay of organic material on the bottom of 

buried depressions or valleys.The difference between the acoustic turbidity facies on one hand 

and the curtain and blanket facies seems to be the amount of gas content.  Gas curtains and gas 

blankets facies seem to be marked by a higher gas content. These facies represent the sub surface 

tracers, footprints of buried channels and depressions. 

 

White fringe facies in Loch Sunart 

This facies is characterised by: 

- a relative low amplitude of the sea floor reflector† (< 500) with a first negative peak 

(fig. 4B) 



- a relative amplitude value of the gas reflector from -1000 to 800  

- a constant thickness (except at the edges) of non-gassy sediments at the top of the 

sedimentary column, whatever the morphology or water depth. 

 

The white fringe facies seems to appear only in near-surface unconsolidated sediment bodies (the 

transparent body was sampled by a 2m length core) with high water content, such as valley 

deposits and drifts within the loch. This observation is in good correlation with the low amplitude 

of the bottom reflector and a first negative peak of the signal, typically for unconsolidated 

sediments. The acoustic facies appears like an “infilling” of the transparent body, but keeping a 

top white fringe. It is proposed that this facies is similar to the gas curtain facies but with 

“visible” chemical and bacterial reactions in the superficial sediments. These reactions would 

consume gas coming from below and thus reduce the gas proportion in the top transparent fringe, 

resulting in a gas content that is too low to be observed on the Seistec profiles. This assumption 

seems to be confirmed by the low values of the signal amplitude. Thus, this facies would be a 

non- mature version of the gas curtain or blanket: a curtain/blanket  facies in formation within 

unconsolidated sediments. 

 

Black shadow facies in Loch Creran 

This facies is characterised by  

- a very high relative amplitude of the bottom reflector from- 60 000 to 60 000 (fig. 4C) 

- a very high integrated instantaneous of the bottom reflector amplitude from 600 to 1800 

(fig. 5) 

- the occurrence of several well- marked multiples (fig. 5) 

 
This facies remains restricted to the factory’s vicinity. In the literature, similar strong sea floor 

reflectors and multiples have been related to waste material sometimes encountered in estuaries 

and harbours (Missiaen et al., 2002; McGee, 1989).  

At Loch Creran, fish farm wastes are deposited in this area as confirmed by diving observations. 

This surface deposit generates gas directly by organic matter decomposition and this could 

explain the very high signal amplitudes and the ringing effect observed.  

McGee (1989) observed that the waterlayer multiples are decaying more slowly over the waste 

material than the over the adjacent sea floor. This indicates that the reflectivity of the waste is 

greater than that of either the natural sediments or bed outcrop. That seems to confirm what we 

oberved on figure 2. But also the role of air caught in these fresh deposits and the contribution of 

the surface rugosity could be of some importance to explain the very high amplitude of the gas 



signature.  

 

It has been shown by Anderson & Hampton (1980a, b) and Tuffin et al., (2001) that gas bubbles 

in sediments are resonators and the seismic image strongly depends on the frequency spectrum of 

the source as well as on the physical bubbles parameters and bubble density. As we compare only 

Seistec subbottom profiles, we avoid any frequency misinterpretation caused by using different 

frequencies sources. Wilkens & Richardson (1998) show that between 1.5 kHz and 25 kHz, 

bubble resonance greatly affects seismic velocity and attenuation with the greatest reverberation 

occuring when the acoustic frequency matches the resonance of the bubbles. According to this 

diagram the resonance frequency window from 1 kHz to 10 kHz, which corresponds to the 

Seistec equipment, covers bubble sizes from 0.6 mm to 6 mm, the most frequent size of gas 

bubbles (in fact  0.5 to 5 mm) reported in literature (Anderson & Hampton, 1980a; Wilkens & 

Richardson, 1998). This observation could explain why the Seistec system is so sensitive to the 

presence of gas.   

Furthermore, the bubble characteristics (depending on the grain size of the particles) could remain 

a controlling factor for the appearance of the acoustic facies. This hypothesis needs to be further 

investigated by comparing cores sampled in different gas facies areas. 

 

The Seistec profiles clearly indicate the gas originated from superficial sediments or from deeper 

layers in the subsurface. The superficial factory wastes facies (fig. 5) shows very strong 

integrated instantaneous amplitude values (> 1000) and a strong ringing; the succession of strong 

multiples appear as a black shadow on the Seistec profiles. The same observation was made for 

air caught in soft sands (Baltzer et al., 2003). Gas generated from deeper sediments is 

characterised by lower instantaneous amplitude values (< 300) and shows no ringing effects. 

Acoustic turbidity, gas curtains, gas blankets or white fringes facies are characterised by blank 

“shadows” directly underneath the gas signatures, due to the absorption of the signal.  

 

 

Conclusions 

 

The exceptional resolution of the Seistec boomer coupled with a good penetration allows a close 

observation of the different shapes and geometries of some typical seismic gas facies such as 

acoustic turbidity, gas curtains and blankets, and white fringes. Examples from abundant 

literature on shallow gas occurrence often remain largely based on qualitative observations. The 

Seistec data discussed here allowed us to present a more quantitative approach, based on signal 



analysis using software developed at IFREMER. These results linked to the environmental 

conditions could provide some clues about the gas source for the different seismic signatures 

observed.   

 

The Leucate and Thau lagoons on one hand, and the Lochs Creran and Sunart† on the other hand, 

show infilling of valleys or depressions. Acoustic turbidity, gas curtains and gas blankets 

constitute a similar expression of gas occurrence most likely related to biogenic gas (methane) 

originating from the deposition and maturation of organic material on the bottom of the 

depressions or valleys. The difference between the acoustic turbidity facies and the curtain or 

blanket facies is that the latter are generally sealed by a top layer or cap. These seismic facies 

therefore seems to represent the sub-surface footprints of buried channels and depressions. 

The Loch Sunart†profile shows another example of infilling in its deeper parts. Associated facies 

shows gas curtain characteristics marked by a white fringe underlying the surface reflector. This 

facies most likely corresponds to a gas curtain in formation within unconsolidated sediments.   

At Loch Creran a profile shows an example of fish farm wastes. In this surface†deposit facies, 

gas is generated directly at the sediment surface by the organic matter decomposition. The 

decaying waste accounts for the very strong signal amplitude†and the ringing effect observed. 

The role of air caught in these deposits and the contribution of the roughness of the deposit may 

play an additional role in the abnormal amplitude values of the gas signature. 

 

The broad frequency range of the Seistec boomer has proved to be extremely sensitive for gas 

detection. Combined with signal amplitude analysis, this has allowed discrimination of gas origin 

from superficial sediments (the fish farm wastes case, amplitude > 1000) or from deeper layers in 

the sedimentary column (infillings of valleys, amplitude < 300).  
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Figure 1. Location of the different study areas and Seistec profiles acquired in Scotland (Loch Sunart and Loch 
Creran) and France (Lake Leucate and Thau Lagoon) 
 



 
 
Figure 2. Seistec profile 10 bis shows the succession, from West to East, of different characteristic gas facies in 
shallow sediments: black shadow dur to organic wastes from a fish farm factory, a gas curtain and a gas blanket 
with perhaps a gas plume in the water. This profile was acquired in Loch Creran (West coast of Scotland) . 
 
 
 
 

 
 
Figure 3. Different Seistec profiles showing three characteristical gas facies. 3A) Acoustic turbidity facies facies 
in infillings of depressions in Leucate and Thau lagoons. 3B) Gas curtain facies in Loch Creran which coincides 
with the deepest part of the depression, and gas blanket (similar facies to curtain but with a greater extension) in 
Loch Sunart. 3C) White fringe facies, revealed by two profiles acquired in Loch Sunart. This facies is 
characterised by a white or transparent fringe, keeping the same thickness (around 1.3 m) all along the profile 
whatever the water depth and topography, except at the contact with the valley edges. 
 
 



 
 
Figure 4. Seismic polarisation analysis of three different cases of gas facies selected on Seistec sections. Single 
shot signal is shown on the right. Amplitude values shown are relative amplitudes. 4A) Profile acquired in Loch 
Sunart presenting a typical gas blanket facies. The signal polarisation analysis shows the signature of the seafloor 
reflector with a positive high first peak of the amplitude (1000), and the gas reflector showing a negative peak of 
the amplitude (-1500) with a phase inversion. 4B) Profile acquired in Loch Sunart presenting a very particular 
gas facies characterised by acoustic turbidity topped by a transparent white fringe. The amplitude of the seafloor 
reflector is negative (-500) and the amplitude of the gas reflector varies from - 1000 to 1000. The signal 
polarisation analysis cannot indicate a clear proof of a phase inversion. 4C) A section of profile 10 (fig.2) 
acquired in loch Creran corresponding to the fish factory waste site. Two multiples occur, very well marked, 
masking all other sub reflectors. The amplitude of the bottom reflector reaches the huge value of 60 000 ! 
 
 
 



 
 
Figure 5. Seismic integrated amplitude analysis (instantaneous amplitude) of Seistec data acquired in Loch 
Creran. This amplitude analysis is realised on a time window (between 0.5 and - 2 ms) for all the shots along the 
profile. Note the extreme high amplitude values (from 1000 to 1800) of the organic wastes from the fish farm 
factory compared with the other values, including gassy sediments (around 300). Due to the scale, differentiation 
between the gas and moraine facies is not so clear. 
 
 

 
 
Figure 6. Seismic integrated amplitude analysis (instantaneous amplitude) of Seistec data acquired in Loch 
Sunart. This amplitude analysis is realised on a time window (between 0.5 and - 2 ms) for all the shots along the 
profile. The signal analysis allowed to easily differentiate morainal facies (integrated amplitude values from 600 
to 700) from gas blanket facies (amplitude values from 100 to 300). 




