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Abstract In order to investigate the effect of carbonate-content in partial melt on bulk 11 

conductivity under high pressure, electrical conductivity measurements were performed 12 

on carbonate melt-bearing peridotites using a Kawai-type multi-anvil apparatus. The 13 

starting materials were composed of spinel lherzolite (KLB1) with small amounts of 14 

dolomite (1 and 3 wt.%). To obtain various melt fractions, annealing experiments were 15 

performed at different temperatures above 1400 K at 3 GPa. At low temperatures (≤ 16 

1500 K), the conductivity was distinctly higher than that of carbonate-free peridotite 17 

and close to that of the carbonatite melt-bearing olivine aggregates. Although the 18 

sample conductivity increased with increasing temperature, the rate at which the 19 

conductivity increases was small and the conductivity approached that of silicate melt-20 

bearing peridotite. CO2 concentration in the partial melt decreased with increasing 21 

annealing temperature. Thus, the small increase of the conductivity with annealing 22 

temperature is attributed to a decrease of the melt conductivity due to a decrease in 23 
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carbonate content in the partial melt. As the carbonate concentration in the melt 24 

decreases, the estimated melt conductivity approaches that of the basaltic melt. 25 

Therefore, conductivity enhancement by the carbonate-bearing melt is very effective at 26 

temperature just above that of the carbonate peridotite solidus. 27 

Keywords: Carbonatite; Electrical conductivity; Melt fraction; Peridotite; Upper 28 

mantle 29 

1. Introduction 30 

The high conductivity anomaly in the upper mantle is a general feature 31 

beneath the oceanic lithosphere as observed by electromagnetic surveys (e.g., Lizarralde 32 

et al., 1995; Evans et al., 2005; Baba et al., 2006). There are two major candidates for 33 

what causes the raising of the conductivity in that region: partial melt and hydration of 34 

nominally anhydrous minerals (e.g., Tyburczy and Waff, 1983; Karato, 1990). However, 35 

the electrical conductivity of hydrous olivine is not high enough to explain the 36 

conductivity anomaly at the top of the asthenosphere (Yoshino et al., 2006; 2009a; Poe 37 

et al., 2009). Recently Gaillard et al. (2008) proposed that a very small amount of 38 

carbonatite is an attractive agent for generating the conductivity anomaly based on the 39 

conductivity measurement of carbonate melts at atmospheric pressure. Later research 40 

showed the conductivity measurement of carbonate melt-bearing olivine aggregates at 3 41 

GPa had an order of magnitude higher conductivity than the silicate melt-bearing 42 

olivine aggregates for the same melt fraction (Yoshino et al., 2010). In addition, carbon 43 

in peridotite can significantly reduce the solidus temperature (e.g., Falloon and Green, 44 

1989; Dasgupta and Hirschmann, 2006). Thus the presence or absence of carbonatite 45 

melt will affect the estimation of mantle temperature from the conductivity structure of 46 

the upper mantle obtained from geophysical surveys. 47 
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Yoshino et al. (2010) reported on the effect of carbonatitic partial melt with 48 

higher carbon concentration on the bulk conductivity. However, partial melts of 49 

carbonate-bearing mantle peridotites may have variable carbonate concentrations under 50 

a wide range of mantle conditions. Thus, to assess conductivity anomalies in the upper 51 

mantle, we need to know the effect of the carbonate component in partial melt on the 52 

bulk conductivity of the partially molten peridotite under high pressure. In this study, 53 

we determined the electrical conductivities of carbonate-bearing peridotite with variable 54 

melt fractions. A variation of melt fractions was obtained by annealing under different 55 

temperature conditions. Since we used starting materials with a fixed carbonate 56 

concentration, the variation in the degree of partial melting can provide the variation in 57 

carbonate concentration in the partial melt. In addition, we measured conductivity of 58 

dolomite melt in order to constrain the absolute conductivity and activation enthalpy of 59 

carbonate melt at high pressure. The electrical conductivity of carbonate-bearing melt 60 

was estimated as a function of CO2 concentration in the melt. We obtained CO2 61 

concentration dependence of electrical conductivity by comparing the data obtained 62 

from our previous results, in which the conductivity was obtained for the partial molten 63 

carbonate peridotite with fixed CO2 concentration in melt. Such an argument provides 64 

the constraints on the presence of carbonate partial melt and on the thermal structure of 65 

the upper mantle. 66 

2. Experimental Methods 67 

Starting materials were powder mixtures of natural spinel lherzolite (KLB1) 68 

with 1 and 3 wt. % natural dolomite from Austria, which have approximately 0.5 and 69 

1.5 wt.% bulk CO2, respectively. For one experiment, a powder of the KLB1 without 70 

dolomite was used as a starting material to investigate the effect of carbonate on 71 

electrical conductivity. Dolomite powder was also used as a starting material to measure 72 

conductivity of dolomite melt. The particle size of the powder was less than a few 73 
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micrometers. The powdered sample was encapsulated in a cylindrical MgO sleeve and 74 

was sandwiched by two graphite electrodes in contact with two sets of W97Re3-W75Re25 75 

thermocouples. Two sets of thermocouples were also used for the four-pole resistance 76 

method of electrical conductivity measurement. The design of the cell assembly is the 77 

same as that given in Yoshino et al. (2010). 78 

Conductivity measurement with impedance spectroscopy was carried out using a 79 

Solartron 1260 impedance Gain-Phase Analyzer combined with a Solartron 1296 80 

interface. Complex impedances were obtained at frequencies ranging from 0.1 Hz to 1 81 

MHz and applied voltages of 1 or 1.41 V. We applied the pseudo 4-pole electrode 82 

system to the conductivity measurement, because the resistance of the electrode and 83 

long metallic wires (thermocouple) can be comparable to that of the highly conductive 84 

melt (Pommier et al., 2010). 85 

Conductivity measurements were conducted through several heating-cooling 86 

cycles at 3 GPa in a Kawai-type multianvil press. The temperature was increased and 87 

decreased in steps of 25-50 K to the desired temperature. Impedance spectra were 88 

obtained at each temperature step. Firstly the sample was heated and held at 1000 K to 89 

dehydrate the sample and the surrounding materials. Then the sample was heated to the 90 

desired temperature, which is above the solidus of carbonate-bearing peridotite (~1350 91 

K at 3 GPa: Dasgupta and Hirschmann, 2006). To achieve textural equilibrium of the 92 

solid-liquid composites, the samples were annealed at the desired temperature, by 93 

continuous monitoring of electrical conductivity, until the sample conductivity became 94 

constant. After annealing, the sample was cooled to less than 1000 K. Subsequent 95 

heating cycles using step-wise temperature increments were also conducted to confirm 96 

reversibility. In order to retain the partial molten texture, the sample was quenched from 97 

the highest temperature to ambient temperature. 98 
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Retrieved samples were mounted in epoxy and ground parallel to the axis of 99 

the cylindrical heater. The chemical compositions of the carbonate and silicate phases in 100 

the recovered sample were obtained using electron microprobe analyzer (EPMA). The 101 

carbonate (CO2) concentration in the melt was predicted from the total weight deficit of 102 

the EPMA data (Table 2). However, the near-solidus partial melt composition could not 103 

be determined because of its small size (< 1µm). The microstructure on the polished 104 

section of the run products was observed by secondary electron and back-scattered 105 

electron images (BEI) using a field-emission scanning electron microscope (FE-SEM). 106 

The melt fraction of the samples was determined from the image analysis after the 107 

experiments (for detail, see Yoshino et al. (2005)). 108 

3. Results 109 

3.1. Texture and chemical composition 110 

The melt fraction of carbonate-bearing peridotite increased with increasing the 111 

annealing temperature (Table 1), whereas the carbonate-free peridotite annealed at 1700 112 

K showed the absence of a melt phase. Microstructures on the polished section are 113 

shown in Fig. 1. Carbonate-bearing melt was located at the triple junction of the olivine 114 

and pyroxene crystals (Fig. 1a-c). As the melt fraction increased, the melt completely 115 

surrounded the olivine crystals on the polished section (Fig. 1d). The apparent dihedral 116 

angle was around 20˚, which implies a three-dimensional interconnection of the melt 117 

network. Infiltration of the melt into the MgO capsule was not observed for all run 118 

products. Partial melt was homogeneously distributed in the center of the sample, 119 

whereas the melt-less olivine layer was also developed adjacent to the MgO container 120 

with a thickness of less than 100 µm. Forsterite content (Fo96) in the olivine adjacent to 121 

the MgO container was relatively higher because of iron loss from the sample to the 122 

MgO capsule. The samples showed relatively homogeneous distribution of the melt, and 123 

therefore we believe the measured conductivity values should represent the whole part 124 
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of the partially molten zone. As mentioned above, the outer part of the sample had less 125 

iron contents. The sample conductivity of the uncontaminated part of the sample should 126 

be slightly higher than the obtained value (less than 10 %). 127 

For the 3 wt.% dolomite-bearing peridotite system, the dolomite completely 128 

decomposed below 1600 K. Orthopyroxene disappeared because of a decarbonation 129 

reaction such as MgSiO3 (in orthopyroxene) + MgCO3 (in dolomite) = Mg2SiO4 (in 130 

olivine) + CO2. Clinopyroxene was present up to 1700 K, although by volume the 131 

proportion of clinopyroxene decreased with increasing temperature. The carbonate 132 

concentration (CO2) in the partial melt of the samples decreased from 45 to 13 wt.% 133 

with increasing melt fraction from 0.02 to 0.2 (Tables 1 and 2). In the case of the KLB1 134 

+ 1 wt.% dolomite system, the CO2 concentration in melt decreased to 5 wt.% when the 135 

melt fraction was 0.20. We were not able to measure the melt composition accurately 136 

for samples containing the lowest melt fraction (≤ 1 vol.%) using the electron 137 

microprobe. However, the carbonate component of the sample is usually expected to be 138 

40 wt.% just above the solidus (Dasgupta et al., 2007). Thus the CO2 concentration in 139 

the partial melt largely decreased with increasing annealing temperature and melt 140 

fraction. The CO2 concentrations in the melt estimated by EPMA were slightly higher 141 

than those expected from the bulk composition. For example, when we assume that all 142 

carbons partition into the melt phase, and the densities of the carbonate and basaltic 143 

melt range from 2 to 2.7 g/cm3 (e.g., Dobson et al., 1996; Rigden et al., 1986), the 144 

KLB1 + dolomite 3 wt.% system with 20 vol.% melting requires around 10 wt.% CO2 145 

concentration in the partial melt. The CO2 concentrations in the melt were increased by 146 

partial solidification of the melt due to reaction with the MgO capsule. 147 

3.2. Electrical conductivity 148 

The impedance spectra generally show one arc at higher frequencies and an 149 

additional part appearing at lower frequencies (Fig. 2). If the melt phase is 150 
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interconnected in a solid matrix, it forms an electrical pathway in parallel to the solid 151 

matrix (Roberts and Tyburczy, 2000). Thus the high-frequency arc reflects the sample 152 

properties, and the low frequency tail is accordingly interpreted as an effect of the 153 

electrodes. Therefore, only the first arc was used to determine the conductivity of the 154 

sample. As shown in Fig. 2b, the impedance spectra were sometimes observed to 155 

contain a predominantly inductive reactance (inductive loop) possibly due to the mass 156 

transport and electrochemical reaction at the electrode interface (Hampton et al., 1980; 157 

van Hassel et al., 1991). However, errors in conductivity values created by the induction 158 

component are small (less than 10 %), and therefore we reserve a detailed argument on 159 

the inductive component. 160 

Fig. 3 shows the conductivity of dolomite up to 1800 K in Arrhenian plot. In the 161 

first heating, the conductivity largely increased by nearly two orders of magnitude at 162 

1300 K and then increased by one order of magnitude at 1500 K. Above 1600 K, an 163 

increase of conductivity with temperature became small. After annealing at 1800 K, the 164 

conductivity slightly decreased with decreasing temperature. The high conductivity 165 

values (10 S/m) were retained even after cooling below the melting temperature. Above 166 

1500 K the good linear relation in Arrhenius plot was observed. Conductivity-167 

temperature relationships were determined from Arrhenian fits to the data for each 168 

sample 169 

    
σ = σ0 exp −

H
kT

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟  (1) 170 

where k is the Boltzmann constant and T is temperature in K. Activation enthalpies (H) 171 

and pre-exponential terms (σ0) resulting from fitting Eq. (1) to the data are listed in 172 

Table 1. The calculated activation enthalpy for electrical conduction in dolomite melt is 173 

38 kJ/mol, which is slightly higher than the values (30–35 kJ/mol) reported from 174 

Gaillard et al. (2008). The pre-exponential factor (σ0) for electrical conduction in 175 
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dolomite melt is 1343 S/m, which is lower than the values (3440 S/m) reported from 176 

Gaillard et al. (2008). Therefore, the absolute conductivity value of the dolomite melt 177 

was slightly lower than those of alkali carbonate melt [KCa0.5]2(CO3)2, 178 

(NaKCa0.5)2(CO3)3, (NaKCa)(CO3)2, (NaK)2(CO3)2, and (LiNaK)2(CO3)3] reported by 179 

Gaillard et al. (2008). 180 

An example of the conductivity measurements for the partial molten system is 181 

shown in Fig. 4a. The conductivity values were initially high and rapidly decreased 182 

during annealing at 1000 K because of the dehydration of surrounding materials. In the 183 

second heating, the conductivity largely increased by nearly two orders of magnitude up 184 

to 1100 K. This temperature is consistent with the temperature at which the conductivity 185 

of Ca-rich carbonate abruptly increases during heating (e.g. Gaillard et al., 2008). 186 

Above 1200 K, the conductivity slightly increased with increasing temperature up to 187 

1500 K. At the beginning of annealing at 1500 K, the sample conductivity rapidly 188 

decreased and then became constant within 2 hours, similar to our previous studies 189 

(Yoshino et al., 2010). At the beginning of partial melting, the powder with large 190 

porosity was instantaneously filled with melt. Therefore, the conductivity was initially 191 

high. As the system established textural equilibrium during annealing, some pores were 192 

closed to minimize the total interfacial energy in the system. This process led to the 193 

reduction of the bulk conductivity of the sample. The impedance spectra showed part of 194 

a semicircular shape at higher frequencies, suggesting that the conductive phase forms 195 

an electrical pathway parallel to the solid matrix, and an additional part derived from 196 

electrode reaction at the interface between the sample and electrode at lower 197 

frequencies (Fig. 2). In the cooling path, the electrical conductivity decreased with 198 

decreasing temperature. The temperature-conductivity path in the Arrhenius plot 199 

showed linear trends with some different slopes, suggesting the conduction mechanism 200 

changes in a certain temperature range. In the subsequent heating path, the 201 

reproducibility was confirmed. 202 
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In the third heating, the conductivity values at the highest temperature were 203 

identical to those just after the annealing for a few hours at the same temperature in the 204 

second heating (Fig. 4a). The samples were quenched from the highest temperature to 205 

obtain the partial molten texture of the final state. The conductivity values shown in 206 

Table 1 were obtained just before quenching. Therefore, the sample texture and the 207 

conductivity values represent the same condition as the second heating. Fig. 5 shows a 208 

plot of the conductivity values at the maximum temperature and melt fraction against 209 

the highest temperature experienced for each sample. The electrical conductivity of the 210 

partial molten sample generally increased with increasing temperature. The melt 211 

fraction increased from 0.01 to 0.20 in the investigated temperature range from 1400 to 212 

1700 K. 213 

Fig. 4b shows the logarithmic plot of conductivity versus reciprocal temperature 214 

for the KLB1 + dolomite 3 wt.% system in the second cooling path. The electrical 215 

conductivity of the carbonate-bearing peridotite is distinctly higher than that of 216 

carbonate- and melt-free peridotite, which is similar to that of olivine (Constable 2006; 217 

Yoshino et al., 2006; 2009). The samples annealed at higher temperatures showed lower 218 

conductivity values at the same temperature, and larger temperature dependence 219 

compared with the sample annealed at lower temperatures. Although samples have the 220 

same bulk composition, the fact that the cooling paths in the Arrhenius plot are largely 221 

different suggests that the chemical composition of the melt phase did not change 222 

significantly during cooling. In other words, chemical equilibrium in the system was 223 

established at the highest temperature, but not held during cooling. The activation 224 

enthalpy for electrical conductivity of carbonate melt is smaller than those of silicate 225 

melts (e.g., Presnall et al., 1972; Gaillard et al., 2008). A small temperature dependence 226 

on the conductivity of samples annealed at lower temperature was quite similar to that 227 

of dolomite end member, suggesting that carbonate concentration in the melt was 228 

relatively high. This trend is consistent with a variation of the carbonate concentration 229 
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in the partial melt determined by the weight deficiency of the microprobe analysis 230 

(Table 2).  231 

4. Discussion 232 

4.1. Relationship between conductivity and melt fraction 233 

Carbonate-bearing melts have high wetting properties (e.g., Hunter and 234 

McKenzie, 1989; Minarik and Watson, 1995; Hammouda and Laporte, 2000). The 235 

previous works which determined dihedral angle of olivine-basalt and olivine-236 

carbonatite systems have shown similar values (20~30˚), which is much less than a 237 

critical value (60˚) for interconnection (Hunter and McKenzie, 1989; Waff and Bulau, 238 

1979; Yoshino et al., 2009b). Partial melt should form interconnected liquid networks at 239 

olivine grain boundaries even at very low-volume fractions and should therefore 240 

contribute to the bulk rock conductivity. Thus, a large change of melt connectivity with 241 

melt fraction is not expected in the present system. If there was no threshold for the 242 

interconnection, a relationship between conductivity (σbulk) and melt fraction (φ) can be 243 

expressed by mixing models such as Hashin-Shtrikman upper bound. The previous 244 

studies of the partial molten system with the constant melt composition demonstrated a 245 

linear relationship in the log σ - log φ plot, which is known as the Archie's law (Archie, 246 

1942). Archie's relationship can be expressed as follows: 247 

    σ bulk = Cφ nσ m   (2) 248 

where C and n are constants (e.g., Watanabe and Kurita, 1993). The power exponent in 249 

Archie’s relation should be close to unity for partial molten rocks with well-250 

interconnected melt geometry and the constant melt composition (Watanabe and Kurita, 251 

1993; ten Grotenhuis et al., 2005; Yoshino et al., 2010). The exponent close to unity is 252 
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also valid for the other mixing models in the system containing the well-interconnected 253 

phase. 254 

In this study, the melt fraction in the sample changes with temperature under the 255 

constant bulk CO2 composition (Fig. 6). The conductivity of the bulk rock increases 256 

with increasing melt fraction in this study, which is in the same tendency with that in 257 

the previous study, where CO2 concentration is constant not in the bulk rock but in the 258 

melt (Yoshino et al., 2010). However, an increase of conductivity values with melt 259 

fraction in this study is smaller than that in the previous study. The present system 260 

yields much smaller exponent for Eq. (2), namely n = 0.58. In addition, the conductivity 261 

values of dolomite melt, which is an end member of this system, does not agree with the 262 

extrapolated trend (Fig. 6). 263 

The Archie’s law is only applicable to the system with constant melt 264 

conductivity. Thus, the “apparent” low power exponent (n = 0.58) obtained in this study 265 

contains information about variation in melt conductivity with melt fraction. There are 266 

two factors to vary the melt conductivity. One is temperature and the other is the CO2 267 

concentration in the partial melt. First we consider thermal effect. The melt conductivity 268 

generally increases with increasing temperature followed by Arrhenian relation. If we 269 

consider the sample conductivity at 1700 K in order to directly compare the results of 270 

our previous study (Yoshino et al., 2010), the power exponent would be much smaller 271 

than 0.58, because the conductivity measured at lower temperature is relatively higher 272 

than that determined at higher temperature. Such a low exponent value (< 0.58) further 273 

increases the deviation from that (~1) expected from the partial molten rocks with a 274 

constant melt composition. Therefore, temperature is not controlling factor. 275 

Next we consider the effect of melt composition on the “apparent” low power 276 

exponent. Gaillard et al. (2008) reported that carbonate melt has a distinctly higher 277 

electrical conductivity than silicate melt. In the carbonate-bearing peridotite system, the 278 
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conductivity of the partial melt is expected to be controlled by the CO2 content in the 279 

partial melt. In general, carbonatitic partial melts containing ~40 wt.% CO2 are stable 280 

only in a limited temperature range above the solidus (Dalton and Presnall, 1998; 281 

Gudfinnsson and Presnall, 2005; Dasgupta and Hirschmann, 2006; 2007; Dasgupta et 282 

al., 2007). As the temperature approaches to the carbonate-free dry peridotite solidus 283 

temperature, the reaction of carbonatite melts with silicate minerals in peridotite 284 

produces carbonated silicate melts with a lower CO2 concentration (Moore and Wood, 285 

1998; Dalton and Presnall, 1998; Gudfinnsson and Presnall, 2005; Dasgupta et al., 286 

2007). For example, Dasgupta et al. (2007) showed that the transition from carbonatite 287 

(40 wt.% CO2) to carbonated silicate melt (≤ 25 wt.% CO2) in carbonate-bearing 288 

peridotiteat 3 GPa occurs abruptly at 1623 K. This study also showed that the CO2 289 

content in the partial melt is even lower at higher temperatures (~13 wt.% CO2 at 1700 290 

K). Our measurement demonstrated that, at low melt fraction (~1 vol. %), the 291 

conductivity values are similar to those of the olivine-carbonatite system (at 1650 K), 292 

whereas at higher melt fraction (> 10 vol.%), the conductivity values are rather closer to 293 

those of the olivine-basalt system measured at 1.5 GPa (Yoshino et al., 2010). Thus the 294 

expected trend of the conductivity-melt fraction of the present system approaches to that 295 

of the olivine-carbonatite (40 wt.% CO2) and the olivine-basalt trends at lower (< 0.3 296 

vol.%) and higher (> 10 vol.%) melt fractions, respectively. As a result the small n 297 

value obtained in the investigated range of melt fraction can be attributed to the 298 

decrease of conductivity with carbonate content in the melt by increasing the annealing 299 

temperature. 300 

4.2. Estimation of liquid conductivity as a function of carbonate content 301 

We next estimate the electrical conductivity of the carbonate-bearing melt itself 302 

as a function of the CO2 concentration in the melt to compare it directly with melts with 303 
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various CO2 concentrations at constant temperature (1700 K). To do this, we made the 304 

following two simple assumptions: 305 

1) Electrical conductivity of the partial melt is proportional to the melt fraction. 306 

For example, when the bulk conductivity of the sample with 10 vol.% melt fraction is 307 

10 S/m, the melt conductivity can be calculated as 100 S/m. This assumption can be 308 

justified since the power exponent n in Eq. (2) for partially molten rocks has a value 309 

close to unity (Watanabe and Kurita, 1993; Roberts and Tyburczy, 2000; ten Grotenhuis 310 

et al., 2005; Yoshino et al., 2010). In addition, if a difference between solid and melt 311 

conductivities exceeds 3 orders of magnitude, the exponent estimated from the Hashin-312 

Shtrikman upper bound, which is frequently used for the melt-bearing system, yields 313 

approximately unity for a case that melt fraction is above 0.01. 314 

2) The effect of temperature on the conductivity of the melt is controlled by the 315 

activation enthalpy for electrical conductivity of the melts. The activation enthalpy of 316 

dolomite melts was 38 kJ/mol at 3 GPa. On the other hand, the average activation 317 

enthalpies of basaltic melt are more than three times higher (110-150 kJ/mol) (Tyburczy 318 

and Waff, 1983; Gaillard and Marziano, 2005). Thus, the temperature dependence of 319 

the conductivity of the carbonate melts is much smaller than that of silicate melts. Since 320 

silicate melts are likely to polymerize as the SiO2 component in the melt increases, its 321 

activation enthalpy would increase with the increasing SiO2 component in the carbonate 322 

melt. In the present study, the CO2 concentration in the melt varies considerably. 323 

Therefore, the activation enthalpy is expected to gradually increase with decreasing CO2 324 

concentration in the melt, because there is a negative-correlation between the SiO2 and 325 

CO2 concentrations in the carbonate melt (Table 2). 326 

The calculation scheme was as follows. First of all, the absolute conductivity 327 

values of melt at temperature we measured were calculated based on the first 328 

assumption that conductivity is proportional to melt fraction. To compare the 329 
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conductivity for each carbonate melt at constant temperature, the Arrhenian relation (Eq. 330 

1) was used. The pre-exponential factors (σ0) for each carbonate melt were calculated 331 

from the present data for two fixed activation enthalpies (38 and 150 kJ/mol), because 332 

once the activation enthalpy is assumed, the unknown parameter in Eq. (1) is only σ0. 333 

The calculated parameters are shown in Table 3. The σ0 calculated using high activation 334 

energy (150 kJ/mol) yields higher values. Indeed, the activation enthalpy should change 335 

with the carbonate component in the melt. To estimate more realistic melt conductivity, 336 

the activation enthalpy was assumed to be a linear relation between pure carbonate (38 337 

kJ/mol) and pure silicate melts (150 kJ/mol). Further calculation scheme was the same 338 

as those presented earlier. The used parameters are also shown in Table 3. The 339 

conductivities at 1700 K were calculated from Eq. (1) using the σ0 determined by this 340 

study. 341 

Fig. 7a shows the logarithmic plot of the electrical conductivity of the partial 342 

melt in the KLB1 + dolomite 3 wt.% system as a function of the CO2 concentration in 343 

the melt at 1700 K. Although the log of electrical conductivity was calculated using a 344 

possible range of activation enthalpies, the activation enthalpy for the melt conductivity 345 

with higher CO2 concentration (> 40 wt. %) should be low and close to that of dolomite 346 

melt (38 kJ/mol), whereas that with lower CO2 concentration should be higher and 347 

approach that of silicate melt (110-150 kJ/mol). Considering the effect of the CO2 348 

concentration on activation enthalpy for the melt conductivity, the expected trend of the 349 

electrical conductivity of the carbonate-bearing melt, which is in equilibrium with 350 

peridotite, shows a large decrease of the electrical conductivity below 40 wt.% of CO2 351 

(yellow arrows in Fig. 7a). The extrapolation of the melt conductivity to zero CO2 352 

agrees well with the basaltic melt conductivity (TW83: Tyburczy and Waff, 1983; 353 

KAB: Pommier et al., 2010). A variation of the estimated melt conductivity as a 354 

function of CO2 concentration shows a plateau between 33 and 20 wt.% CO2. If there 355 

exists a threshold for interconnection of chains of silicate tetrahedral in melt, an abrupt 356 
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change of melt conductivity and its activation enthalpy might be present. On the other 357 

hand, the conductivity of the melt with higher CO2 concentration is quite consistent 358 

with that of dolomite melt measured at 3 GPa, which is lower than those of the alkali 359 

carbonate melt determined at atmospheric pressure (Gaillard et al., 2008). One 360 

explanation for this discrepancy between dolomite and alkali carbonate melt is a 361 

negative pressure dependence on the melt conductivity. Although Tyburczy and Waff 362 

(1983) reported a negative pressure effect on silicate melts, which are highly 363 

polymerized, there has been no relevant conductivity data for carbonate melts as a 364 

function of pressure. According to Gaillard et al. (2008), there is a strong correlation 365 

between viscosity and conductivity. However, the viscosity of carbonate melts has little 366 

pressure effect (Dobson et al., 1996). Another explanation is that the carbonatite melt 367 

has a relatively lower conductivity than the carbonate compound composed of alkali 368 

elements such as Na and K measured by Gaillard et al. (2008). 369 

Fig. 7b shows the conductivity enhancement by the carbonate component in the 370 

melt as a function of temperature. The conductivity of carbonate-bearing melt increases 371 

more than an order of magnitude with increasing CO2 concentration in the melt from 13 372 

to 45 wt.%. The effect of the carbonate component in the partial melt becomes 373 

significantly larger with increasing CO2 concentration, especially for higher than 40 374 

wt.% of CO2. As the temperature increases, the conductivity dependence on CO2 375 

becomes smaller because of the much lower activation enthalpies for melts with higher 376 

CO2. It is concluded that the effect of the carbonate melt on the bulk rock conductivity 377 

is larger at relatively lower temperatures. 378 

4.3. Geophysical implications 379 

The present study showed that electrical conductivity in carbonate-bearing 380 

peridotite increases by a limited magnitude with increasing temperature. Only at very 381 

low melt fractions and low temperatures just above the carbonate-bearing peridotite 382 
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solidus, the partial melting is very effective in raising the electrical conductivity of the 383 

upper mantle. Therefore, in this section, we discuss only geological settings in which 384 

the carbonate melt has very high CO2 concentration (> 40 vol. %). Fig. 8 shows the 385 

conductivity-depth profile as a function of the melt fraction of carbonatite based on the 386 

extrapolation of the trend in Fig. 6. In this figure, the temperature and pressure effects 387 

on the conductivity were ignored, because activation enthalpy and volume for electrical 388 

conductivity of carbonate melt are very small (Gaillard et al., 2008). 389 

Dasgupta and Hirschmann (2006) experimentally demonstrated that the solidus 390 

temperature of carbonate peridotite is lower than the upper mantle adiabatic geotherm 391 

below the depth of 330 km. In addition, Hirschmann (2010) predicted that carbonatite 392 

melt can exist below 150 km depth beneath the oceanic lithosphere based on the 393 

thermodynamic model assuming the typical volatile contents (100 wt. ppm for H2O and 394 

60 wt. ppm for CO2). Thus the conductivity anomaly in such a depth region (150~330 395 

km) can be explained by the presence of very small amount of carbonate melt in 396 

peridotite. The deep electrical conductivity profile beneath the northwestern Pacific 397 

from Hawaii to North America, showed a conductivity anomaly of 10-1 S/m at a depth 398 

of 200–250 km (Lizarralde et al., 1995). The conductivity of the partial molten 399 

peridotite with a trace amount of carbonatitic melt should be similar to that of the 400 

olivine-carbonatite system, because the carbonate concentration in the partial melt of 401 

the carbonate peridotite is significantly high when the degree of melting is very low. If 402 

this anomaly originates from the presence of carbonatite melt, the melt fraction can be 403 

estimated to be less than 0.5 vol.% at that depth (Fig. 8). However, only peridotite with 404 

at least 3000 ppm of CO2 could achieve this value from a carbonatite melt with high 405 

CO2 concentration. 406 

A recent one-dimensional (1-D) electrical conductivity model beneath the 407 

Philippine Sea revealed an abrupt increase in the conductivity at around 75 km of the 408 
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upper mantle depths and a constant conductivity at a depth of 75–300km with 409 

approximately 0.03 S/m (Baba et al., 2010). The seismic tomography indicates cold 410 

slabs currently stagnant beneath the region around the Philippine Sea (Fukao et al., 411 

1992). The subducted slab can add carbonate materials through degassing or melting to 412 

the above mantle wedge. The added CO2 or carbonate melt can raise the conductivity in 413 

this region even if the temperature in this region is significantly lower than that in the 414 

surrounding mantle. The conductivity value 0.03 S/m can be explained by a presence of 415 

0.1 vol.% of carbonatitic melt (Fig. 8). Note that the depth of the abrupt increase in the 416 

conductivity (75 km depth) is close to the lower bound of the stabilization of the 417 

carbonate melt  (e.g., Dalton and Presnall, 1998). We suggest that the large decrease in 418 

conductivity above this depth should be attributed to the release of CO2 from the 419 

carbonate melt because of its strong pressure dependence. Seismic evidence for a sharp 420 

lithosphere–asthenosphere boundary beneath the Philippine Sea (Kawakatsu et al., 421 

2009) could also imply the presence of carbonate melt in the upper part of the 422 

asthenosphere. 423 

5. Conclusion 424 

We performed electrical conductivity measurement at 3 GPa to elucidate the 425 

changes in the electrical conductivity of partially molten carbonate-bearing peridotite as 426 

functions of the melt fraction and CO2 concentration in the melt. When degree of 427 

melting is low (< a few volume %), the conductivity of the carbonatitic melt is distinctly 428 

higher than that of carbon-free silicate melt. Although the conductivity of the partial 429 

molten peridotite increases with increasing temperature, the degree of the increase in 430 

the electrical conductivity is obviously small compared with a case in which the melt 431 

composition is constant. We identified that the conductivity changes as a consequence 432 

of both an increase in the melt fraction and a decrease in the correlated carbonate 433 

concentration in the partial melt with increasing temperature. Carbonate is identified as 434 
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the dominant charge carrier and the conductivity changes of the partial molten rocks are 435 

attributed to change in the carbonate mobility controlled by the chemical composition of 436 

the melt. When CO2 concentration in the melt decreases to 0 wt.%, the estimated melt 437 

conductivity approaches to that of basaltic melt. Although the partial melt with 10 wt.% 438 

CO2 at higher temperatures has slightly higher conductivity than basaltic melt, the 439 

enhancement of electrical conductivity by the carbonate melt is the most effective in a 440 

temperature range just above the carbonate peridotite solidus temperature. The electrical 441 

conductivity of the partially molten region with carbonate in the upper mantle would 442 

increase significantly for the case where the degree of melting is very small (< 1 vol.%). 443 

Petrological knowledge of carbonate concentration in the partial molten rocks is needed 444 

to estimate the melt fraction from the geophysical signature of the upper mantle. 445 
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Figure captions 553 

Fig. 1. Back-scattered electron images (BEI) of polished samples with a chemical 554 

composition of KLB1 + dolomite 3 wt.% and with various proportions of carbonate-555 

bearing melt. (a) Run# 1K1364, annealed at 1400 K. (b) Run# 1K1173, annealed at 556 

1500 K. (c) Run# 1K1174, annealed at 1600 K. (d) Run# 1K1361, annealed at 1700 K. 557 

White bars correspond to 10 µm. 558 

Fig. 2. Impedance spectra of carbonate-bearing peridotite samples obtained during 559 

cooling as a function of temperature. All samples have a bulk composition of the KLB1 560 

+ dolomite 3 wt.%. Samples were annealed at 1500 K (a), 1600 K (b), and 1700 K (c). 561 

Note the first semicircular arc at high frequencies followed by a pseudo-inductive part 562 

and an additional tail derived from electrode reaction at low frequencies. 563 

Fig. 3. Electrical conductivity of (Ca,Mg)CO3 as a function of reciprocal temperature. 564 

Note that the conductivity after melting is much higher than that before melting. 565 

Fig. 4. Electrical conductivity of the peridotite-dolomite system as a function of 566 

reciprocal temperature. (a) Run# 1K1173, peridotite with 3 wt.% carbonatite during the 567 

heating (open symbols)-cooling (closed symbols) cycles. (b) All samples for peridotite 568 

with and without 3 wt.% dolomite. The symbols indicate raw data of the cooling path 569 

after annealing at the maximum temperature for each sample with different melt 570 

fractions. Abbreviations; C06: the latest model of olivine electrical conductivity at 0.1 571 

MPa under IW (iron-wüstite) buffers from Constable (2006). YMYK06: a conductivity 572 

range of electrical conductivity of olivine single crystal at 3 GPa under Ni-NiO buffer 573 

from Yoshino et al. (2006). 574 

Fig. 5. Electrical conductivity and melt fraction versus temperature for the system with 575 

KLB1 + 3 wt.% dolomite. 576 
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Fig. 6. Relationship between the melt fractions and electrical conductivities for the 577 

carbonate-bearing partial molten peridotite. Data of the olivine + carbonatitic melts 578 

(1650 K and 3 GPa) with constant CO2 concentration in the melt, and the olivine + 579 

basalt melts (1.5 GPa and 1600 K; i.e. no CO2) are also plotted (Yoshino et al., 2010). 580 

The shaded region indicates a typical range of conductivity values of basaltic melt (e.g., 581 

Presnell et al., 1972). The thick dashed line indicates an expected conductivity-melt 582 

fraction relation for the carbonate-bearing peridotite system. Star symbol denotes 583 

conductivity of dolomite melt, which is an end member of the system used for the 584 

present study at 1700 K. Note that the trend of the carbonate-bearing partial molten 585 

peridotite (KLB1 + dolomite 3 wt.%) is inconsistent with the conductivity value of 586 

dolomite melt. 587 

Fig. 7. Log electrical conductivity σ of melt in the KLB1 + dolomite 3 wt.% system as a 588 

function of CO2 concentration in the melt. (a) Symbols represent the log σ  of the 589 

carbonate-bearing melt calculated at 1700 K assuming various activation enthalpies for 590 

the electrical conductivity of the melt. Orange circle represents the conductivity value 591 

of dolomite melt at 1700 K. The dashed line denotes the CO2 concentration in dolomite 592 

(Ca,Mg)CO3. The red square symbols indicate the conductivity values of silicate melt 593 

(TW83: Tyburczy and Waff, 1983; KAB, Kilauea alkali basalt: Pommier et al., 2010). 594 

The green area indicates the conductivity range of the carbonate melt determined at 595 

atmospheric pressure (Gaillard et al., 2008). Note that as CO2 concentration in the melt 596 

increases, the conductivity of the partial melt in carbonate-bearing peridotite increases 597 

by nearly an order of magnitude. The yellow dashed arrows denote a predicted trend of 598 

the melt conductivity. (b) The log σ of the carbonate-bearing melt as a function of CO2 599 

concentration in the melt for different temperatures based on a case for variable 600 

activation enthalpy (Table 3). Note that as temperature decreases, the conductivity 601 

depends more strongly on the CO2 concentration in the melt. 602 
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Fig. 8. Melt fraction of carbonatite melt with a high CO2 concentration (> 40 wt. %) 603 

estimated from the reference one-dimensional (1-D) conductivity models obtained by 604 

geophysical observations. The yellow colored area denotes the reference 1-D models for 605 

the north Pacific obtained by Lizarralde et al. (1995). The red line indicates the 1-D 606 

model for the Philippine Sea mantle (Baba et al., 2010). 607 
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Table 1. Summary of runs 608 
Run No. vol.%a T max (K) logσmax (S/m) b CO2 (wt.%) c Phase assemblage d Remarks 609 
KLB1 610 
1K1178 0 1700 -1.87 0 ol(Fo90)-opx-cpx-grt 611 
KLB1 + Dolomite 1 wt.% 612 
1K1161 1.0 1400 -0.25 n.d. ol(Fo90)-opx-cpx-grt-melt 613 
1K1158 20 - 0.50 5(1) ol(Fo93)-melt  Incorrect T reading 614 
KLB1 + Dolomite 3 wt.% 615 
1K1364 0.5 1400 -0.48 ~50 ol(Fo90)-opx-cpx-grt-dol-melt 616 
1K1173 1.8 1500 -0.21 45(3) ol(Fo91)-opx-cpx-grt-dol-melt 617 
1K1174 11 1600 0.18 33(2) ol(Fo93)-cpx-melt 618 
1K1363 14.7 1650 0.49 20(1) ol(Fo93)-cpx-melt 619 
1K1361 20.3 1700 0.29 13(3) ol(Fo92)-cpx-melt 620 
Dolomite 621 
S2367 100 1800 2.02 47.7 melt  ∆H = 38 kJ/mol 622 
        σ0 = 1343 S/m 623 
All experiments were conducted at 3 GPa. 624 
a: Volume percent of melt phase in run products determined by image analysis. 625 
b: Log conductivity measured at maximum temperature just before quenching. 626 
c: CO2 concentration in melt estimated from the total weight deficit of the EPMA analysis. 627 
d: Abbreviations: ol; olivine, opx; orthopyroxene, cpx; clinopyroxene, grt; garnet, dol; dolomite 628 
 629 
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Table 2. Melt composition of run products 630 
 1K1173 1K1174 1K1363 1K1361 631 
 1500 K 1600 K 1650 K 1700 K 632 
SiO2 5.10(26) 18.90(89) 32.18(151) 38.94(93) 633 
TiO2 0.42(10) 0.02(23) 0.55(12) 0.48(10) 634 
Al2O3 2.03(62) 2.15(48) 12.18(53) 11.05(51) 635 
FeO* 7.47(141) 4.52 (101) 3.57(102) 7.07(89) 636 
NiO 0.02(2) 0.02(3) 0.06(6) 0.03(3) 637 
MnO 0.17(5) 0.13(2) 0.18(1) 0.16(1) 638 
MgO 13.58(491) 14.20(114) 7.26(115) 13.01(242) 639 
CaO 24.99(225) 24.95(372) 24.05(134) 14.68(503) 640 
Na2O 1.10(23) 1.57(23) 1.07(4) 1.54(34) 641 
K2O 0.35(7) 0.58(5) 0.45(4) 0.14(7) 642 
Total 55.24(269) 66.97(103) 81.55(128) 87.10(165) 643 
The chemical compositions of melt were measured by the electron probe 644 
microanalyzer under the operating condition of 15 kV and 12 nA. 645 
 646 
 647 
 648 
 649 
Table 3. Parameters used for calculation of melt conductivity 650 
 1K1364 1K1173 1K1174 1K1363 1K1361 651 
 1400 K 1500 K 1600 K 1650 K 1700 K 652 
Cases for the fixed activation enthalpy 653 
150 kJ/mol 654 
logσ0 (S/m) 7.21 6.76 6.03 5.96 5.59 655 
logσ1700K (S/m) 2.60 2.15 1.43 1.35 0.98 656 
38 kJ/mol 657 
logσ0 (S/m) 3.03 2.86 2.38 2.41 2.15 658 
logσ1700K (S/m) 1.87 1.69 1.21 1.25 0.98 659 
A case for variable activation enthalpy 660 
 ∆H (kJ/mol) 38 49 76 105 121 661 
logσ0 (S/m) 3.03 3.25 3.62 4.54 4.70 662 
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Highlights 663 
1. We investigated electrical conductivity of partially molten carbonate peridotite.  664 
2. On the solidus, the conductivity was markedly higher than that of carbonate-free 665 

peridotite. 666 
3. Electrical conductivity is not markedly increased by higher melting degree. 667 
4. The moderate increase is attributed to a decrease in carbonate content in the partial melt. 668 
5. The conductivity in the upper mantle is enhanced by very small degree of melting. 669 
 670 


