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Summary 

Conservation of ecosystems that depend on water management and water quality has to be 

considered. We combined a field monitoring and batch experiments to better understand the 

impact of hydrological perturbations on peatland functioning. Factors influencing the 

dynamics of nitrate and sulphate concentration observed in two sites with different 

hydrological conditions in a south Normandy peatland were determined through the 

comparison of field and lab experiment. The effects of nitrate input, and oxic or anoxic 

conditions on nitrate and sulphate concentrations were investigated in bioreactors, using peat 

samples from field sites influenced by different hydrologic regimes. In this experiment, peat 

samples were subjected to similar conditions to address the effects of and O2 

concentrations (chemical effects), and the effect of hydrologic regimes and peat soil moisture 

(physical effects) on nitrate and sulphate dynamics. 

Cl
−
, and were monitored for 215 h. Nitrate was significantly reduced in most 

experiments. A complete nitrate reduction after 215 h in soil under anoxic conditions was 

observed. A denitrification process was also found under aerobic conditions depending on the 

peat site sampling, i.e. depending on the hydrological conditions. This process was interpreted 

as a heterotrophic denitrification. Sulphate monitoring revealed that 400 mg L
−1

 were 

produced in peat from the peat site with high hydrologic fluxes under aerobic conditions. 

Clear differences in chloride concentration (deviance analysis, P < 0.05), sulphate 

concentration and nitrate consumption dynamics (deviance analysis, P < 0.0001) were 

observed, for similar experimental chemical conditions, between the samples from the two 

peat sites. These differences were related to the field chemical variations observed and they 

indicate that part of the field nitrate and sulphate dynamics is linked to different bacterial 

activity and not only to nutrient fluxes variations. 

http://www.sciencedirect.com/science/article/pii/S0022169411005452#aff1
http://www.sciencedirect.com/science/article/pii/S0022169411005452#aff1
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1. Introduction 

As they slowly accumulate, peatlands provide an interesting support to past climate and 

vegetation investigations (e.g. [Barber, 1993], [Charman, 2002] and [Charman et al., 2009]). 

They constitute outstanding natural environments which ensure various hydrological and 

biogeochemical functions as well as biodiversity conservation ( [Mitsch and Gosselink, 2000], 

[Bullock and Acreman, 2003], [Chapman et al., 2003] and [Minayeva et al., 2008]). Despite 

their ecological interest, many of these areas have been ruined or/and damaged to industrials 

(e.g. peat mining) or agricultural (e.g. drainage) purposes. A loss of fifty percent of the French 

peatlands has been estimated since the middle of the 21st century. Such practices lead to 

hydrological disturbance and can have a severe impact on peatland regarding biological and 

biogeochemical functioning ( [Price and Waddington, 2000], [Chapman et al., 

2003] and [Littlewood et al., 2010]). This may be important on a global scale since it can 

affect on the key role of peatland as a carbon sink. Effects can also be observed on a more 

local scale by modifying their self-purifying properties and by inducing impairment on 

groundwater quality. Peatlands are particularly sensitive to hydrological variations. However, 

the long-term evolution of biogeochemical functioning of peatlands related to hydrological 

variations is not well known (Knieß et al., 2010). To assess the vulnerability of such wetlands, 

in particular in the context of climate change, the effects of hydrological fluctuations on the 

biogeochemical processes occurring in these environments need to be more thoroughly 

understood. 

Relationships between chemical conditions, microbial processes and physical parameters such 

as water fluxes have been addressed only from the first decade of the 21st century (e.g. 

[Chapelle, 2000], [Clément et al., 2002], [Clément et al., 2003], [Ginn et al., 

2002] and [Vidon and Hill, 2004]). Such parameters are related to landscape physical 

structure and appear to be determinant in controlling the spatial variability of these 

biogeochemical processes ( [Burt and Pinay, 2005], [Clément et al., 2002], [Clément et al., 

2003], [Duval and Hill, 2007], [Fink and Mitsch, 2007], [Hedin et al., 1998], [Hill et al., 

2000], [Packman et al., 2004] and [Sabater et al., 2003]). Several hydrological models have 

been proposed focusing on the prediction of microbial transport and the effect of microbial 

mats on water fluxes in natural porous and high nutrient media (e.g. [Ginn et al., 2002], 

[Harvey et al., 1993], [Murphy and Ginn, 2000] and [Rockhold et al., 2004]). However, few 

studies deal with unsaturated or variably saturated systems (Rockhold et al., 2004). Field 

studies on experimental (Phipps and Crumpton, 1994) and natural wetlands (Day and 

Megonigal, 1993) or associated to model analyses (Spieles and Mitsch, 1999) highlighted the 

impact of hydrologic loads. For example, nitrate removal rates are shown to be influenced by 

high frequency water level variations relative to long term flooding conditions ( [Ishida et al., 

2006] and [Tanner et al., 1999]). Thus water level provides limited information on 

biogeochemical processes and a proper detection of the water fluxes is necessary. To date, the 

effect of water fluxes on biological and biochemical activities, has not been simultaneously 

addressed in both laboratory and field comprehensive studies. Hydrological conditions may 

influence biogeochemical cycles through the availability of resources (oxygen, nutrients…). 

However, it may also directly influence the element dynamics through the modification of the 

peat reactivity i.e. the microbial activities and the peat structure. Such modification could be 

particularly sensitive after a long-term modification of water fluxes and may have thorough 

implications for wetlands evolution in the context of climate change. The aim of our work is 



thus to measure the sensitivity of biogeochemical cycles to different hydrological conditions 

(soil moisture and water fluxes) by: (i) a field study, (ii) a laboratory experiment investigating 

biogeochemical processes, and (iii) a microbial diversity analysis. The microbial diversity 

analysis has been described previously in Bougon et al., 2009 and major conclusions will be 

only summarized in the discussion. This paper focuses on the chemical results of both field 

and laboratory experiments. The field study was conducted in a peatland in western France 

(Auterives et al., 2011). It was intended to distinguish the influence of hydrological conditions 

on biogeochemical functioning through the investigation of two sites: (i) a reference site and 

(ii) a site affected by pumping in the underneath aquifer which induced important river-water 

fluxes. A focus on the chemistry in the two sites (on a 2 year monitoring) showed that 

sulphates and nitrates are good indicators of chemical changes related to hydrological fluxes. 

An experimental approach was then used to understand the field observations, as regards 

nitrate and sulphate changes, and to isolate the physical and chemical factors which might 

influence the nutrient dynamic trends. 

This paper tries to distinguish between physical effects induced by hydrological conditions 

(peat saturation, water fluxes) and chemical conditions (nutrient and oxygen availability) on 

nitrate and sulphate dynamics. Based on the field hydrological monitoring: (1) Peat samples 

from the two investigated sites were selected along a soil transect going from the stream to 

one hundred meters inside the peatland. (2) These peat samples were water-saturated and 

were incubated under different chemical conditions (oxygen or oxygen-free and nitrate 

addition). (3) To distinguish between biotic and abiotic processes a set of sterilized sub-

samples was also analyzed. (4) The modifications of nitrate and sulphate concentrations were 

measured after 50 and 215 h. This experimental strategy allowed us to evaluate the effect of 

field hydrology on peat reactivity (using peat samples from different sampling points under 

different water fluxes) and the implication of biological or non-biological processes in 

nutrient changes. Finally, the major biochemical trends observed in the field for nitrate and 

sulphate were compared to the laboratory observations in order to investigate the potential 

effect of long-term hydrological variations. 

2. Material and methods 

2.1. Field site 

2.1.1. Geological and hydrological settings 

The peatland site, which developed after the last glacial period, is located in south Normandy, 

49°15′N, 1°20′W, in the ‘Marais du Cotentin et du Bessin’ regional natural park. Peat 

thickness varies from 1 m close to the stream to 7 m in the center of the peatland. It is mainly 

covered by herbaceous plant communities. Along the main streams there are regular 

exchanges between the peatland and the drainage network which consists of several rivers 

either within or bordering the peatland. The peatlands overlie a clay-rich layer (1.5–6.0 m) 

which corresponds to the bottom of free aquifer forming the peaty wetland. The underneath 

aquifer consists of a sandy formation (Mio-Pliocene) filling an on average 80 m thick graben. 

This sand aquifer is highly permeable and the basin is pumped to supply drinking water. 

In order to investigate the sensitivity of wetlands to both climatic and anthropogenic 

influences, the monitoring of groundwater levels and stream water levels and water chemical 

campaigns were carried out from 2003 to 2005. Hydrological or hydrochemical results and 

methodology have been widely described in Auterives (2007) and Auterives et al. (2011). 



Two study sites were set up (Fig. 1). The first is under the influence of a pumping station 

(water extraction from sand aquifer) (site P). The second is located one kilometer 

downstream, beyond the zone of influence of the pumping station and was used as a reference 

site (site R). Indeed, the capture zone of the extraction well does not extend farther than 

150 m downstream from the pumping area (Vernoux et al., 2000). 

The hydrological fluxes in the two sites were determined by monitoring: (1) the stream level by staff 

gauges, (2) the groundwater levels in the wetland with PVC piezometers which were set up at different 

depths (1.5–5 m) along a stream-peat transect, (3) the clay-rich layer at the base of the peat, (4) the 

deep aquifer level in a well at both sites. In both sites, the peatland is monitored along a transect going 

from the stream (R2/P8) to the inner part of the peatland (R6/P2). In pumping site P, piezometer P2 is 

close to the pumping station. The peatland hydrology is mainly dominated by the exchanges between 

the peat and the main streams. The hydrogeological conditions exhibited by the two sites are clearly 

distinct (Fig. 2). 

2.1.2. Field chemical monitoring 

Water chemical campaigns were carried out every 2 months from 2003 to 2005 (Auterives, 

2007). Peat groundwater was collected from the PVC pipes. Physico-chemical parameters 

(pH, Eh, T °C) were measured on site with a field multiparameter WTW P4. Water was 

sampled, filtered (0.22 μm cellulose acetate filter capsule Sartorius) and analyzed for Cl
−
, 

, and through ion chromatography Dionex DX-120 in the Geosciences chemical 

laboratory with an uncertainty below 5%. Dissolved organic carbon content (DOC) was 

analyzed on a Shimadzu 5000 TOC analyzer with an uncertainty of 5% and a detection limit 

of 0.08 mg L
−1

. 

2.2. Laboratory experiments 

Peat samples from the two P and R sites were collected at a depth ranging from 50 to 80 cm 

with an auger in March 2004. The samples were collected at 2 locations in each site, close to 

(2 m) and distant from (100 m) the stream (Fig. 1). The soil samples were stored at 4 °C for 

2 days before the experiment and two kinds of hydrologic conditions were tested: (1) the 

importance of stream influence on the peat at large scale (comparison of pumping site P and 

reference site R), and (2) the differences in moisture conditions (rewetting/drying frequency 

and duration i.e. close and distant to the stream). 

2.2.1. Peat sample characteristics 

During sampling, large roots were removed and the soil was homogenized but not sieved in 

order to preserve the soil microbial heterogeneity. pH was determined by AFNOR NF X 31-

103 method (Table 1). C–N–S–O values were obtained with a CHNSO EA1108 Carlo-Erba 

apparatus. 

2.2.2. Experimental procedure 

After a 25 h equilibration period, changes in nitrate and sulphate concentrations were 

monitored for 215 h under: (i) high and low nitrate input, (ii) oxic and anoxic conditions and 

(iii) biotic and abiotic control. Thirty grams of wet soil was placed in serum flasks containing 

100 ml of synthetic solution (40 mg L
−1

 of Cl
−
 as NaCl). Stream water was not used directly 



because of potential microbial contamination. A synthetic solution similar to the stream water 

in terms of ionic strength was used. No nitrate was added to the low nitrate samples. High 

nitrate concentrations were obtained by adding 30 mg L
−1

 of (as NaNO3). The 

incubation conditions were either oxic (in an oxygen atmosphere) or anoxic (under a N2 

atmosphere). Anaerobic conditions were ensured by flushing the ambient air in flasks three 

times with N2. The flasks were shaken continuously throughout the experiment to ensure 

moderate homogeneity. One hour before sampling, the flasks were stirred to homogenize the 

water content and then left still for the particles to settle. Abiotic controls consisted of 

sterilized peat samples in which the bacterial enzymes had been metabolically inhibited by 

gamma ray irradiation so that the soil physical structure remained unaltered. Ionization, 

involving a 60 kGray or 6 mrads treatment, was carried out at the ‘Commissariat à l’Energie 

Atomique’ (CEA, Cadarache). All abiotic control samples were subjected to the same 

procedures as the other sample series. Potential variability related to peat heterogeneity was 

taken into account by performing triplicates for each experimental condition (nitrate addition, 

oxic or anoxic, sterilized…). All figures and tables from the batch experiment indicate the 

mean of the triplicate value and its standard error. 

2.2.3. Chemical analyses 

Nitrate, chloride and sulphate concentrations increased slightly in each bioreactor over 25 h 

after water saturation at the beginning of the experiment. Variation was related to soil pore 

water and added water equilibration (solubilization effect). As the variations in nitrate and 

sulphate concentration were concomitant with those of chloride and as no dissolved organic 

carbon was noticed, biogeochemical mechanisms could be ruled out. This equilibration stage 

was therefore ignored in the following kinetic analyses. 

Five milliliter of solution was sampled from the flasks after 50 and 215 h of incubation 3 mL, 

filtered through 0.22 μm cellulose-acetate filters (Sartorius Minisart) were analyzed for major 

anions (Cl
−
, and ) by ion chromatography at the Caren-Geosciences Rennes 

laboratory. The remaining 2 mL were used to determine microbial diversity (Bougon et al., 

2009). Physico-chemical parameters were measured at the end of each experiment. pH was 

measured with a precision of +/−0.05 unit using a Sentix 50 electrode, calibrated with WTW 

standard solutions of known pH (4.01 and 7.00 at 25 °C). Redox potential was determined 

using a platinum electrode (Mettler Pt 4805). 

The different experiments presented various concentrations after the equilibration phase. 

Thus, the variation of concentration is presented as the ratio to ‘zero’ concentration (Δ = Ct/C0 

in%, with C0 the concentration at t0 the beginning of the experiment after the equilibration 

phase) in all the figures to allow the batch experiments comparison. 

2.2.4. Statistical analysis 

The chloride, nitrate and sulphate concentrations for each site (site R and site P, near to and 

distant to the stream), for each set of conditions (added or not, oxic or anoxic), and for 

each time point (t0, t50 and t215 hours), were log-transformed because the family-wise errors 

rate in the dataset followed a Poisson distribution. The resulting data set was analyzed using a 

Generalized Linear Model (GLM) implemented in R. A deviance analysis (effect on GLM 

when one term was removed) was performed to test (i) differences between the sites for each 

variable (Cl
−
, and concentrations) at each time; (ii) the possible effect of 



addition on the other variables, and (iii) the effect of oxic and anoxic conditions on the 

measured parameters. Statistical analyses were performed using the chi-square test. When a 

term was significant, the contrasts (mean comparisons), i.e. interaction terms were subjected 

to z coefficient tests. This was feasible despite the normally asymptotic distribution of the beta 

coefficients. The significance of the results was confirmed by applying a Bonferroni 

correction. All these analyses were implemented using R (R Project for Statistical Computing, 

2003). No nitrate variation was observed during the experiments in the batches without nitrate 

addition. These experiments will not be presented for clarity. 

3. Results 

3.1. Hydrogeological setting 

This section sums up the main results of the hydrological functioning of the peatland 

previously investigated through a detailed water balance (Auterives et al., 2011). During the 

2-year period of monitoring, the hydrological functioning of the wetland showed a hydric 

deficit, associated with a permanent unsaturated layer and a deep water table (Fig. 2). At the 

same time, the stream was observed serving as a recharge inflow instead of draining the 

peatland, as usually described in natural systems. It has also been observed that in the peat 

local groundwater flow reverses between low-water and high-water periods. Comparison with 

a similar site 20 km west, investigated in 2001, indicated that the drought observed was 

related to a climatic effect, i.e. two rather dry years compared to the mean annual precipitation 

height. Piezometric monitoring allowed vertical gradients to be measured (Fig. 3). Vertical 

gradients showed gradients higher by a factors 2–5 in pumping site P compared to reference 

site R. 

Piezometric measurements were completed by a large permeability data set at various depth in 

the peat and underlying clay layer. The upper part of the peat (0–1.20 m) presents 

permeabilities ranging from 2 × 10
−7

 to 10
−5

 m s
−1

. The lower part of the peat (below 1.20 m) 

and the clay layer present relatively high hydraulic conductivities (from 1 × 10
−7

 to 

3 × 10
−9

 m s
−1

) and does not form a hydraulic barrier. Pumping in the underlying aquifer 

influences fluxes of the peatland at a local scale. Consequently groundwater flows in the 

peatland and through stream-peat groundwater exchanges are different between sites R and P. 

Two hydrological regimes are observed. During high waters (grey area, Fig. 2a), the stream 

water level is above the peat groundwater levels which are similar, both far away and close to 

the stream showing a relatively flat groundwater table. Stream water flows locally into the 

peat groundwater. During low water periods (white area, Fig. 2a), the peat groundwater level 

is higher inside the peatland (R6) and lower on the edge (R2). Both R6 and R2 remain below 

the stream water level. On this 2D view, the groundwater flows locally appear to converge. 

Therefore, the stream and the peat groundwater are locally and temporary disconnected during 

low water periods. Such disconnection during the whole low-water period induces an 

important water table lowering in the peat (close to 1 m) (Fig. 2a). 

Pumping site P: The water table fell much less (less than 50 cm) in the site P (Fig. 2b). The 

water table is almost identical to the stream level during the high-water period (November 

2003 to March 2004, Fig. 2b). In contrast to site R, hydraulic gradients inducing water fluxes 

from stream to peat (water level into the peatland lower than close to the stream) are observed 

during most of the hydrological cycle (Fig. 2b). Site P is almost permanently supplied by 

stream surface water entering into the peatland. The hydrological regime in site P is induced 



by pumping in the underneath aquifer which decreases the sand aquifer water table (about 

0.5 m in the abstraction well). Fig. 3 presents the gradients between the peat aquifer and the 

sand aquifer. It indicates that these gradients are 2–5 times greater in site P compared to the 

reference site R. These gradients induce the stream inflow in the peat and maintain higher 

water tables in the peat in pumping site P than in the reference site G. 

Consequently, the main differences in hydrological conditions are related to the stream 

influence with (i) important fluxes from the stream through the peat at site P which maintains 

high peat water levels, and, conversely, (ii) limited fluxes from the stream, which create long 

and considerable downward water movement and peat drying in the site R. 

From the hydrogeological monitoring and from the permeability data set, a precise water 

balance could be carried out in both sites in 2004 (Auterives et al., 2011). The water balance 

showed that the stream inflow represented 11% of the total input at site P while it represented 

1% of the total input at site R. This mass balance showed the effect of pumping in site P 

which induced fluxes from the peat downward to the aquifer during the investigated period. 

The detailed hydrogeological investigation indicates that, although both pumping and 

reference peat sites are influenced by climatic effects, the two sites mainly differ from a 

hydrological point of view. This difference is related to the anthropogenic influence and has 

been operating for two decades. We thus consider that the sites comparison (i) for a large 

range of chemical conditions in lab experiments, and (ii) through the field-lab comparison, 

provides a set up which allowed the long-term effects of hydrological conditions to be tested. 

3.2. Field geochemical observations 

The peat, the stream water and the rain water characteristics are presented in Table 

2 and Table 3. The peat groundwater was slightly acid (pH 5.8–6.4) and pH remained 

relatively constant throughout the observation period. Mean chloride concentrations ranged 

from 15 to 38 mg L
−1

 without a significant contrast between high- and low-water periods. 

3.2.1. Redox, nitrate and sulphate dynamics 

Mean redox potential ranged from 129 to 626 mV and varied according to the hydrological 

period. Redox values exceeded 400 mV throughout the high-water periods, indicating 

oxidized conditions. During the low-water periods, Eh fell below 200–300 mV, indicating 

moderately reduced conditions. Nitrate dynamics were also dependent on hydrological 

conditions, nitrate concentrations being higher during high-water periods (mean 

concentrations about 11–17 mg L
−1

) than during low-water periods (mean concentrations: 1–

2 mg L
−1

). A clear decrease in nitrate concentration was observed during low-water periods 

(Table 2). Sulphate concentrations showed very high variations from 0 to 1200 mg L
−1

 (Table 

2). Sulphate also showed a variation related to hydrological periods with lower values during 

low-water periods (mean values of 119 and 111 mg L
−1

 in reference and pumping sites, 

respectively) than during high-water periods (176 and 144 mg L
−1

 in reference and pumping 

sites, respectively). 

3.2.2. Site comparison 

The field results showed an obvious variation between the reference and pumping sites (Table 

2, Fig. 4). Whilst pH and Eh did not show clear differences between sites, DOC 

concentrations were higher in reference site R (65 mg L
−1

) than in pumping site P (32 mg L
−1

) 



(Fig. 4). Chloride showed higher values in the pumping site P (30 mg L
−1

 on average) then in 

the reference site R (18 mg L
−1

 on average) (Fig. 4). The pumping site P values were very 

similar to the river concentrations (37 mg L
−1

; Table 3), in agreement with the close 

connection between stream and peat waters. An efficient nitrate removal was observed in the 

pumping site P, leading to nitrate concentrations below detection limit during low-water 

periods. In reference site R, the nitrate removal was slightly more limited or slower (higher 

values during high-water periods). Extremely high sulphate concentrations were observed 

close to the stream in reference site R (430 mg L
−1

; piezometer R2), which led to mean 

sulphate concentrations higher than in pumping site P (157 and 133 mg L
−1

, respectively) 

(Fig. 4). 

3.2.3. Distance from the stream 

The piezometer transects from the river to the inside part of the peatland (from R2 to R6 in 

reference site R and from P8 to P2 in pumping site P) showed chemical gradients. DOC 

concentrations decreased from the interior towards the stream in both sites (Table 2). They 

also decreased close to the pumping station (P2), which leads to a reversed-U shape of the 

concentration profile in site P. Nitrate concentrations decreased close to the stream in the 

reference site R but dilution effects can be ruled out since the nitrate concentrations in the 

whole peat systems were always lower than the stream concentrations. Conversely, nitrate 

concentrations were higher close to the stream in pumping site P (Table 2). Extremely high 

sulphate concentrations (>1000 mg L
−1

) were observed at the beginning of high-water periods 

(peat-stream connection), close to the stream in both sites especially in the reference site R. 

Sulphate concentrations decreased in peat when distance to the stream increased. In the 

reference site R, the most internal samples (R6) had concentrations close to 0 during low-

water periods. Conversely, high concentrations (244 mg L
−1

, piezometer P2) close to the 

abstraction well were also observed in pumping site P leading to U shape concentration 

profile unlike DOC. 

3.3. Batch results 

3.3.1. Nitrate 

Treatments without nitrate added were used as control and are not presented. Kinetics were 

similar in both high and low nitrate inputs (Table 6) and the nitrate reduction velocity did not 

allow us to identify any mechanisms. The physico-chemical parameters and the element 

concentrations measured in the batches are presented in Table 4 and Table 5. A systematic 

decrease in nitrate concentrations was observed under anaerobiosis (Fig. 5). Maximal nitrate 

consumption occurred during the first 50 h, reaching 70 % of the initial concentration under 

anaerobiosis. No clear difference can be observed between the reference R and the pumping P 

sites since the mass percentage decreases are similar. It seems that the kinetics were similar, 

assuming identical reactions. 

Conversely, both site location and distance to stream source influenced nitrate dynamics. 

Three of the four aerobic batch samples demonstrated a decrease in nitrate levels. This 

unexpected result was found either for P and R samples, but P samples reacted more rapidly. 

In the pumping site P in aerobic conditions, nitrate concentrations increased in the samples 

distant from the stream (i.e. close to the pumping station), while it decreased in samples close 

to the stream (Fig. 4). In the reference site R, concentration changes were less important 



(higher concentrations, Table 5) close to the stream either with or without oxygen than in the 

other conditions. 

3.3.2. Sulphate 

No sulphate reduction was observed during the batch experiments, while increases in sulphate 

concentrations were observed repeatedly (Fig. 4, Fig. 6). This observation was higher in 

samples collected close to the stream (Table 5 and Table 6, deviance analysis, P < 0.0001) 

and in samples subjected to aerobic conditions (deviance analysis, P < 0.0001; Fig. 5). 

Sulphate production in pumping site P under aerobic conditions (close to the stream) 

corresponded to Δ ( t215h–  t0) = 400 mg L
−1

. This was a sulphate concentration of 

600 mg L
−1

 at the end of the experiment (Table 5). 

Differences in sulphate dynamics were observed between sites (Fig. 5). The sulphate 

concentrations at the beginning of the experiment after the equilibration phase were very 

different among samples (80–600 mg L
−1

 in pumping site P – 5–45 mg L
−1

 in reference site 

R). Moreover, the increase in sulphate concentration was higher with the samples from the 

pumping site P (Table 5, Fig. 5). It should be noticed that the site R experiments showed very 

low sulphate concentrations (5 and 7 mg L
−1

) at the beginning of the experiments. 

The distance to the stream also had an important effect on sulphate variations during the 

experiments. At the beginning of the experiment, the sulphate concentrations in samples from 

the pumping site P close to the stream were three times higher than in samples distant from 

the stream (Table 5). A reverse pattern was observed in the reference site R, with higher 

sulphate concentrations in samples distant from the stream than in those close to the stream. 

At the end of the experiments, this reversed pattern between P and R sites persisted (Fig. 6). 

3.3.3. Effects of biological processes 

The comparison between biotic and abiotic batches (Fig. 7) clearly highlighted the influence 

of microbial processes on nitrate dynamics. The nitrate removal was higher in biotic than in 

abiotic samples (e.g. deviance analysis in reference site R in aerobic conditions P < 0.001) at 

least during the first 50 h. Later in the experiment, a decrease in nitrate concentrations was 

also observed in abiotic conditions which was likely due to a microbial contamination. In 

contrast, the sulphate dynamic was similar in both biotic and abiotic batches (deviance 

analysis P > 0.05, Fig. 7), suggesting that microorganisms did not cause variation in sulphate 

concentrations. 

4. Discussion 

4.1. Biogeochemical processes in batch experiments 

4.1.1. Nitrate removal 

The observed reduction of nitrate concentration during batch experiments has already been 

reported in several studies. This phenomenon results from microbiological consumption, 

nitrate serving as electron acceptor (Correl, 1997). The microbiological reduction of nitrates 

involves three types of processes: dissimilatory reduction, autotrophic and heterotrophic 

denitrification. Although nitrate-reducing microorganisms display a great plasticity to oxygen 

availability, most denitrifiers use nitrate as final electron acceptor under anoxic conditions 



(Florinsky et al., 2004). The presence here of available dissolved organic carbon 

(>30 mg L
−1

), moderately reduced redox conditions (<200–300 mV) (Table 2), anoxic 

conditions and nitrate suggests a heterotrophic reduction process ( [Hedin et al., 1998], [Hill 

et al., 2000], [Ingersoll and Baker, 1998] and [Vidon and Hill, 2004]). Nitrate removal is a 

major biological process (Fig. 7). However part of this process may also interact with 

chemical reactions. The comparison of biotic and abiotic conditions indicates nitrate reduction 

even under abiotic conditions, which suggests that the whole nitrate reduction cannot be 

assigned solely to biological activity. However, a contamination of the abiotic condition 

should not be excluded after 50 h of incubation given due to the samplings. 

Denitrification was also observed under aerobic conditions. Various bacteria may activate this 

process (Chen et al., 2003) although denitrification is not as competitive as aerobic respiration 

in terms of energy produced. This phenomenon should be interpreted as an electron accepting 

mechanism that competes with aerobic respiration, providing an advantage in terms of fitness 

in a changing environment. Some oxygen-tolerant anaerobes are well adapted to survive 

oxygen stress, and are able to maintain a functional metabolism in presence of oxygen (Brune 

et al., 2000). Patureau et al. (2000) suggested that alternating aerobic-anoxic conditions can 

isolate new strains of aerobic denitrifiers, and that naturally aerobic denitrifiers may exist. 

Alternatively, the nitrate reduction observed under aerobic conditions could be due to 

localized development of micro-anaerobiosis even though the flasks were shaken. Microbes 

can also absorb nitrate and use it for amino acids synthesis through an assimilatory process. 

Furthermore, this process is not affected by oxygen (Zumft, 1997) and it can be supposed that 

part of the nitrate removal is due to assimilatory nitrate reduction. However assimilatory 

reduction is an energetically expensive process and it mainly occurs when microbes are 

nitrogen limited but have an adequate energy supply. We thus think that the major process is 

denitrification. 

4.1.2. Sulphates 

Fig. 6 shows the sulphate concentrations at the beginning of the experiments. Very high 

sulphate concentrations are observed, especially for the pumping site P which agrees with 

considerable sulphate production during the experiment (Fig. 5), under aerobic conditions 

(samples close to the stream). The observed sulphate release, especially in peat samples from 

pumping site P close to the stream can result from mineral and/or organic matter dissolution 

under aerobic conditions. The presence of oxygen may have enhanced the biodegradation of 

phenolic compounds by the phenol oxidases (Freeman et al., 2004). This activity enables the 

production of sulphate from sulphate esters contained in the peat matrix bonded to humic 

substances (polyphenolic and phenolic compounds) ( [Chapman and Davidson, 2001], [Lou 

and Warman, 1994] and [McGill and Cole, 1981]). Sulphates released during the experiments 

were however mainly derived from the chemical dissolution of mineral phases since the 

experiments performed under abiotic conditions indicated an important, non-biological 

sulphate-releasing process (Fig. 7). These results agree with other reports of sulphate release 

under oxidized conditions ( [Devito and Hill, 1999], [Eimers et al., 2003] and [Fenner et al., 

2005]). 

Dissolution of reduced sulphur phases during oxidized conditions implies a sulphur source 

and potential preliminary sulphate reducing activity to provide a sulphur pool. Although no 

sulphate decrease was observed in the batch experiments, very low sulphate concentrations 

were obtained at the beginning of the experiments (Fig. 6) in the reference site R batches 

close to the stream, much lower than the stream concentrations observed during the field 



study. The chloride to sulphate ratio (6–10) in the peat batches’ samples is higher than the 

stream or precipitation Cl/SO4 ratio (2.8 and 1.5) (Table 2). The latter can be considered as 

the ‘minimum’ sulphate concentrations which initially entered in the peat system. Since there 

is no chloride consumption, the high Cl/SO4 ratios indicate that some processes have lowered 

the sulphate concentrations in the peat system. Low sulphate concentrations are interpreted as 

reflecting sulphate reducing activity in the pore waters of the peat matrix. It may indicate that 

sulphate reducing bacteria constitute an active community. 

4.2. Biogeochemical and hydrological processes in field studies 

The different hydrological regimes induced different water fluxes in the investigated sites. 

Pumping in the underlying aquifer resulted in a permanent flow from the stream into the peat 

in pumping site P. The amplitude of water table fluctuation and peat drying were also 

controlled by the underlying aquifer and high water tables were maintained in pumping site P 

for much of the year, (Auterives et al., 2011). Stream influence is deduced from 

hydrogeological and chemical measurements. The chloride decrease from the stream to the 

peat interior in both sites indicated an important stream input (Table 2). The changes in nitrate 

and sulphate concentrations were clearly related to water table dynamics. Nitrate increases 

during high-water period are related to stream inflow which presents high nitrate 

concentrations as well as high Eh values in site P. Following the high-water nitrate input, 

nitrate reducing activity leads to the nitrate decrease observed during the low-water period. 

Very high sulphate concentrations were observed in both sites. The highest and the more 

variable concentrations are clearly related to high-water periods close to the stream in 

reference site R (R2 piezometer, Table 2). These pulses of sulphate related to pulses of H
+
 

(pH < 5) were observed after a desaturation/resaturation cycle in the area which corresponds 

to maximum drying of the peat during low water. Indeed, sulphate pulses resulting from a 

drying–rewetting effect have been observed elsewhere ( [Devito and Hill, 1999] and [Eimers 

et al., 2003]). During washing out, the formerly reduced compounds which are oxidized 

during unsaturated period are then mobilized into the pore-water during the resaturation 

period. This process is more generalized in the pumping site P (more constant and high 

concentrations in piezometer P8 and P2) which is related to the permanent river fluxes into 

the peat, and oxygen input. The differences observed in sulphate release within and between 

sites highlight the importance of hydrological fluxes in controlling sulphate dynamics through 

the introduction of oxygen and emphasis of biological processes. These results agree with 

previous reports ( [Devito, 1995], [Devito and Hill, 1999], [Eimers et al., 2003] and [Warren 

et al., 2001]) showing that sulphate release can be predicted from hydrologic heterogeneity. 

4.3. Comparison of field measures and batch experiments 

The batch experiment results agreed with the field observations. (1) Nitrate reduction was 

clearly reproducible, even under aerobic conditions, although this process was mainly 

expected under anaerobic conditions. (2) Both high and low sulphate concentrations were 

observed during some of the experiments. (3) Differences in sulphate concentration and 

nitrate consumption dynamics (deviance analysis, P < 0.0001) were observed between 

samples from the reference R and pumping P sites subjected to different hydrological 

regimes, even under similar redox conditions. (4) Finally, reactivity also differed as a function 

of distance from the stream. Further on, a more detailed comparison provides several 

indications on the mechanisms involved. 



4.3.1. Sulphate decrease in the internal part of the peat 

Sulphate concentrations in batch experiments showed a general agreement with the field data 

especially because of both high and low measured concentrations (Table 5: 13–478 mg L
−1

). 

Low sulphate concentration in the batch and the field results (concentrations below detection 

level during low-water period, Table 2) indicate that sulphate reducing processes may be 

active in the peat environment, although the Eh measurements do not show highly reducing 

conditions. Sulphate reducing conditions are only reached after consumption of other 

oxidants. Such conditions were not reached during the batch experiments and they are only 

observed in the preserved parts of the field sites where they are likely related to peat matrix 

micro-porosity. 

4.3.2. High sulphate releases in pumping site P 

Sulphate releases were observed in batch samples from both sites, especially the pumping site 

P close to the stream (Table 5, Fig. 6). The intensity of the release was dependant on the 

spatial location of the batch samples. The high concentrations at the beginning of the batch 

experiments (Fig. 6) indicate an important labile S pool in pumping site P, especially in the 

internal part of the peatland. These high sulphate values agree with field observation, on the 

pumping site P (piezometer P2) and close to the stream in both sites. 

The batch experiments demonstrated that there is a mobile sulphur phase in the peat matrix 

which easily provides dissolved sulphates when the peat is water-resaturated. This S stock 

could be measured in the peat solid-chemical analyses (Table 1), although no S appeared in 

the sample close to the river in reference site, which can be explained by the intensive 

leaching during rewetting (SO4 concentrations > 1000 mg/L). Dissolved sulphates occur in 

the field after the rise of the water table during winter. As observed in the biotic/abiotic 

comparison of the batch experiments, the sulphate release seemed to be mainly an abiotic 

reaction through the oxidation of reduced sulphur. The batch experiment differences, as well 

as the field site differences may thus be related to the S stock which is available when the peat 

is water-resaturated. This S stock, in turn, depends on the sulphate reducing bacteria activity 

and/or the chemical form of the S contained in the peat matrix either through sulphur minerals 

or through organic molecules such as sulphate esters. Iron concentrations in the solid-

chemical analyses of the peat (8–13 mg/kg of dry peat, Auterives, 2007) indicate that a major 

part of the S stock is a mineral form FeS2. The high sulphate leaching potential suggests a 

global bacterial activity difference between the P and R sites. The sulphate-reducing bacteria 

may be more active and/or more important in the pumping site P and produce a more 

important sulphur labile phase. They could indicate a more limited activity in the reference 

site R although low sulphate concentrations are observed in the inner part of the reference site 

R. 

4.3.3. Efficiency of nitrate removal in pumping site P 

Nitrate removal was more limited under aerobic conditions in batch experiments (Table 

5 and Table 6). This conclusion agrees with the field observations which indicate nitrate 

removal during the low-water period, when more reducing conditions develop in both sites. 

Batch experiments also indicated that the reaction kinetics were relatively similar for both 

sites under anaerobic conditions. 



Under aerobic conditions in the batches, peat from pumping site P seemed to provide more 

efficient and rapid nitrate removal due to bacterial activity than peat from reference site R 

(Table 5 and Table 6). This result agrees with lower field nitrate concentrations in pumping 

site P (Table 2). This effect was seen independently of nitrate concentrations or redox 

conditions which were similar in the different batches (Table 4 and Table 5). This efficiency 

could be related to microbial communities more adapted to higher oxygen concentrations 

and/or more frequent oxygen inputs related to the permanent stream influx in pumping site P. 

4.3.4. Variation of nitrate concentrations with distance to the stream 

Chemical gradients observed in the field from the peat interior towards the stream were 

measured in the site R. They clearly reflect the peat-stream connection and the stream water 

flow during the high-water periods. This zone, between terrestrial and aquatic ecosystems, 

represents a major mixing point for nutrients ( [Hedin et al., 1998], [Hill et al., 

2000] and [McClain et al., 2003]) which allows the production of dissolved organic carbon ( 

[Hill et al., 2000] and [Mitchell and Branfireun, 2005]) and thus enhances bacterial activity. 

In the batch experiments, however, the close or distant parameter had an important effect, for 

similar conditions of the other parameters (nitrate, DOC or oxygen concentration). The 

differences observed between sites do not only result from nutrients variations (chemical 

effect) but also from the physical effect of water fluxes and soil saturation on microbial 

activity. 

4.4. Potential link between hydrological patterns on microbial activity 

This study highlights the considerable effect of hydrological conditions on biological activity 

in peat. Although various parameters may control the field nitrate and sulphate dynamics, the 

design of the batch experiments has shown that, with similar chemical conditions, peat 

sampled from sites with different hydrological conditions showed different reactions. Part of 

the differences observed in the field such as nitrate or sulphate concentrations (Table 2) may 

be related to various microbial communities’ diversity, structure and/or activity (Bougon et 

al., 2009). The batch experiments highlighted a higher denitrification activity in pumping site 

P under aerobic conditions and major and constant sulphate releases in this site which may be 

related to a more important activity leading to a sulphur pool production. 

Water fluxes and high moisture might influence microbial activity by creating an open 

ecosystem. Through these processes, hydrological fluxes also influence microbial activity in 

terms of substrate availability ( [Ostrom et al., 2002], [Sabater et al., 2003] and [Sánchez-

Pérez and Trémolières, 2003]). Hydrological fluxes, in addition to providing stimulating 

physico-chemical conditions for biotic activity, may also provide more diverse substrate 

availability which may also benefit from favorable physico-chemical conditions. The 

biochemical conditions created by a hydrological flow structure will facilitate the 

development of hot spots ( [Hill et al., 2000] and [McClain et al., 2003]). Thus the observed 

differences between sites and the spatial variability within sites may reflect the heterogeneous 

richness and diversity of microbial species in the ecosystem (Martin et al., 1999). The 

observed differences between sites, even under similar redox and nutrient conditions, may 

indicate that the distinct hydrological fluxes can control the structure and diversity of the 

associated microflora. Analyses of the structure and diversity of nitrate-reducing communities 

in the microbial community of the batch experiments indicated clear differences of the 

microbial diversity and structure between both sites, which confirm the conclusions drawn 

from the batch/field comparison (Bougon et al., 2009). The potential differences between 



reference site R and pumping site P cannot be linked to the short-term enrichment in nitrate or 

depletion in oxygen we experimented, but may be attributed to differences between sites, i.e. 

long-term differences in peat saturation resulting from different hydrological regimes. 

5. Conclusion 

We investigated the potential link between physical parameters such as water fluxes and 

microbial community’s structure and activities in a peat aquifer. We examined 

biogeochemical reactions to various environmental biochemical conditions in peat samples 

collected in two different field hydrological conditions. Our lab experiments combined to a 

field study have shown that part of the biogeochemical functioning is not directly related to 

the water table level, but also to a more global and long-term influence of the hydrological 

conditions on the microbial structure. Two decades of water abstraction have induced enough 

modification in hydrological regimes to modify peat saturation and microbial community 

structure and activity. 

Integrating this influence may have implications on wetlands biogeochemical functioning 

under climatic or anthropogenic global changes. Climate change may modify the hydrological 

conditions for large wetland areas. Thus the potential biogeochemical functioning may be 

affected through deep and stable modifications of the microbial ecosystem. As peatlands play 

a key role in water resource management, these modifications should not be neglected in 

restoration programs. 
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Figures 

 

 

Fig. 1. Location of the study site and piezometers map of the pumped site P, in the front of a 

pumping station, and the reference site R, one kilometer downstream, beyond the influence of 

the pumping station. 

 

 



 

 

Fig. 2. Water level fluctuations during a hydrological year in reference site R (a), and pumping site P 

(b). Schematic peatland profiles are an interpreted view of the peatland/stream water flow 

relationships. Grey and white areas indicate changes in the direction of horizontal groundwater flow. 

During grey periods, the peat groundwater level decreases from the edge of the stream to the inner part 

of the peatland, and shows groundwater flow from the stream into the peatland. During white periods, 

the peat groundwater level is higher far from the stream than close to the stream. The stream drains the 

peatland except at reference site R, where the stream is disconnected from the peatland. 

 

 

 

 

 

 

 

 

 



Table 1. Soil characteristics and CHNSO content. 

Sampling 

sites 

Stream 

distance 
Soil profile pH % C % S % N % O 

Pumping site 

P 
Close 0–15 cm : peaty soil 

4.7 26.6 ± 1.18 0.3 ± 0.0 1.9 ± 0.0 18.9 ± 0.2 

  

15–50 cm : clay loam 

oxidized 

  
50 cm : peat 

 
Distant 0–10 cm : peaty soil 

4.4 32.9 ± 0.8 0.5 ± 0.0 2.3 ± 0.0 22.1 ± 0.3 
  

10–30 cm : clay loam 

oxidized 

  
30 cm : peat 

Reference site 

R 
Close 0–15 cm : soil 

5.8 40.1 ± 3.1 ND 1.9 ± 0.0 15.4 ± 1.2 

  
15–50 cm : ballast 

  
50 cm :peat 

 
Distant 0–∞ cm : peat 5.2 24.7 ± 1.5 0.5 ± 0.1 2.5 ± 0.2 27.6 ± 2.4 

 

 

 

 

       

 

 

 

Fig. 3. Vertical hydraulic gradient between peat and sand layer. 



Table 2. Chemical parameters measured in peat groundwater. Grey parts represent the 

high water period ranging from October to May. 

Eh (mV/ESH) 

 

Referenc

e site R 

4/8/200

3 

6/16/200

3 

12/2/200

3 

3/16/200

4 

5/4/200

4 

9/21/200

4 

11/8/200

4 

1/4/200

5 

3/1/200

5 

Mea

n 

Std. 

Dev. 

Mean 

high 

water

s 

Mean 

low 

water

s 

R2 87 137 653 677 610 289 602 665 550 474 237 626 171 

R3 16 107 510 508 463 264 418 522 519 370 194 490 129 

R4 48 89 482 499 491 265 387 515 447 358 181 470 134 

R6 159 163 400 417 463 299 352 470 504 359 128 434 207 

(R2–R6 from the stream to the peat) 390 187 505 160 

Pumping site P 

P8 294 184 368 397 446 325 365 479 459 369 93 419 268 

P4 134 157 433 419 465 319 333 472 487 358 134 435 203 

P2 237 196 433 375 485 427 474 607 544 420 134 486 287 

(P8–P2 from the stream to the pumping station) 382 120 447 253 

pH (pH units) 

Reference 
site R 

4/8/200
3 

6/16/200
3 

12/2/200
3 

3/16/200
4 

5/4/200
4 

9/21/200
4 

11/8/200
4 

1/4/200
5 

3/1/200
5 

Mean 
Std. 
Dev. 

Mean 

high 

waters 

Mean 

low 

waters 

R2 5.7 5.9 3.3 4.2 3.6 4.9 4.3 4.0 4.2 4.5 0.9 3.9 5.5 

R3 6.2 6.2 6.3 6.1 5.8 5.9 6.5 6.2 5.8 6.1 0.2 6.1 6.1 

R4 6.6 6.1 6.3 6.4 6.1 6.0 6.6 6.6 6.4 6.3 0.2 6.4 6.2 

R6 6.3 6.4 6.4 6.5 6.4 6.1 6.7 6.8 6.5 6.5 0.2 6.6 6.3 

(R2–R6 from the stream to the peat) 5.8 0.9 5.8 6.0 

Pumping site P 

P8 6.9 6.2 6.8 6.9 6.9 6.3 6.9 6.7 6.6 6.7 0.3 6.8 6.5 

P4 6.4 5.8 6.4 6.5 6.8 6.4 6.4 6.6 6.5 6.4 0.3 6.5 6.2 

P2 6.7 6.5 6.3 6.8 6.8 4.3 5.5 4.9 4.8 5.8 1.0 5.9 5.8 

(P8–P2 from the stream to the pumping station) 6.3 0.7 6.4 6.2 

DOC (mg/L) 

Reference 

site R 

4/8/200

3 

6/16/200

3 

12/2/200

3 

3/16/200

4 

5/4/200

4 

9/21/200

4 

11/8/200

4 

1/4/200

5 

3/1/200

5 
Mean 

Std. 

Dev. 

Mean 
high 

waters 

Mean 
low 

waters 

R2 70 64 16 21 25 29 21 28 36 34 19 24 54 

R3 99 88 71 54 49 48 51 48 43 61 20 53 78 

R4 111 105 97 84 78 81 85 77 69 87 14 82 99 

R6 97 94 89 77 71 66 67 69 65 77 13 73 86 

(R2–R6 from the stream to the peat) 65 26 58 79 

Pumping site P 

P8 27 23 23 19 16 10 14 23 15 19 6 18 20 

P4 67 63 55 47 21 39 45 43 39 47 14 42 56 

P2 53 54 57 36 15 14 32 10 9 31 20 26 40 

(P8–P2 from the stream to the pumping station) 32 18 29 39 

Cl (mg/L) 

Reference 

site R 

4/8/200

3 

6/16/200

3 

12/2/200

3 

3/16/200

4 

5/4/200

4 

9/21/200

4 

11/8/200

4 

1/4/200

5 

3/1/200

5 
Mean 

Std. 

Dev. 

Mean 

high 
waters 

Mean 

low 
waters 

R2 21 22 25 23 21 20 22 27 23 23 2 23 21 

R3 18 18 17 15 17 13 13 15 14 16 2 15 16 

R4 15 15 15 14 17 14 15 18 18 16 2 16 15 

R6 18 18 22 17 21 16 17 19 18 18 2 19 17 

(R2–R6 from the stream to the peat) 18 3 18 17 

Pumping site P 



Eh (mV/ESH) 

 

Referenc

e site R 

4/8/200

3 

6/16/200

3 

12/2/200

3 

3/16/200

4 

5/4/200

4 

9/21/200

4 

11/8/200

4 

1/4/200

5 

3/1/200

5 

Mea

n 

Std. 

Dev. 

Mean 

high 

water

s 

Mean 

low 

water

s 

P8 34 34 32 32 34 29 29 32 31 32 2 32 32 

P4 39 38 40 38 39 33 34 39 38 38 2 38 37 

P2 21 21 24 23 23 19 19 22 21 21 2 22 20 

(P8–P2 from the stream to the pumping station) 30 7 31 30 

NO3 (mg/L) 

Reference 
site R 

4/8/200
3 

6/16/200
3 

12/2/200
3 

3/16/200
4 

5/4/200
4 

9/21/200
4 

11/8/200
4 

1/4/200
5 

3/1/200
5 

Mean 
Std. 
Dev. 

Mean 

high 

waters 

Mean 

low 

waters 

R2 0.0 0.0 26.0 14.0 0.0 0.0 16.0 9.0 5.6 7.8 9.3 11.8 0.0 

R3 0.0 0.0 9.0 12.5 13.5 3.5 16.3 15.5 13.0 9.3 6.5 13.3 1.2 

R4 0.0 0.0 16.0 18.0 22.0 2.0 20.0 24.0 23.0 13.9 10.2 20.5 0.7 

R6 4.0 0.0 6.0 27.0 33.0 5.0 3.0 33.5 34.0 16.2 15.1 22.8 3.0 

(R2–R6 from the stream to the peat) 11.8 10.8 17.1 1.2 

Pumping site P 

P8 0.0 3.3 14.4 14.7 15.3 6.0 13.4 13.7 14.2 10.6 5.8 14.3 3.1 

P4 0.0 0.0 10.6 10.8 11.3 7.0 8.8 12.6 11.0 8.0 4.8 10.8 2.3 

P2 0.0 0.0 7.5 11.2 12.1 1.4 0.6 4.0 6.2 4.8 4.7 6.9 0.5 

(P8–P2 from the stream to the pumping station) 7.8 5.5 10.7 2.0 

SO4 (mg/L) 

Reference 

site R 

4/8/200

3 

6/16/200

3 

12/2/200

3 

3/16/200

4 

5/4/200

4 

9/21/200

4 

11/8/200

4 

1/4/200

5 

3/1/200

5 
Mean 

Std. 

Dev. 

Mean 

high 

waters 

Mean 

low 

waters 

R2 169 138 1171 481 386 500 482 304 243 430 309 511 269 

R3 152 125 89 104 132 164 153 162 162 138 27 134 147 

R4 66 49 33 34 47 60 56 57 61 51 12 48 58 

R6 0 0 1 12 22 9 5 10 16 8 8 11 3 

(R2–R6 from the stream to the peat) 157 223 176 119 

Pumping site P 

P8 127 133 98 101 108 127 106 111 111 113 13 105 129 

P4 35 26 23 29 34 57 51 55 56 41 14 41 39 

P2 20 17 42 115 177 458 485 475 409 244 209 284 165 

(P8–P2 from the stream to the pumping station) 133 144 144 111 

Cl/SO4 (mg/L) 

Reference 

site R 

4/8/200

3 

6/16/200

3 

12/2/200

3 

3/16/200

4 

5/4/200

4 

9/21/200

4 

11/8/200

4 

1/4/200

5 

3/1/200

5 
Mean 

Std. 

Dev. 

Mean 

high 
waters 

Mean 

low 
waters 

R2 0.12 0.16 0.02 0.05 0.05 0.04 0.05 0.09 0.09 0.08 0.05 0.06 0.11 

R3 0.12 0.14 0.19 0.14 0.13 0.08 0.08 0.09 0.09 0.12 0.04 0.12 0.11 

R4 0.23 0.31 0.45 0.41 0.35 0.23 0.27 0.31 0.30 0.32 0.08 0.35 0.26 

R6 
  

30.71 1.42 0.95 1.78 3.15 1.86 1.10 5.85 
10.9

9 
6.53 1.78 

(R2–R6 from the stream to the peat) 1.34 5.23 1.77 0.32 

Pumping site P 

P8 0.26 0.26 0.33 0.32 0.31 0.23 0.27 0.29 0.28 0.28 0.03 0.30 0.25 

P4 
 

1.45 1.72 1.32 1.15 0.58 0.67 0.71 0.68 1.04 0.43 1.04 1.02 

P2 1.03 1.25 0.58 0.20 0.13 0.04 0.04 0.05 0.05 0.37 0.47 0.17 0.77 

(P8–P2 from the stream to the pumping station) 0.5 
   

 



Table 3. Chemical parameters measured in the stream and precipitations. 

Stream 4/8/2003 6/16/2003 12/2/2003 3/16/2004 5/4/2004 9/21/2004 11/8/2004 1/4/2005 3/1/2005 

Mean 

high 

waters 

Mean 

low 

waters 

Eh (mv/ESH) 
  

448 427 370 318 347 429 438 410 318 

pH (Ph units) 7.5 8.7 7.1 7.1 7 6.9 7.3 7 6.7 7.0 7.7 

DOC 3.5 4.6 19.4 7.2 10.8 2.9 4.9 8.1 10.5 10.2 3.7 

Cl (mg/L) 37.9 38.3 36.9 37.9 34.7 34.2 37.8 37.4 36.6 36.9 36.8 

NO3 (mg/L) 19.5 17 12.8 18.4 16 23 14.6 16.9 22.8 16.9 19.8 

SO4 (mg/L) 19.6 17.9 41.2 24.8 24.6 18.4 23.1 26.3 21.3 26.9 18.6 

Precipitations 4/8/2003 6/16/2003 12/2/2003 3/16/2004 5/4/2004 9/21/2004 11/8/2004 1/4/2005 3/1/2005 

Mean 

high 

waters 

Mean 

low 

waters 

Eh (mv/ESH) 367 400                   

pH (Ph units) 7.4 7 6.7       7.3         

DOC 4.2 4.2 5.8       0         

Cl (mg/L) 10.3 6.4   4.4 9.3 5.7 19.2 17.1 10.7 12.1 7.5 

NO3 (mg/L) 4.8 6.2   2.1 11.4 7.8 7.6 5.7 5.8 6.5 6.3 

SO4 (mg/L) 4.2 5   1.5 4.1 3.1 3.9 3.7 4.3 
  

 



 

 

 

Fig. 4. Distribution of carbon, chloride, nitrate (a) and sulphate (b) concentrations measured in peat 

groundwater. Black lines represent the q10, q90 and median values, crosses: mean values and 

triangles: minimal and maximal values. 

 



Table 4. Physico-chemical parameters at the end of experiments. 

Sampling Oxygenation condition 

Physico chemical parameters 

 

pH T °C Eh corrected (standard) pε 

Site 

Pumping site P 

Close 

 
Anaerobiosis 5.3 25.8 171 0.300 

 
Aerobiosis 3.7 20.3 179 0.318 

Distant 

 
Anaerobiosis 5 26.9 126 0.219 

  Aerobiosis 4.5 20.3 204 0.363 

Reference site R 

Close 
     

 
Anaerobiosis 6.7 25.6 113 0.198 

 
Aerobiosis 6.1 20.3 208 0.371 

Distant 

 
Anaerobiosis 5.6 25.8 144 0.252 

  Aerobiosis 5.3 20.3 167 0.297 

 



Table 5. Mean chloride, nitrate and sulphate concentrations during the experiments. 

Each concentration represents the mean of three replicates with the standard error. 

Samplin

g sites 

Strea

m 

distanc

e 

Oxygenati

on 

conditions 

Chloride concentrations 

(mg L−1) 

 

Nitrate concentrations 

(mg L−1) 

 

Sulphate concentrations 

(mg L−1) 

 

   
At 0 h At 50 h At 215 h At 0 h At 50 h At 215 h At 0 h At 50 h At 215 h 

Pumpin

g Site P 

Close 
Anaerobios

is 

40.0 ± 2.

5 

44.9 ± 1.

8 

46.1 ± 3.

6 

26.4 ± 1.

9 

24.7 ± 1.

8 
0.1 ± 1.2 

137.9 ± 22

.3 

194.6 ± 17

.2 

215.7 ± 19

.2 

 
Aerobiosis 

38.6 ± 1.
1 

54.7 ± 14
.2 

52.5 ± 4.
6 

27.1 ± 0.
7 

38.9 ± 10
.4 

2.6 ± 1.9 
100.6 ± 21
.1 

152.7 ± 60
.5 

477.8 ± 37
.6 

Distant 
Anaerobios

is 

37.6 ± 1.

4 

43.7 ± 1.

4 

41.2 ± 4.

2 

25.5 ± 0.

8 

29.0 ± 1.

6 
0.0 ± 0.1 41.1 ± 5.3 67.5 ± 3.9 75.1 ± 1.0 

 
Aerobiosis 

36.0 ± 1.

6 

46.2 ± 6.

9 

49.2 ± 3.

1 

25.1 ± 2.

0 

29.4 ± 0.

6 

37.1 ± 3.

5 
43.2 ± 1.8 63.7 ± 4.3 78.4 ± 1.4 

Referen

ce site R 

Close 
Anaerobios
is 

41.0 ± 0.
7 

44.9 ± 1.
6 

46.1 ± 1.
3 

43.4 ± 1.
6 

40.2 ± 0.
1 

0.0 ± 0.0 3.9 ± 0.5 7.1 ± 0.6 13.0 ± 1.0 

 
Aerobiosis 

39.7 ± 1.

5 

54.7 ± 1.

9 

52.5 ± 3.

9 

38.4 ± 0.

9 

44.6 ± 3.

8 

20.3 ± 11

.2 
3.1 ± 0.4 5.6 ± 0.2 19.5 ± 3.8 

Distant 
Anaerobios

is 

36.9 ± 0.

1 

43.7 ± 0.

7 

41.2 ± 0.

4 

29.1 ± 0.

4 

29.7 ± 0.

6 
0.0 ± 0.0 22.1 ± 1.5 33.5 ± 0.4 39.7 ± 0.5 

 
Aerobiosis 

35.2 ± 0.
2 

46.2 ± 7.
4 

49.2 ± 0.
34 

29.2 ± 0.
3 

31.4 ± 5.
8 

12.5 ± 1.
3 

20.7 ± 1.5 
  

 



 

 

Fig. 5. Temporal deviation of nitrate and sulphate from initial concentration over time in peat samples 

under aerobic and anaerobic conditions in batch experiments. The values given for each sample 

correspond to the mean of the three replicates. The temporal variation is expressed as the difference 

from the zero concentration (see Section 3.3 statistical analysis). Bars indicate standard deviation. 

Only experiments with nitrate addition are represented. 



 

 

Fig. 6. Variation in sulphate concentrations over time in peat samples under aerobic and anaerobic 

conditions in batch experiments. Values given for each sample correspond to the mean of the three 

replicates. Bars indicate standard deviation. 



 

Fig. 7. Comparison of biotic and abiotic changes according to nitrate and sulphate concentrations 

throughout the batch experiment. Data correspond to experiments using samples distant from the 

stream. 



Table 6. Effects of experimental and site parameters on batch variation. The results of 

GLM (P-values and significance) for nitrate ( ), chloride (Cl
−
) and sulphate (

) concentrations are presented. * ‘treatment’ represents nitrate input and 

oxygenation condition; ‘time’ represents different times of sampling; ‘site’ represents 

the two sampling sites and distance represents the proximity to and distance from the 

stream. 

Source DF 
P-values 

 

   

 

Cl
−
 

Treatment
*
 3 1.09 × 10

−233***
 2.217 × 10

−69**
 – 

Time* 3 1.64 × 10
−56***

 0
***

 3.99 × 10
−26***

 

Site* 1 3.42 × 10
−15***

 0
***

 1.68 × 10
−2*

 

Distance* 1 0.01** 0
***

 8.82 × 10
−4**

 

DF = degrees of freedom. 

* 

Z < 0.05. 

** 

Z < 0.001. 

*** 

Z < 0.0001. 

 


