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Abstract. We present the first contribution of tracing the source area of ophiolitic detritus in 

the Alpine molasses by Raman spectroscopy. The lower Oligocene molasse deposits 

preserved in the Barrême basin, in the SW foreland of the western Alpine arc, are known for 

the sudden arrival of the first “exotic” detritus coming from the internal Alpine zones. Among 

them, the pebbles of serpentinized peridotites have so far not been studied. We show that they 

only consist of antigorite serpentinite, implying that they originate from erosion of HT-

blueschists.  In contrast, the upper Oligocene/lower Miocene molasse, shows mixed clasts of 

serpentine including antigorite and lizardite without any evidence of chrysotile. This suggests 

that they were derived from a less metamorphosed unit such as the LT-blueschist unit. Taking 

into account the sediment transport direction in the basin and the varied metamorphic 

characteristics of the other ocean-derived detritus, we constrain the lithological nature of the 

source zones and the location of the relief zones, identified as the internal Alps, SE of the 

Pelvoux external crystalline massif. Available structural data and in situ thermochronological 

data allow reconstructing the Oligocene to early Miocene collisional geometry of the 

Paleogene subduction wedge. This phase corresponds to two major phases of uplift evolving 

from a single relief zone located above the Ivrea body during the early Oligocene and 

persisting up to the early Miocene; then during the late Oligocene/early Miocene a second 

relief zone developed above the Briançonnais zone. At that time, the internal western Alps 

acquired its double vergency. 

Keywords: serpentinite pebbles, Raman spectroscopy, source tracing, western Alps, Barrême 
basin 
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1. Introduction 

Continental collision leads to formation of a convergent mountain belt and to surface uplift. 

Erosion of this mountain belt feeds clastic sediments to the adjacent basins (e.g. Burbank, 

2002). Tracing the different sources of synorogenic detritus provides information on the 

nature and extent of litho-tectonic units exposed during the successive stages of continental 

collision. Classic provenance analysis based on sandstone petrography led to identifying 

several remarkable pebble lithologies, which are of particular importance for discussing the 

nature and location of potential source areas (e.g. Dickinson & Suczek, 1979; Garzanti et al. 

2007). More recently, low-temperature thermochronology of detrital grains has developed 

into a powerful tool to trace the thermal and exhumation history of orogens (see references in 

Carter & Bristow, 2000; Bernet & Spiegel, 2004; Bernet & Garver, 2005).  In the Alps as in 

other collision belts, the search of ophiolite clasts in synorogenic sediments is traditionally of 

particular importance, especially if Cr-spinel is abundant as this heavy mineral is 

characteristic of an ophiolitic source (e.g. Najman & Garzanti, 2000; Garzanti et al. 2000). 

When Cr-spinel are rare or absent, which is the case in the western Alpine synorogenic 

sediments (Evans & Mange-Rajetzky, 1991), serpentinites mainly derived from hydrated 

peridotites can be useful to depict ophiolitic sources as serpentinites are particularly resistant 

to fluvial transport (McBride & Picard, 1987). Usually, serpentinite clasts are seldom studied 

because of difficulties in determining their mineral species, mostly distinguishing between 

chrysotile, lizardite and antigorite. However, the mineralogy of serpentinite provides direct 

information on the ophiolite metamorphic history. The use of Raman spectroscopy allows 

overcoming the difficulties of serpentine characterization (Rinaudo et al. 2003; Auzende et al. 

2004; Groppo et al. 2006). Applied to different ophiolite-bearing thrust sheets along the 

Queyras-Monviso transect, this method shows that the nature of serpentine minerals evolves 

along the subduction wedge of the western Alps, in accordance with the different P-T 
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conditions estimated from petrologic metamorphic studies (Auzende et al. 2006). On this 

basis, we propose here to apply the same method to sand grains and pebbles of serpentinite 

from synorogenic molasse deposits in the foreland basin remnants of the western Alps.  

We chose the Barrême basin, a small piggy-back basin with well preserved lower Oligocene 

to lower Miocene molasse formations (e.g. Evans & Elliott, 1999; Callec, 2001 with 

references therein). The sampled syn-collisional molasse deposits are known to bear the very 

first detrital input from the internal Alpine zone, often termed “exotic clasts” (historical 

references in Chauveau & Lemoine, 1961; Morag et al. 2008). The early Oligocene is also the 

time when these internal zones underwent a major orogenic phase related to what may be 

regarded as the climax of the collision in the western Alps enhancing relief formations 

(Lardeaux et al. 2006; Morag et al. 2008; Bernet & Tricart, 2011). Considering these 

constrains allows us discussing the possible origin of the analysed detrital serpentinites in the 

context of the Alpine relief formation, from ~ 34 to 23 Ma ago.  

 

2. Geologic setting 

The Alps are located on the boundary between the European and African plates. Alpine 

evolution along the Eurasia-Africa boundary was initially dominated by plate divergence, 

which induced Mesozoic continental rifting and ocean opening. Since the Late Cretaceous, 

plate convergence has resulted in subduction and collision (Rosenbaum & Lister, 2005 and 

references therein). The structural geometry of the western Alps classically resulted from 

indentation of the southern margin of Europe by the Adriatic microplate or African 

promontory after the closure of the intervening Tethyan Ocean (e.g. Coward & Dietrich, 

1989; Platt et al. 1989; Schmid & Kissling, 2000), associated with strain partitioning in 

oblique collision context between Adria and Europe (Malusà et al. 2009), and possibly with 

slab retreat (Vignaroli et al. 2008). In this study we only consider the southern part of the 
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western Alpine arc (Fig. 1a and 1b). The internal zone consists of a pile of metamorphic 

nappes with dominant Paleogene north- or northwest- directed structures (Choukroune et al. 

1986). The structure of metamorphic internal zone (Fig. 1b and c) consists of a refolded stack 

of units derived from the ocean (Piedmont zone) and its European margin (Briançonnais 

zone) (Tricart et al. 2006).  

The Briançonnais zone mainly displays late Paleozoic to Mesozoic sediments and pre-Alpine 

basement rocks. A remarkable nappe stack involves the pre-, syn- and post-rift Tethyan 

sediments originating from a stretched margin (e.g. Claudel & Dumont, 1999). This stack of 

cover nappes was shortened during collision and, being a mechanically contrasted multilayer, 

gave rise to regional west- and east-verging folds and associated thrusts. The latter are known 

as the Briançonnais backfolds and backthrusts and correspond to the present-day alpine fan-

shaped structure (Tricart, 1984) metamorphosed under greenschist facies conditions (Goffé et 

al. 2004; with references therein). The age of backthrusting is debated, and is either ascribed 

to the Oligocene (Tricart 1984) or to the Eocene (Malusà et al. 2005a). The Briançonnais 

basement consists of pre-Alpine magmatic and metamorphic rocks. Its Permo-Carboniferous 

sedimentary cover is variably re-worked during the Alpine orogeny. The metamorphic 

evolution of these basement slices, where upper blueschist and/or eclogite facies conditions 

have been deciphered (Goffé et al. 2004), contrasts with the evolution of the cover nappe pile. 

These significant metamorphic gaps are consistent with the existence of severe tectonic 

decoupling between the Briançonnais units.  

The composite Piedmont zone (Fig. 1b and 1c) corresponds to the present-day juxtaposition 

of different structural levels of the paleo-subduction wedge from the blueschist accretionary 

wedge (Schistes lustrés) to the eclogitized internal crystalline massif. The Schistes lustrés 

(Fig. 1c) consist of high pressure units including metamorphic marls, clays, and limestones. 

Marls dominate (calc-schists) and enclose hectometric to kilometric tectonic boudins of 
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Triassic dolomites or Jurassic ophiolites sometimes interpreted as olistholiths (Tricart & 

Lemoine, 1986; Deville et al. 1992). Burial under blueschist-facies conditions during the Late 

Cretaceous to early Eocene times built an accretionary wedge that was strongly redeformed 

when collision relayed subduction in late Eocene time (Agard et al. 2002; Lardeaux et al. 

2006; Tricart & Schwartz, 2006). In details, the metamorphic conditions evolved from low 

temperature (LT) blueschist conditions in the western part to high temperature (HT) 

blueschist in the eastern part of the complex (Tricart & Schwartz, 2006; Schwartz et al. 2009; 

Bousquet et al. 2008).  

The Monviso ophiolitic unit, squeezed between the Schistes lustrés complex and the Dora-

Maira internal crystalline massif contains major remnants of the Tethyan oceanic lithosphere 

that were strongly deformed and metamorphosed under eclogite-facies conditions (Lombardo 

et al. 1978; Schwartz et al., 2000; Rubatto & Hermann, 2001) during the Eocene (Duchêne et 

al. 1997). Contrasted eclogitic conditions (e.g., Schwartz et al. 2000) indicate that the 

Monviso massif is an imbricate of units rapidly exhumed (1 cm/yr) within the subduction 

channel during the Eocene and accreted beneath the Schistes lustrés complex under 

blueschist-facies conditions at 20–35 km depth (Schwartz et al. 2000; 2001). The Monviso 

eclogites are separated from the Dora-Maira massif by a ductile normal fault (Blake & Jayko, 

1990; Philippot, 1990; Schwartz et al. 2001). 

Located in the lowermost structural position, the Dora-Maira internal crystalline massif 

corresponds to a stack of more or less deeply subducted continental basement slices involved 

in a ‘domelike’ structure (Fig. 1c). Here again, significantly contrasted metamorphic 

conditions have been inferred (Chopin et al. 1991; Compagnoni & Rolfo, 2003). Quartz-

bearing eclogite facies rocks outcrop at the top of the Dora-Maira dome and overlie a coesite 

bearing eclogitic unit. This pile of thin (<1 km) high to ultra-high pressure metamorphic units 

overlies the lowermost Pinerolo-Sanfront blueschist unit along a thrust contact. The latter unit 
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is similar, with respect to their lithologies, structural position and metamorphic evolution to 

the Briançonnais basement slices. 

In contrast to the internal zone, the external zone of the western Alps consists of pre-Alpine 

crystalline basement (Pelvoux and Argentera massifs) of the proximal European margin and 

its detached sedimentary cover of the Southern Subalpine Chains (Fig. 1b). The Alpine 

external zone is less shortened (Gratier et al. 1989) and only slightly metamorphosed, ranging 

up to greenschist facies conditions (Goffé et al. 2004). Polystage shortening mainly occurred 

from the Oligocene onwards (e.g. Ford et al. 2006; Dumont et al. 2008 with ref. therein). 

Non-metamorphic and gentle fold-thrust structures first developed in the Provence area until 

the Eocene in response to N-S compression. Superimposed Alpine structures sensu stricto 

developed from the Oligocene onwards when the effects of the Apulian plate indentation, first 

restricted to the internal arc, spread outwards through the external arc (Ford et al. 1999). From 

the Middle Miocene onwards up to the Present the external zone remains subject to active 

shortening while the internal zone undergoes extension (Sue & Tricart, 2003; Tricart et al. 

2004). 

In front of the internal zone, a flexural basin developed since the middle Eocene, and being 

the locus of deep sea turbidite sedimentation. The main witnesses to this flysch episode are 

the Grès d’Annot in the south and the Grès du Champsaur in the north (e.g. Sinclair, 2000; 

Sissingh, 2001; Ford & Lickorish, 2004) whose sedimentation started in middle and late 

Eocene times respectively. Everywhere, sedimentation ended abruptly in early Oligocene 

times, due to emplacement of the Helminthoid flysch nappe (exotic flysch in Fig. 1c; 

Kerckhove, 1969) coming from the internal zone. The structuring of the western Alpine belt 

in early Oligocene times was accompanied by enhanced mountain building (see discussion in 

Morag et al. 2008; Bernet & Tricart, 2011). Rapid erosion of this mountain belt might explain 

the fast regional cooling of the western Alpine belt during the Oligocene and the sudden 
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supply of coarse metamorphic detritus along the northwestern flank of the western Alps (e.g. 

Morag et al. 2008; Bernet et al. 2009), and in small basins developed on top of the belt (e.g. 

Polino et al. 1991; Carrapa et al. 2003). Nevertheless, the volume of these clastic sediments is 

globally modest, and the Adriatic foredeep on the internal side of the western Alps was 

starved of orogenic detritus (Garzanti & Malusà, 2008). As matter of fact, the early Oligocene 

is also the time of the flysch-to-molasse transition in the European foreland basin when flysch 

basins closed and were incorporated into the collision wedge. From that time onwards small 

molasse basins formed in more and more external locations, as the Alpine deformation front 

migrated outward through the external arc (e.g. Ford et al. 1999). This is well illustrated in the 

Barrême basin (Fig. 1b), where thin Paleogene marine detrital formations (Fig. 2) represent a 

shallow water equivalent to the more proximal Grès du Champsaur and Grès d’Annot flysch 

formations (e.g. Joseph & Lomas, 2004). The overlying molasse sediments in the Barrême 

basin were deposited as the basin was transported on the Digne thrust sheet (de Graciansky, 

1972; Artoni & Meckel, 1998; Evans & Elliot, 1999). Subsequently, in late Oligocene the 

stack of the metamorphic Briançonnais and Piedmont nappes was exhumed in brittle 

conditions (e.g. Malusà et al. 2005b) and transported along the Briançonnais thrust front (fig. 

1). Possible modifications of detrital pathways at this stage will be investigated in this paper.  

 

3. The sampled material 

The Eocene to early Oligocene so called “Nummulitic” transgressive sequence covered the 

European foreland of the outward migrating Alpine belt (Sinclair, 1997; Ford et al. 1999). 

The “Nummulitic” series was mainly deposited in a deep and underfilled flexural basin and it 

generally overlies a continental erosional surface. This sequence always shows the succession 

of three sedimentary facies of increasing water depth (so called “Nummulitic trilogy”): (1) 

nearshore, Nummulites-bearing platform limestones; (2) hemipelagic foraminiferal 
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(globigerina) marls (Blue marls Formation), and (3) clastic sediments. In the Barrême, the 

latter first appeared within the Blue marls Formation as thin turbiditic sandstones, the Grès de 

Ville Formation. The latter formation is capped by lower Oligocene marine conglomerates 

(Clumanc and Saint-Lions conglomerates) interpreted as channelized fan delta slope deposits 

(Artoni & Meckel, 1998; Fig. 2).  

In the Barrême basin, the Grès de Ville (Fig. 2), consist of silty mudstone and thin-bedded 

fine-grained sandstone with an erosive base, graded bedding and cross-stratification. They 

recorded north-directed paleocurrents thanks to various sedimentary structures (flute cast, 

grooves crescent and prod marks) and their clastic material originates from the Provence-

Corsica-Sardinia domain (Evans & Elliott, 1999; Callec, 2001). By contrast, the Clumanc and 

Saint-Lions conglomerates are interpreted as a Gilbert delta with west- to SW-directed 

transport (Callec, 2001). They are dominantly composed of coarse pebbles (generally 5 to 20 

cm) with a sandy and fine-grained pebbly matrix (Callec, 2001) (Fig. 3). Different pebble 

populations were recognized early on by geologist (Termier, 1895 in Chauveau & Lemoine 

1961; Graciansky et al. 1971) and especially Bodelle (1971), and are summerized in Table 1.  

The Barrême thrust-top west verging syncline, accommodating W-E shortening, was fed by a 

deltaic system providing local Cretaceous limestone (lowermost Clumanc conglomerate beds) 

and farther internal Alpine clasts, including metamorphic and eruptive rocks (upper Clumanc 

beds and Saint-Lions conglomerates) (Fig. 2 and Table 1). The metamorphic clasts of internal 

origin were initially mentioned by Termier (1895, in Chauveau & Lemoine, 1961). These 

internal (or Penninic) pebbles mainly consist of ophiolitic clasts (oceanic crust or mantle) and 

of associated pelagic sediments, in particular the easily recognizable red radiolarian cherts 

(Fig. 3). The ophiolitic clasts are mainly massive or brecciated basalts but some variolithic 

fragments of pillow-lava cortex and rare gabbros have also been found. Morag et al. (2008) 

described garnet-blueschist pebbles. The 40Ar/39Ar geochronology of phengites from these 
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metamorphic pebbles yielded a 34 ± 3 Ma ages suggesting a short time lag between 

exhumation of these rocks and their deposition in the lower Oligocene (34-28 Ma) basin. The 

Penninic provenance of the exotic pebbles in the Clumanc and Saint-Lions conglomerates 

(Fig. 2 and Table1) is consistent with the observed western to south-western sedimentary 

transport directions. The latter strongly differs from the previous (Eocene to lowermost 

Oligocene) north-directed transport which fed longitudinally the Barrême basin from the 

uplifted Provence-Corsica-Sardinia domain (e.g. de Graciansky, 1982; Evans & Mange-

Rajetzky, 1991; Callec, 2001; Joseph & Lomas, 2004). The high amount of serpentinite 

pebbles we found was unexpected considering the literature (e.g. Chauveau & Lemoine, 

1961).  

The Grès verts are dated as Aquitanien (Evans & Mange Rajetsky, 1991), which is younger 

than the Clumanc and Saint-Lions conglomerates (Fig. 2 and Table 1). These fine silty-

sandstone and siltstones show crossed-bedding typical for low energy fluvial channels with 

ephemeral over-bank deposits. The heavy mineral content of the Grès verts is varied, but 

includes many serpentinite grains (Fig. 3) with a suspected source corresponding to the 

Embrunais-Ubaye nappes (Evans & Mange-Rajetsky, 1991). 

We analysed 38 small serpentinite pebbles, 1 to 3 cm in diameter each, sharing pronounced 

flat and blunt shape, sampled in the “La Poste” conglomerate at Clumanc (Table 2, Fig. 3). 

More precisely the majority of our serpentinite pebbles come from the lowermost layers, 

while historically serpentinite pebbles were essentially described in the middle layers of the 

La Poste conglomerate (e.g. Chauveau & Lemoine, 1961) (Table 1). Therefore, we sampled 

the very earliest deposits of exotic clasts in the molasse basin, which is important for the 

subsequent interpretation. In addition, we sampled the stratigraphically younger continental 

deposits of the Aquitanian “Grès vert” in the same Barrême molasse series. This sandstone 
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formation is exceptionally rich in serpentinite grains and 45 single grains were analyzed for 

this study (Table 2, Fig. 3). 

  

4. Methodology: Raman spectroscopy 

Serpentinite minerals are hydrous phyllosilicates (up to 13 wt% water) formed during the 

hydration of basic and ultrabasic rocks. Serpentinites, shown here with a simplified structure 

formula of (Mg, Fe2+)3 Si2O5(OH)4, are made of superposed tetrahedral and octahedral layers. 

The structures of the three serpentinite species lizardite, chrysotile and antigorite are 

distinguished by different distortions and spatial arrangements of the tetrahedral and 

octahedral layers. Layers are flat in lizardite, rolled up in chrysotile and corrugated in 

antigorite (e.g. Wicks & O’Hanley, 1988). Natural serpentinites sampled in high-grade 

metamorphic environments show antigorite as the most abundant species (Scambelluri et al. 

1995, Guillot et al. 2000; Auzende et al. 2002; Groppo & Compagnoni, 2007). Experimental 

studies have also shown that antigorite is the stable variety under high pressure conditions 

(Ulmer & Trommsdorff, 1995; Wunder & Schreyer, 1997; Auzende et al., 2004). Lizardite 

and chrysotile are the major varieties of pseudomorphic textures observed in low-grade 

metamorphic serpentinites from oceanic lithosphere or ophiolites (Andréani et al. 2007). In 

this study, the different serpentinite species were characterized by Raman spectroscopy, 

coupled with petrographic observations on polished thin section of clasts. Raman 

spectroscopy was performed at the Laboratoire des Sciences de le Terre, Ecole Normale 

Supérieure de Lyon (ENS-Lyon), France, with a Horiba Jobin-Yvon LabRam HR800 

apparatus. The light source was an argon-ion laser to achieve 514.5 nm wavelengths. An 

OlympusTM BX30 open microscope equipped with ×50 and ×80 long-working distance 

objectives was coupled to a spectrometer to focus the laser beam to a 3 µm spot diameter. The 

Raman signal was collected in the backscattered direction. Acquisition time was about 60s, 
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distributed over three accumulation cycles, with a laser output power on the sample adjusted 

between 10 and 60 mW, depending on the intensity of the signal. Raw or polished serpentinite 

clast samples were indifferently used. The spectral resolution was 1cm-1 using 1800 gr/mm 

grating. The spectral regions from 150 to 1150 cm-1 and from 3600 to 3720 cm-1 (Fig. 4) were 

investigated because they include lattice vibrational modes characteristic for serpentinite 

species (Rinaudo et al. 2003; Auzende et al. 2004; Groppo et al. 2006). The bands detected in 

these spectral regions are indicative of the molecular and crystalline structure of the sample. 

For all spectra the assignments of the band position and band width were determined using 

the Peakfit© software.  

In the low frequency region, four main peaks near 230, 390, 690 and 1100 cm-1 characterize 

the spectra of lizardite and chrysotile (Rinaudo et al. 2003; Groppo et al. 2006). At lower 

frequencies, intense antigorite peaks occur at 226, 373, 680 and 1043 cm-1. Therefore, the 

peak positions are different in comparison to other serpentines, and the peaks are much 

broader (Fig. 4). The peak at 1043 cm-1 allows distinguishing easily the antigorite variety. 

Although weak, differences between chrysotile and lizardite can be clearly identified because 

of the sharpness of the Raman lines. In particular, a single high frequency band at 1100 cm-1 

is observed in chrysotile whereas several convoluted bands are observed between 1060 and 

1100 cm-1 in lizardite (Rinaudo et al. 2003 ; Groppo et al. 2006). In the high frequency region 

(Fig. 4), the OH vibrational mode shows a spectrum with an intense single peak at 3697 cm-1 

in the case of chrysotile and a bimodal shape spectra for the lizardite and antigorite (Fig. 4). 

The spectrum of lizardite is characterized by a fine bimodal shape with a primary band at 

3685cm-1 and a secondary band at 3703 cm-1. The antigorite species presents a spectrum 

broader than the lizardite with a primary band near 3365 cm-1 and a secondary band centered 

at 3697 cm-1. One to twenty Raman spectra were acquired on each lower Oligocene pebbles 
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and one spectrum was acquired on each single grain coming from the upper Oligocene/lower 

Miocene sandstones (Table 2).  

 

5. Serpentinite mineralogy 

For the 38 serpentinite clasts from the Clumanc conglomerate that we analyzed, all the Raman 

spectra are typical for antigorite (Fig. 5a). No other variety of serpentinite was observed. This 

observation is confirmed by petrographic thin section analysis. The initial ultrabasic rocks 

were fully recrystallized and the antigorite minerals form a typical interlocking texture that 

replaces olivine. The original magmatic pyroxene was totally replaced by oriented antigorite 

flake aggregates constituting bastite (Fig. 6).  

In the Aquitanian sandstone “Grès vert” 45 single grains were analyzed, the Raman 

spectroscopy analysis of single grains (Table 2) shows a mixture of dominant lizardite and 

subordinate antigorite. More precisely, lizardite is the only serpentine species presents 

(sample MB153, Fig. 5c and Table 2) in the fine grained, well sorted sandstone layers. In 

contrast, the moderately to poorly sorted sandstone layers, with a larger variety of grain sizes 

in the fine to coarse grained range, display 20% of antigorite in the coarser fraction (sample 

MB154, Fig. 5c and Table 2) but lizardite still dominates (sample MB154, Fig. 5d and Table 

2). Nowhere chrysotile and talc were detected. 

 

6. Discussion 

6.1. Origin of serpentinite pebbles and sand grains 

Despite the difficulty of precisely establishing the P-T stability field of serpentine species 

(e.g. Evans, 2004) (Fig. 7a), an empiric approach has been developed by comparing the 

worldwide occurrence, including the western Alps, of serpentinite species with the P-T 

conditions recorded by associated metamorphic rocks in HP-LT metamorphic environments 
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(Guillot et al. 2000; 2009; Auzende et al. 2002; 2006; Groppo et al. 2006). In summary, 

chrysotile and lizardite form under greenschist facies conditions in oceanic crust or ophiolites, 

while lizardite alone testifies to upper greenschist and low-temperature blueschist facies 

conditions (Fig. 7a). Antigorite progressively replaces lizardite under intermediate blueschist 

facies conditions. Antigorite becomes the exclusive serpentinite variety under high-

temperature blueschist to eclogite facies conditions (Fig. 7a). 

Thus, antigorite-bearing serpentinite pebbles from the lower Oligocene Clumanc 

conglomerate are only derived from HP-LT ophiolitic rocks metamorphosed under high 

temperature blueschist or eclogite facies conditions, i.e. the internal zone (Fig. 1 and Fig. 7b). 

As paleocurrent indicators favour a NE provenance for the detrital grains, the source of these 

pebbles has to be more precisely searched in the SE vicinity of the Pelvoux massif and not in 

more southerly HP-LT metamorphic assemblages such as the Voltri massif, presently exposed 

to the south of the Tertiary Piedmont basin (Fig. 1b). Pure antigorite serpentinites are an 

important component of the HT-blueschist Schistes lustrés unit along the drainage divide 

between France and Italy (Fig. 7b). Pure antigorite serpentinites also crop out further east, in 

the Monviso eclogitic complex in Italy (Schwartz et al. 2000; Auzende et al. 2006).  

The occurrence of both lizardite and antigorite grains in the upper Oligocene/lower Miocene 

serpentinite-bearing sandstones (Grès verts) contrast with the sole occurrence of antigorite 

pebbles  in the Lower Oligocene conglomerates. This suggests that the coarser antigorite 

fraction in the upper Oligocene/lower Miocene sandstone could derive from the same source, 

i.e. the HT-blueschits Schistes lustrés (or the Monviso eclogites) (Fig. 7a and 7b). 

Nevertheless, the occurrence of lizardite suggests a different source area, a less 

metamorphosed ophiolitic source, having escaped subduction and collision processes and 

only recording oceanic hydrothermal metamorphism. In the present-day Alpine framework, 

only the upper ophiolitic unit in the Chenaillet massif (Montgenèvre pass, upper Durance 
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valley) escaped the subduction-collision metamorphic imprints, representing a part of the 

Tethyan oceanic lithosphere obducted onto the subduction wedge, towards the European 

continental margin (Goffé et al. 2004; Chalot-Prat, 2005; Schwartz et al. 2007). An 

alternative interpretation is that both grains (antigorite and lizardite) were derived from an 

unique source in where lizardite and antigorite coexisted. This has been observed in the 

present-day eastern part of the Piedmont Schistes lustrés complex (Fig. 7b), which was 

metamorphosed only under low-temperature blueschist facies conditions (Agard et al., 2001; 

Goffé et al. 2004; Tricart & Schwartz, 2006). Concerning the antigorite-bearing Upper 

Oligocene/Lower Miocene sands, one cannot preclude the possibility that they partly result 

from recycling of Oligocene detrital sediments. 

6.2. The heterogeneity of sources in terms of metamorphic grade 

Contrary to the serpentinite clasts, other Penninic pebbles within lower Oligocene 

conglomerates have been analysed in the lower 70s (e.g. de Graciansky et al. 1971). The 

basalts and their derivatives (“prasinite”, “diabases”) essentially bear zeolite or greenschist 

facies metamorphic assemblages, more rarely a blueschist facies imprint. The rare gabbros 

bear different types of blueschist assemblages, “calcschist” pebbles that likely originate from 

the Schistes lustrés complex are also observed (Morag et al. 2008). The abundant red-purple 

pebbles of radiolarian cherts only show a very low-grade metamorphic imprint as radiolarites 

are preserved (Cordey et al. 2012).  

The upper Oligocene/lower Miocene sandstones contain a mixture of grains of serpentinites, 

unmetamorphosed radiolarites and LT (lawsonite bearing) blueschist basalts. As for the lower 

Oligocene molasse, the upper Oligocene/lower Miocene molasse shows detrital grains were 

derived from source areas that experienced contrasted metamorphic conditions from those of 

the LT-blueschist facies to low grade metamorphic conditions.  
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This heterogeneity both in the lower Oligocene and upper Oligocene/lower Miocene molasse 

deposits implies the erosion of a stack of ophiolite nappes that recorded contrasted P-T 

conditions, having the lithologic and metamorphic signatures of the Paleogene alpine 

accretionary wedge (Agard et al. 2002; Lardeaux et al. 2006; Yamato et al. 2007; Guillot et 

al. 2009).  

The provenance of detrital sediments can be discussed. Indeed, it is classically admitted that 

the source of ophiolitic clasts in the Lower Oligocene molasse of the Barrême basin was 

located in the Embrunais-Ubaye nappes (e.g. Evans & Mange- Rajetzky, 1991). In the 

present-day situation, these nappes represent the closest outcrops of the internal or Penninic 

units, in an E to NE direction from the Barrême basin, which is the provenance direction of 

exotic detritus according to sedimentological analyses (Callec, 2001). Because these nappes 

are devoid of any HP-LT metamorphic imprint, they cannot represent the source of HP-LT 

metamorphic detritus like the antigorite-bearing serpentinite we sampled in the Barrême 

basin. 

6.3. The sudden arrival of mixed metamorphic clasts into the Barrême molasse basin  

The sudden erosion in early Oligocene times of the stack of variably metamorphosed nappes 

inherited from the Paleogene accretionary wedge fits well with two observations concerning 

the internal zone, SE of the Pelvoux massif.  

First, structural analysis allows identifying a severe early Oligocene shortening. The 

corresponding post-nappe folds and thrusts are associated with the second and third regional 

schistosities in the Briançonnais zone. They display respectively outward and inward 

vergence, resulting in the so-called Briançonnais fan-shaped structure (Tricart et al., 2006 

with reference therein). In the whole internal zone, it has been proposed that this major 

syncollision shortening was responsible for the bending of the arc (Thomas et al. 1999; 

Collombet et al. 2002). 
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Second, detrital thermochronology analysis of Barrême Oligocene molasse recently allowed 

to estimate very short lag times from fission-track ages for zircons grains (Bernet &Tricart, 

2011; Jourdan et al. 2011), in consistence with 40Ar/39Ar ages of phengites in pebbles from 

the same sediments (Morag et al. 2008). Comparison to in situ thermochronological data 

acquired from the internal zone led Bernet &Tricart (2011) and Jourdan et al. (2011) to 

propose erosion-driven fast exhumation (1-3 mm/y) in early Oligocene times. Tectonic 

exhumation is likely to have been enhanced by erosional processes. Consequently, at that 

time, these internal zones are supposed to have formed an elevated and narrow mountain 

range. In summary, converging approaches allow us proposing that the source of mixed 

metamorphic and very low-grade metamorphic ophiolitic detritus suddenly fed the Barrême 

molasse basin during early Oligocene times was an elevated and possibly narrow mountain 

range (Fig. 8a). The volume of Oligocene sediments preserved in the proximal alpine foreland 

(Barrême basin) is quite low but a much larger amount of sediments is pounded within the 

Oligocene grabens of the Liguro-Provençal rift, the Rhône valley and the Gulf of Lion 

(Séranne, 1999). 

6.4. Implications for the evolution of the internal western Alps 

Looking for the potential source areas of the sand and pebbles of antigorite-bearing 

serpentinites in the Barrême basin molasse deposits we took into account different constrains 

relative to the metamorphic grade, structural and orogenic history of the internal zone, but 

also sedimentological constrains relative to the Barrême basin stratigraphy. The source we are 

looking for, must present lithologies such as those presently exposed in the Piedmont zone. 

As a working hypothesis we consider a generally N-S trending, elevated, subaerially exposed 

accretionary wedge (Platt, 1986; 1987; 1993) which experienced syncollisional shortening 

and unroofing during early Oligocene times (Fig. 8a).  Its shape probably corresponded to the 

present-day internal zone, but extended outwards to the presently exposed exotic flysch 
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nappes (Fig. 1b and 1c).  The pile of shallow-dipping nappes displays intense fold and thrust 

structures, due to Lower Oligocene shortening, especially westwards directed structures (Fig. 

8). Nevertheless, the whole structure was inherited from the Paleogene accretionary wedge 

and displays a general metamorphic gradient. The base of the nappe pile corresponds to 

Subbriançonnais and Briançonnais nappes with high pressure (lawsonite-bearing) greenschist 

metamorphism, being covered by the Piedmont nappes inherited from the Paleogene 

accretionary wedge. In the frontal part, the LT-blueschist facies unit cropped out, while HT- 

blueschists were already exhumed (Fig. 8) in the steep rear part of the internal wedge 

(Yamato et al. 2007).    

The location of eclogitic units within the early Oligocene structure deserves a specific 

discussion. Geometrically, they possibly could have topped this wedge, outcropping along the 

highest parts of the corresponding mountain range, knowing that the antigorite-bearing clasts 

may as well originate from both blueschist- and eclogite-bearing nappes. Up to now no 

evidence for the erosion of eclogites was found in the Barrême basin. Presently, eclogites are 

only exposed along the Italian flank of the Alps forming the present Monviso massif 

(Lombardo et al. 1978; Schwartz et al. 2000). Further to the north they outcrop in the high 

Maurienne valley (Rolland et al. 2000) and in the Zermatt-Saas zone (Barnicoat, 1985).  At 

the opposite and also very far away, eclogites outcrop in the Voltri group of Liguria, where 

their first detrital reworking in the Tertiary Piedmont basin is stated at early Oligocene times 

(Federico et al. 2004). Concerning the timing of exhumation along our transect, eclogites 

boulders do not appear in the Torino Hills conglomerates, at the internal foot of the mountain 

range, before the early Miocene (Polino et al. 1991). Fission-track analyses in the Monviso 

massif confirm that these eclogites were exhumed later than Miocene times and were 

structurally located beneath the Schistes lustrés accretionary wedge (Schwartz et al. 2007; 

Yamato et al. 2007). By early Oligocene times the eclogitic unit forming the serpentinite 



 19 

subduction channel was not yet being exhumed along the studied transect (e.g. Guillot et al. 

2009). The only exposed HP-LT metamorphic rocks were the blueschists coming from the 

Schistes lustrés accretionary subduction wedge. The variation of serpentine species from 

antigorite to lizardite between early Oligocene and late Oligocene/early Miocene in the 

Barrême basin is interpreted as a shift of the paleo-relief through time enhancing drainage 

system modifications. During the early Oligocene the prominent relief was probably located 

above the HT-blueschist zone (Fig. 8a) progressively a second zone of reliefs developed 

westward above the LT-blueschist zone (Fig. 8b). Nevertheless, in the lower Miocene Torino 

Hills conglomerates, the abundant arrival of decimetric to metric blocks of blueschists, with 

serpentinites representing more than 50% of the detrital sediments and the first arrival of 

eclogites (2%) (Polino et al. 1991), suggests that rapid surface uplift enhanced erosion and 

created high relief persisting in the vicinity of the present-day Torino Hills.  

Thus we propose the following scenario to explain the mineralogical evolution recorded on 

both flanks of the young Alpine orogenic system during Oligocene and early Miocene times. 

The transition from subduction to collision by early Oligocene time induced the rapid and 

prominent aerial exposure of the eastern part of the HP-LT accretionary wedge (Fig. 8a) and 

predominantly fed the external molasse basins. From the early Oligocene to the early 

Miocene, the relief shifted westward due to the uplift of the frontal part of the collisional 

wedge (Briançonnais zone) in response to the activation of the Briançonnais thrust front (Fig. 

8b). This renewed topography and dynamics enhance erosion of the external part of the 

accretionary wedge (LT-blueschist). In the eastern part, the vertical indentation at the rear of 

the accretionary wedge related to the emplacement of the Ivrea body (Schmid and Kissling, 

2000) allows the progressive exhumation of  eclogites and focused erosion fed the internal 

molasse basins in the Po plain (Torino Hills and Tertiary Piedmont basin in Fig. 1b). At that 
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time (late Oligocene to early Miocene), the western Alps progressively acquired its doubly 

vergent structure (Fig. 8b). 

 

7. Conclusions 

Sands and conglomerates derived from blueschist facies metamorphic rocks have some 

characteristic minerals such as glaucophane that are poorly resistant to transport or diagenesis 

in a sedimentary basin. Serpentinite, hitherto little studied, may be a more reliable marker of 

HP-LT source rocks in provenance studies. In order to quickly identify serpentine species in 

sedimentary rocks we propose to use Raman spectroscopy on single detrital clasts. We 

successfully applied this method to detrital serpentinite from the Barrême basin, in the 

western Alpine foreland. Mineralogical analysis by Raman spectroscopy shows that 

serpentinite pebbles from the lower Oligocene conglomerates in the Barrême basin consist 

entirely of antigorite, indicative of high-temperature blueschist facies metamorphism.  

During the early Oligocene, paleocurrent indicators indicate a shift from a southern 

provenance (Provencal shelf and the Corso-Sardinian massif) to a north-eastern provenance of 

detrital grains in the Barrême molasse basin. Thus the source of the lower Oligocene pebbles 

has to be searched in the internal part of the Alps, SE of the Pelvoux massif. The arrival of 

such exotic clasts reveals the erosion of a suddenly raised mountain range in the internal 

Alpine zones along the same transect, the Piedmont cordillera, as a consequence of major 

shortening pulses. The coexistence of metamorphic pebbles (abundant antigorite clasts but 

also rare blueschist gabbros) with non-metamorphic radiolarite clasts constrains the lithologic 

composition and structure of the sediment source area. The presence of metamorphic 

ophiolitic material contradicts the classical view that the only source of exotic clasts in the 

lower Oligocene Barrême molasses basin is located in the Embrunais-Ubaye flysch nappes 

that glided in front of the Alpine wedge.  
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On the contrary we propose that the supply of exotic clasts supply to the Barrême basin is a 

direct consequence of the major syncollision shortening experienced by the Paleogene 

accretionary wedge in early Oligocene times, by 34-28 Ma, to the SE of the Pelvoux massif. 

The remnants of this refolded subduction wedge corresponds to the present-day deeply eroded 

internal zone. The absence of eclogite clasts on both flanks of the early Oligocene collidera 

means that eclogitic units were not exhumed during early Oligocene times along the Monviso 

transect, contrary to what is known along the more southerly Liguria transect.  

The same mineralogical analysis by Raman spectroscopy was also conducted on serpentinite 

sand grains from the upper Oligocene/lower Miocene Grès verts of the Barrême basin. The 

analyzed clasts consist of antigorite and dominant lizardite, to some part depending on grain 

size, indicative of a change through time in source rock lithology. This observation is 

compatible with a westward propagation of the cordillera with erosion of lesser metamorphic 

units during ongoing collision. Simultaneously, the increasing arrival of HP ophiolitic 

materials in the Po plain suggest the persistence of high reliefs in the internal zone, 

maintained by deep vertical indentation of the Ivrea body. 
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Figure 1. – Geological setting of the study area. (a) Geographical setting of the western Alps 
showing location of (b). (b) Tectonic sketch map of the western Alps showing the Barrême 
basin in the external zone. The internal zone is bounded by the Penninic deep crustal thrust to 
the west with: QS-Queyras Schistes lustrés; V-Monviso. The rectangle locates Figure 7b. (c) 
Sketch-section of the present-day structure. Presently, metamorphic serpentinite with 
antigorite but without lizardite (HT-blueschists and eclogites) crops out along both sides of 
the watershed (Eastern Queyras Schistes lustrés, Monviso).  
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Figure 2. – Simplified stratigraphic log of the Barrême basin molasse series. Depositional 
ages are from Callec (2001).  
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Figure 3. – Conglomerates and sandstones from the Oligo-Miocene Barrême basin. (a) 
Outcrop view of the upper layer of the Clumanc Formation showing coarse conglomerate 
channels with erosive base and graded bedding incised in sandstones. The latter are 
interpreted as turbiditic deposits (Artoni & Meckel, 1998; Evans & Elliott, 1999; Callec, 
2001). (b) Close view of matrix-supported pebbles in coarse sandstones. Centimetric 
serpentinite pebbles are underlined by black arrows, others are limestones. (c) Investigated 
serpentinite pebbles: size ranges from 3 cm to 6 cm. (d) Outcrop view of the Grès verts 
formation: coarse sandstone-filled channels interbedded in flood-plain fine-grained silty-
sandstones are interpreted as fluvial channels and over-bank deposits, respectively (Evans & 
Elliott, 1999). (e) Facies of the Grès verts sandstones. (f) Isolated grains of the Grès verts 
Formation, bulk composition to the left and sorted serpentinite grains to the right.  
 
 
 
 



 32 

 
 
Figure 4. – Characteristic Raman spectra for the different varieties of Alpine serpentinite with 
band assignments according to Rinaudo et al. (2003), Groppo et al. (2006), and Auzende et 
al. (2006). 
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Figure 5. –Typical Raman spectroscopy spectra of serpentinite varieties obtained from detrital 
ultramafic clasts (LP01) or sand grains (MB153 and MB154) from the Oligocene-Miocene 
Barrême basin. For each Raman spectra the signal was analyzed on two acquisition spectral 
windows and the characteristic bands were indicated. (a) and (b)-Raman spectra of antigorite 
obtained respectively from the Clumanc conglomerate (sample LP01) and from the coarse to 
fine grained sand fraction of the Grès verts (sample MB154). (c) and (d)- Raman spectra of 
lizardite obtained respectively from the coarse grained fraction of sample MB154, and from 
the homogeneously fine grained sandstone sample MB153. 
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Figure 6. – (a) macroscopic view of the serpentinite pebble from Clumanc conglomerates 
(LP01 sample). (b) Typical microstructures observed in thin section under a polarizing optical 
microscope (crossed polarized). The matrix was full recrystallized into flakes of antigorite 
(atg) with an interlocking structure. The primary peridotitic pyroxene was replaced by 
oriented antigorite flake aggregates corresponding to “bastite” antigorite (bst).  
 



 35 

 
 
Figure 7. – (a) Phase diagram of antigorite and lizardite (after Evans, 2004) with Lz-lizardite, 
Atg-antigorite, Tcl-talc, Brc-brucite, Fo-forsterite. Up to 380°C the lizardite is entirely 
destabilized. The Blueschist pressure-temperature (P-T) conditions in the Queyras Schistes 
lustrés are indicated. Metamorphic facies are from Spear (1993): PP-Prehnite Pumpellyite, 
GS-greenschist, EA-epidote amphibolite. (b) Simplified tectonic of the Schistes lustrés of the 
Piedmont zone. This domain is bounded by the Briançonnais zone to the west and by the 
internal crystalline massif of Dora Maira and by the Monviso eclogitic unit to the east. The 
Schistes lustrés complex corresponds to a calcschist-rich accretionary wedge, enclosing 
scattered ophiolitic bodies, metamorphosed under HP facies conditions, from LT-blueschist 
facies conditions (Lizardite and antigorite bearing serpentinite) to the west to HT-blueschist 
facies conditions (only antigorite bearing serpentinite) to the east.  
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Figure 8. – Palinspastic maps and cross sections reconstructions showing the evolution of the 
relief zones from early to late Oligocene (based on Schmid & Kissling, 2000; Ford et al. 
2006). (a)  During the early Oligocene the main relief zones (white cross) were located above 
the Dora Maira massif  and in Provence. These two main reliefs zones feed the Barrême basin 
while the Tertiary Piedmont basin and Torino Hills are only feed by the internal alpine relief 
in blueschist clasts. (b) During the late Oligocene the activation of the Briançonnais thrust 
front allows the formation of a westward relief zone feeding the Barrême basin while in the 
internal alpine zone the persistence of high relief feeds the Tertiary Piedmont basin and the 
Torino Hills in eclogitic clasts. 
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sampling locality Sedimentary rock Metamorphic rock Andesite Eruptive rock 
Clumanc’s lower  
and middle layers 

99%, essentially 
Cretaceous limestone 
(generally 15 cm) 

Quartzite, 
serpentinite  

rare gabbro, dolerite, 
granite, mircodiorite, 
rhyolite 

Clumanc’s upper 
layer 

80% silt and quartz, 5-
15% of Cretaceous 
limestone. Some 
radiolarite, sandstone 

>1%, Migmatite, 
quartzite, 
serpentinite 

15%  4%, gabbro (there 
where euphotide), 
dolerite, granite, 
microdiorite, 
microgranite, pillow-
lavas cortex 

Saint-Lions 
conglomerate 

85%. Essentially 
calcareous sandstone, 
2-3% Cretaceous 
limestone, radiolarite  

Rare  3%  12%; granite, pillow-
lavas cortex, 
microdiorite, 
microgranodiorite 

 

 
Table 1. – Pebbles population density of Clumanc and Saint-Lions conglomerates, modified 
after Bodelle (1971). The lower layers of the lower Oligocene Clumanc conglomerate contain 
mainly limestone pebbles, and a lower proportion of metamorphic and eruptive rock. The 
upper layers contain more exotic rocks such as granitoïds and various ophiolititic pebbles 
(gabbros, pillow-lavas cortex, dolerites and serpentinites). 
 
 

Samples nature formation (see figure 2) latitude longitude
Number of 

spectra
Serpentinite 

species

PT6011.1 1 pebble Clumanc conglomerate 44°02'10" N 06°22'26" E 20 100% Atg

PT7064A.1 to  PT7064A.4 4 pebbles Clumanc conglomerate 44°02'10" N 06°22'26" E 80 100% Atg 

LP01 to  LP03 3 pebbles Clumanc conglomerate 44°02'10" N 06°22'26" E 60 100% Atg 

LP10 to  LP13 4 pebbles Clumanc conglomerate 44°02'10" N 06°22'26" E 80 100% Atg 

PT9012.01 to  PT9012.26 26 pebbles Clumanc conglomerate 44°02'10" N 06°22'26" E 30 100% Atg 

MB153 20 fine grains "grès verts" (green sandstones) 43°57'17" N 06°24'03" E 20 100% Lz 

MB154 25 coarse grains "grès verts" (green sandstones) 43°57'17" N 06°24'03" E 25 80% Lz / 20% Atg

 
Table 2. – Location and petrologic nature of serpentinite pebble samples in the Barrême basin.  
The proportion of antigorite (Atg) vesrus lizardite (Lz) present in pebbles is statistically 
indicated.   
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