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[1] Temporal fluctuations of water flux have been investigated as a mechanism that
strongly enhances transverse dispersion in heterogeneous media. Unfortunately, most
results have been obtained by linear stochastic theories on permeability fields of limited
variability. Worse, results are inconsistent regarding the impact of fluctuations on
longitudinal dispersion, which motivates our work to find the effect of temporal velocity
fluctuations on macrodispersion. We perform numerical Monte Carlo simulations for highly
variable permeability fields of up to 800 correlation lengths. We find that fluctuations
longitudinal to the main flow direction hardly modify macrodispersion because they do not
alter the flow lines. Fluctuations transverse to the main flow direction not only increase
transverse dispersion, which is well known, but also reduce the longitudinal
macrodispersion in a significant and consistent way, which contradicts previous findings.
The reduction of the longitudinal dispersion is comparable to the increase of transverse
dispersion. Most surprisingly, for high heterogeneity, temporal fluctuations cause total
(longitudinal plus transverse) macrodispersion to drop with respect to the steady state one.
Enhancement of the transverse macrodispersion comes from both the increase of the
transverse velocity variability and Lagrangian correlation. Reduction of the longitudinal
macrodispersion results from the reduction of the Lagrangian correlation of the longitudinal
velocity. That is, temporal fluctuations reduce longitudinal spreading both by breaking the
fastest velocity paths on the plume front and by letting solute bypass the low-permeability
zones that tend to block or trap the solute in steady state flow conditions.

Citation: de Dreuzy, J.-R., J. Carrera, M. Dentz, and T. Le Borgne (2012), Asymptotic dispersion for two-dimensional highly

heterogeneous permeability fields under temporally fluctuating flow, Water Resour. Res., 48, W01532, doi:10.1029/2011WR011129.

1. Introduction
[2] Spreading and mixing of solutes control the extent of

areas affected by point sources of pollution, the maximum
concentrations and the rate of chemical reactions. Disper-
sion quantifies the rate of spreading. While mixing is differ-
ent from spreading, both are intricately linked, so that large
spreading rates usually lead to large mixing rates. It is not
surprising that significant efforts have been devoted to
characterizing dispersion [e.g., Dagan, 1989; Gelhar et al.,
1992; Gelhar, 1993; Neuman et al., 1987]. Dispersion
results from the spatial variability of water velocity, which
in the context of permeable media is typically associated to
the intrinsic heterogeneity of natural materials. However,
one may expect dispersion to result also from temporal
fluctuations of the velocity. Head gradients fluctuate in
time at a range of scales: daily, as a result of evapotranspi-
ration cycles or earth tides; yearly, as a result of seasonal
variations in recharge, or hyperannually, as a result of dry

and wet year sequences. On top of these, pumping causes
an additional source of fluctuations.

[3] It is intuitive that temporal fluctuations of velocity
should enhance dispersion. In fact, early researchers attrib-
uted large lateral spreading of carefully monitored plumes
to unmodeled fluctuations in velocity direction [Sudicky,
1986; Sykes et al., 1982]. Therefore, it is not surprising that
many researchers have addressed the effect of temporal
fluctuations on dispersion. What is surprising is how dispar-
ate are their findings. Prior to discussing these, we must
point out that the problem is complex, that many assump-
tions are required to make it tractable, and that results are
quite sensitive to these. Potential differences include how
to define dispersion, how to represent it locally, and how to
handle medium heterogeneities or velocity fluctuations.

[4] Regarding the definition of dispersion, the practical
question from a modeling point of view is whether one can
find an apparent dispersion coefficient that reproduces the
observed plume, or breakthrough curve, without having to
model explicitly the fluctuations. This is the approach
adopted by earliest researchers [Ackerer and Kinzelbach,
1985; Goode and Konikow, 1990; Kinzelbach and Ackerer,
1986]. Instead, stochastic hydrologist tend to view disper-
sion as the rate of spreading of a solute plume (i.e., as the
rate of growth of the second-order moments of the plume).
One may evaluate the overall spreading rate of the ensem-
ble of all possible solute plumes. This approach leads to the
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concept of ensemble macrodispersion, which adds up the
effects of uncertainty on plume location and actual spreading
of each plume [Dagan, 1984; Gelhar and Axness, 1983;
Neuman et al., 1987]. Actual mean spreading is quantified by
the effective dispersion [Dentz et al., 2000; Kitanidis, 1988].
The effect of temporal fluctuations has been assessed on both
ensemble macrodispersion [Naff et al., 1989; Rehfeldt and
Gelhar, 1992; Zhang and Neuman, 1996] and effective dis-
persion [Cirpka and Attinger, 2003; Dentz and Carrera,
2003, 2005]. Temporal fluctuations add another dimension of
complexity to the stochastic definition of macrodispersion.
Spatial (i.e., permeability realizations) and temporal (i.e.,
realizations of hydraulic gradient fluctuations) ensemble
averaging are not interchangeable. Therefore, two additional
macrodispersion coefficients can be defined by first averaging
time fluctuations [Dentz and Carrera, 2003]. These addi-
tional definitions will be ignored here because of consistency
with previous works and because they are not meaningful for
assessing dispersion (every plume realization spreads under a
single realization of temporal fluctuations). However, other
choices may be more appropriate for other problems, such as
delineation of protection zones [Festger and Walter, 2002].

[5] Differences in the treatment of temporal fluctuations
also include differences in the representation of local mix-
ing. These differences are largely motivated by the ultimate
objective of the work. When the objective is to find an appa-
rent dispersion coefficient to be included in a model, it is
convenient to adopt local dispersion much larger in the lon-
gitudinal than in the transverse direction [Ackerer and
Kinzelbach, 1985; Goode and Konikow, 1990; Kinzelbach
and Ackerer, 1986]. When the objective is to assess the
effect of spatial variability, then directionally dependent dis-
persion emerges from heterogeneity, so that local mixing
can be represented by a constant scalar diffusion coefficient
[e.g., Dentz and Carrera, 2003, 2005; Dentz et al., 2011].

[6] The choice is not trivial. Dentz and Carrera [2003]
and Cirpka and Attinger [2003] found that dispersion is
enhanced by the coupling of spatial heterogeneity and tem-
poral fluctuations. Therefore, temporal fluctuations of veloc-
ity in a homogeneous medium with constant dispersion
would not result in enhanced spreading [Dentz and Carrera,
2003]. Instead, they would cause the whole plume to be dis-
placed back and forth around its mean position, while
spreading would continue unaffected by temporal fluctua-
tions. In contrast, Kinzelbach and Ackerer [1986] found that
the apparent transverse dispersivity increases in response to
fluctuations. Actually, they found that the sum of apparent
longitudinal and transverse dispersivities remains equal to
the sum of the local dispersivities if only the orientation, but
not the modulus, of mean velocity fluctuates in time. Goode
and Konikow [1990] corrected this finding to mean the sum
of dispersion coefficients. The point, however, remains that
if the medium is homogeneous there is little, if any, growth
of total (i.e., sum of longitudinal and transverse) dispersion.

[7] A significant source of complexity lies in the fact
that velocity may fluctuate around its mean in the longitudi-
nal and/or in the transverse directions. Moreover, it may
fluctuate in absolute value and/or direction. These fluctua-
tions may impact longitudinal and/or transverse dispersion
coefficients. All researchers have found that transverse
fluctuations of velocity (or fluctuations in direction) cause a
significant increase in transverse dispersion. However,

while Kinzelbach and Ackerer [1986] and Goode and Koni-
kow [1990] found the enhancement to be very large,
stochastic researchers found that it is not so important
[Cirpka and Attinger, 2003; Dagan et al., 1996; Zhang
and Neuman, 1996]. Results for all other combinations are
much more disparate.

[8] The effects of velocity fluctuations on longitudinal
dispersion are generally found to be much smaller than on
transverse dispersion. However, while some find that longi-
tudinal dispersion decreases with fluctuations in the direction
[Zhang and Neuman, 1996], others find that it may decrease
or increase [Goode and Konikow, 1990; Rehfeldt and
Gelhar, 1992], increase [Dentz and Carrera, 2005] or
remain unchanged [Cirpka and Attinger, 2003]. Similarly,
fluctuations in the magnitude of velocity have been reported
to either increase or decrease longitudinal dispersion [Zhang
and Neuman, 1996] or to increase it [Dentz and Carrera,
2003]. It is clear that so disparate set of results demands a
careful reanalysis.

[9] The objective of our work is to reanalyze the effect
of velocity fluctuations on macrodispersion. This work is
partly motivated by high heterogeneity and by the disparity
of previous results, which are mostly analytical. Therefore,
we need to perform highly accurate Monte Carlo simula-
tions of conservative transport. The methodology adopted
for these simulations is presented in section 2. Once vali-
dated against simple cases, simulation results are reported
in section 3 for different degrees of spatial heterogeneity
and temporal variability. For low heterogeneity and fluctua-
tions, they are compared to analytical approximations. For
higher degrees of heterogeneity and fluctuations, they are
discussed qualitatively and by means of the Lagrangian ve-
locity variability and correlations in section 4.

2. Model and Numerical Methods
[10] This study relies on classical model and numerical

methods. We first summarize their assumptions and param-
eters. We second validate our numerical methodology.

2.1. Model

[11] The permeability field K(x) is modeled by a 2-D
lognormal field with a Gaussian isotropic correlation func-
tion such as

hY 0ðxÞY 0ðx0Þi ¼ �2
Y exp � jx� x0j

�

� �2
" #

; (1)

where Y 0ðxÞ ¼ Y ðxÞ � hY i and Y ðxÞ ¼ lnðKðxÞÞ, h i stands
for spatial (ensemble) average �2

Y is the lognormal perme-
ability variance and � is the isotropic correlation length.
The computational domain is a rectangle of dimensions L1

and L2 in the two spatial dimensions x1 and x2 counted in
terms of correlation length (L1/�, L2/�). Simulated conduc-
tivities are periodic on the x2 ¼ 0 and x2 ¼ L2 boundaries
ðthat is; Y ðx1; 0Þ ¼ Y ðx1; L2ÞÞ to facilitate imposing periodic
boundary conditions, which will be required later.

[12] Temporal fluctuations in velocity are assumed to
result from fluctuations of the boundary conditions, which
induce a temporally varying spatial mean hydraulic gradi-
ent JðtÞ ¼ �rhðx; tÞ. These fluctuations are modeled by an
approximate method described subsequently. Without loss
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of generality, we take the temporal mean hydraulic gradient
�J aligned with the first direction �J i ¼ �i1J (the overbar
stands for time averaging). Fluctuations are defined with
respect to the temporal mean gradient in dimensionless

form mðtÞ ¼
�

JðtÞ � �J
�
=J as a random process character-

ized by the two variances �2
v1 and �2

v2 of the fluctuations �1

and �2, respectively, parallel and orthogonal to the main
flow direction, by the correlation coefficient � between
those fluctuations, and by a Gaussian correlation function
having the same correlation time � in both directions:

vðtÞvtðt0Þ ¼
�2

v1 � � �v1 � �v2

� � �v2 � �v1 �2
v2

" #
exp � jt � t0j

�

� �2
" #

:

(2)

[13] This model of fluctuations generalizes the one of
Dentz and Carrera [2005] by introducing the correlation
between the longitudinal and transverse fluctuations and by
allowing �2

v1 to be different from �2
v2.

[14] The time-dependent velocity u(x,t) is derived by
using a quasi steady state approximation equivalent to
neglecting storativity. Temporal fluctuations of the bound-
ary conditions are assumed to transfer instantaneously
everywhere in the field, which is a good approximation for
confined moderately small aquifers. This simplification
facilitates the interpretation of results, by eliminating one
independent variable, and its solution, by taking advantage
of linearity to get the time-dependent velocity fields from
the superposition of two velocity fields u1 and u2.

[15] Here, u1 is obtained from the classical steady state
diffusion equation with fixed heads on the x1 ¼ 0 and x1 ¼ L1

boundary and with periodic flux boundary conditions on the
x2 ¼ 0 and x2 ¼ L2 boundaries (Figure 1):

r½KðxÞrh1ðxÞ� ¼ 0

h1jx1¼0 ¼ 0

h1jx1¼L1
¼ L1 j�Jj

u1jx2¼0 � njx2¼0 ¼ �u1jx2¼L2
� njx2¼L2

;

(3)

where velocity u1 is obtained from the head gradient by
Darcy’s law: u1ðxÞ ¼ �KðxÞrh1ðxÞ=�. The fixed boundary
heads are chosen to produce a macroscopic �J head gradient.
u2 is obtained by rotating these boundary conditions by 90� :

r½KðxÞrh2ðxÞ� ¼ 0

h2jx2¼0 ¼ 0

h2jx2¼L2
¼ L2 j�Jj

u2jx1¼0 � njx1¼0 ¼ �u2jx1¼L1
� njx1¼L1

:

(4)

[16] At each time, the velocity u(x1,x2,t) is obtained as a
simple linear combination of u1 and u2 :

uðx; tÞ ¼ ½1þ �1ðtÞ� � u1ðxÞ þ �2ðtÞ � u2ðxÞ; (5)

where �1 and �2 are the previously defined temporal fluctu-
ations parallel and orthogonal to the main flow direction.

Note that u1ðxÞ and u2ðxÞ are vector fields having compo-
nents in both spatial directions even though they are
obtained by applying head gradients in a single direction.
With this choice of boundary conditions, the spatial and
temporal averaged velocity huðx; tÞi is equal to the geomet-
rical average of the local permeabilities Kg times the mean
hydraulic gradient �J divided by the porosity � [Matheron,
1967]:

hui ¼ �Kg � �J=�: (6)

[17] Porosity is taken here as constant.
[18] The periodic boundary conditions imposed both on

the permeability generation and on the flow equation
orthogonally to the main flow direction ensures that the ve-
locity statistics are not biased by the side of the domain, in
contrast to the no-flow boundary conditions case [Englert
et al., 2006; Salandin and Fiorotto, 1998].

[19] Solutes are transported by advection and diffusion.
Accepting that pore-scale dispersion may be directionally
dependent, this work is restricted to the case of homogene-
ous local diffusion (as opposed to local velocity-dependent
dispersion), on the assumption that tensorial dispersion will
emerge in response to heterogeneity in hydraulic conduc-
tivity, because of simplicity and because it may be assumed
that the choice will bear little effect on macrodispersion.
Therefore, concentration c follows locally the classical
advection diffusion equation:

@c

@t
þr � ðucÞ � r � ðd � rcÞ ¼ 0; (7)

where d is the diffusion coefficient, which we take as con-
stant. Periodic boundary conditions are also imposed for
concentrations on the x2 ¼ 0 and x2 ¼ L2 boundaries. That
is, particles leaving the domain at x2 ¼ 0 are reintroduced
at x2 ¼ L2, and vice versa, but are labeled as having crossed
the boundary. As a result, everything happens as if the

Figure 1. Illustration of the numerical setting used to
obtain u1(x) on a small permeability field of size 50� by
25�. The typical sizes simulated in this study are 4 to 16
times larger. Periodic boundary conditions are applied both
on the permeability field, on the flow and on the transport
equations. These boundary conditions are rotated by 90� to
obtain u2(x). Under the pseudo steady state assumption, u1

and u2 are combined according to equation (5) to produce
the temporally fluctuating velocity field u(x,t).

W01532 DE DREUZY ET AL.: DISPERSION INDUCED BY TEMPORAL FLUCTUATIONS W01532

3 of 13



domain were replicated in the transverse directions. The
plume can thus spread laterally outside of the physical lim-
its of the domain.

[20] The ratio of advection to diffusion is classically
described by the Peclet number Pe with

Pe ¼ ð��uÞ=d: (8)

[21] Injection is instantaneous on the full width of the do-
main L2 orthogonally to the main flow direction. Injection is
located downstream from the domain inlet by a distance of
10� from the domain inlet to avoid boundary effects. Injec-
tion is proportional to flow. The large injection window is
designed to speed up convergence to the asymptotic regime
[Dentz et al., 2000], at least in the longitudinal direction.

2.2. Simulation Method

[22] The methodology is analogous to that used for
deriving the 2-D asymptotic dispersion coefficients in
steady state flows in presence of local diffusion or local
hydrodynamic dispersion [Beaudoin et al., 2007, 2010; de
Dreuzy et al., 2007]. To sample the stochastically defined
permeability and temporal fluctuations model, we have
chosen a basic Monte Carlo method.

[23] We use a fully parallelized simulation method to
generate permeability fields and temporal fluctuations, and
solve the flow and transport equations. The Fourier trans-
form method, which ensures periodicity of the simulated
field, is used through the parallel library fftw to generate the
Gaussian correlated permeability fields [Frigo and Johnson,
2005; Gutjahr, 1989; Pardo-Iguzquiza and Chica-Olmo,
1993]. The computational domain is discretized in square
grid cells (dx1 ¼ dx2 ¼ lm). The size of the system in terms
of correlation lengths (L1/�, L2/�) and the discretization of a
correlation length in cells (�/lm) should be both large to
ensure that asymptotic dispersion values are reached. We
take for �/lm a classical value of 10 [Ababou et al., 1989; de
Dreuzy et al., 2007]. Without time fluctuations, convergence
is practically reached for values of L1 ranging from 200 to
800 for �Y ¼ 1 and �Y ¼ 3, respectively [de Dreuzy et al.,
2007]. To speed up convergence to the asymptotic regime,
we choose a large injection window of 200 correlation
lengths orthogonal to the main flow direction. These choices
lead to a number of cells of the order of 108, justifying the
need for parallel computing.

[24] We use a finite volume scheme with harmonic inter-
mesh permeabilities to solve the flow equation [Chavent
and Roberts, 1991] and the algebraic multigrid method of
HYPRE to solve the yielded linear system [Erhel et al.,
2009; Falgout et al., 2005]. Velocity is linearly interpo-
lated in both directions from the cell faces [Pollock, 1988].

[25] A Monte Carlo realization is characterized by a real-
ization of the conductivity field and a realization of the
temporal fluctuations. This means that both conductivity
field and temporal fluctuations change from realization to
realization. The temporal fluctuation sequences are gener-
ated by a Cholesky decomposition from two independent
Gaussian autocorrelated sequences 	1 and 	2 [Alabert,
1987; Davis, 1987; Le Ravalec et al., 2000]:

�1ðtÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� �2

p
��1	1 þ ���1	2

�2ðtÞ ¼ ��2	2:
(9)

[26] Here, 	1 and 	2 have been generated with the same
methods used for generating the permeability field. The only
difference is that 	 sequences are 1-D whereas permeability
fields are 2-D. The discretization step of these sequences
was set to one 10th of the correlation time to match what
was chosen for the spatial discretization.

[27] We use random walk to simulate solute transport
[Kinzelbach, 1988; Ramirez et al., 2008]. Particles are
advected and diffused within the medium following the
Fokker-Planck equation [Delay et al., 2005; Salamon et al.,
2006; van Kampen, 1981]. Advection is simulated by a
first-order explicit scheme. Between t and t þ dt, a particle
moves from positions x(t) to x(t þ dt) by advection and dif-
fusion:

xðt þ dtÞ ¼ xðtÞ þ u½xðtÞ; t�dt þ
ffiffiffiffiffiffiffiffiffiffiffi
2 d dt
p

Z r (10)

with u½xðtÞ� the velocity at position x, Z a normalized Gaus-
sian distributed random number and r a vector with uni-
form distribution of orientations. The time step evolves
along the particle path according to the velocity magnitude
of the crossed cells, much in the spirit of Wen and Gomez-
Hernandez [1996]. More precisely, the time step is either
proportional to the local advection time, which equals the
cell size lm divided by the maximum of the velocities com-
puted on the cell borders noted vx1þ; vx1�; vx2þ; vx2�, in the
x1 and x2 directions or to the diffusion time necessary to
cross the cell :

dt ¼ 1



min

lm
maxðvx1þ; vx1�; vx2þ; vx2�Þ

;
l2
m

2d

� �
; (11)

where 
 is an integer that approximates the number of time
steps performed by the particle in the cell. In the simula-
tions 
 is set to 20, meaning that a particle takes of the
order of 20 steps to cross a cell.

2.3. Estimate of Effective Dispersion

[28] We estimate the asymptotic dispersion coefficient as
the limit of the effective dispersion for large time. At large
times, the effective and ensemble dispersion coefficients
are equal [Dentz et al., 2000; Kitanidis, 1988]. Spreading
of the solute in a single medium and temporal fluctuations
realization is defined by the second centered moments

�i2
k ðtÞ ¼

1

Np

XNp

j¼1

xj;i
k ðtÞ

2 � 1

Np

XNp

j¼1

xj;i
k ðtÞ

 !2

; (12)

where xj;i
k ðtÞ denotes the position of the jth particle in the

ith realization with k ¼ 1,2 and Np is the number of par-
ticles injected in a single realization. The growth rate of the
second center moments in a single realization ðof Y ðxÞ and
JðtÞÞ is measured by the dimensionless longitudinal and
transverse dispersion coefficients:

Di
kðtÞ ¼

1

2��u

d�i2
k ðtÞ
dt

: (13)

[29] Dispersion coefficients are normalized by ��u. The
effective second centered moment and dispersion coefficients
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are defined as ensemble averages over NR Monte Carlo real-
izations:

�2
kðtÞ ¼

1

NR

XNR

i¼1

�i2
k ðtÞ (14)

DkðtÞ ¼
1

NR

XNR

i¼1

Di
kðtÞ: (15)

[30] All time-dependent dispersion results will be pre-
sented against the dimensionless tN defined as the time t
normalized by the characteristic time necessary to cross a
correlation length �=�u (tN ¼ t�u=�).

[31] The asymptotic regime is observed over at least the
last quarter of the simulation time range, i.e., over the time
interval b0:75ti

b; t
i
bc where ti

b is the first breakthrough time
of the ith realization, i.e., the time at which the first particle
leaves the system by the x1 ¼ L1 side. In this time range,
dispersion does not display any systematic increasing or
decreasing tendency. We thus define the realization-based
asymptotic dispersion coefficient or macrodispersion coef-
ficient as

Di
kA ¼

Z ti
b

0:75ti
b

Di
kðtÞdt

0:25 ti
b

:
(16)

[32] The asymptotic dispersion coefficient is simply
obtained by averaging over the number of simulations NS:

DkA ¼
1

NS

X
NS

Di
kA: (17)

[33] The advantage to derive the asymptotic dispersion
coefficient first on a realization basis is to adapt the averag-
ing time range b0:75ti

b; t
i
bc to the realization first break-

through time rather than taking the minimum of the
realization first breakthrough times tb for all simulations.

2.4. Parameter Values

[34] The characteristic length is the correlation length �
and the characteristic time is the average time needed to
cross one correlation length �=�u. All dimensional parame-
ters of the model can be expressed with respect to these
two characteristic measures. Expressed in dimensionless
form, the independent parameters of the model are the Pec-
let number (equation (6)) expressing the rate of advection
to diffusion, the standard deviation of the permeability field
distribution �Y, the standard deviation of the temporal fluc-
tuations along and perpendicular to the mean flow gradient
�v1 and �v2, their correlation coefficient � and temporal
fluctuation correlation time � . The dimensionless value of
the latter (normalized by the advection correlation time
�=�u) is also called the Kubo number:

� ¼ ��u

�
: (18)

[35] As we are interested on the effects of spatial and
temporal variabilities, we have fixed the Peclet and Kubo

numbers while varying the three variances �Y, �v1 and �v2

and the correlation coefficient �. The Peclet number was
set to 103 meaning a moderate diffusion compared to the
average advection. The Kubo number was set to 1 because
this value leads to significant effects of temporal fluctua-
tions [Dentz and Carrera, 2005], and still makes it numeri-
cally feasible to simulate transport over many correlation
times. The correlation coefficient � has been fixed either at
0 or at an intermediate value of 0.5. For heterogeneity, we
have tested low, moderate and high-heterogeneity cases
corresponding to values of �Y equal to 0.5, 1 and 3. For
temporal fluctuations, we have also chosen low, intermedi-
ate and high fluctuations corresponding to �v1 and �v2 equal
to 0.25, 0.5, and 1, respectively.

[36] Concerning the values of the numerical parameters,
we have checked the convergence of the effective disper-
sion with the temporal discretization of the fluctuations,
with the number of simulations and with the number of par-
ticles. The variability of the effective dispersion around an
average value taken as its asymptotic values comes from
the number of realizations more than from the number of
particles per simulation. To estimate the decrease in vari-
ability, we use the standard deviation of the transverse
effective dispersion during the fourth temporal quarter of
the effective dispersion signal as a measure. For the largest
effective dispersion variability corresponding to �Y ¼ 3 and
�v1 ¼ �v2 ¼ 1, the standard deviation of the Di

1A’s drops
from 2.1 to 1.1 between 25 and 100 simulations. The
latter implies a standard deviation around 0.01 for our esti-
mate of D1A. Following these convergence results and con-
strained by the available computation time, the results
presented in this article have been obtained for a number
NS of simulations equal to 100 and 104 particles per
simulation.

2.5. Verification

[37] We verify our methodology in two ways. First,
without fluctuations, the computation of the asymptotic dis-
persion coefficient has been checked against the analytical
approximation for low- and moderate-permeability hetero-
geneity (�Y equal to 0.5 and 1) [Gelhar and Axness, 1983]
and against previously computed values for high heteroge-
neity (�Y equal to 3) [de Dreuzy et al., 2007]. For �Y equal
to 0.5 and 1, we find longitudinal dispersion coefficient val-
ues of 0.25 and 1.01, which are within less than 1% to the
predicted values of 0.25 and 1. For �Y equal to 3, we find
that the dispersion coefficient stabilizes at 19.5, within 2%
of the previously obtained value of 19.1. The transverse
dispersion coefficient is much smaller and can be identified
only for �Y equal to 3. For �Y equal to 3, we find a value of
0.15 close to the value of 0.16 obtained by de Dreuzy et al.
[2007].

[38] Second, we check that the temporal fluctuations of
the mean velocity are consistently translated into the first
moment of the particle positions. From equation (5), the
time-dependent mean velocity has two nonzero compo-
nents �u1 ¼ ½1þ �1ðtÞ��u and �u2 ¼ �2ðtÞ�u. We check that
these input values are closely matched by the mean particle
velocities in both directions (Figure 2).

[39] We have thus checked that our methodology to
compute the effective dispersion is consistent with the
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existing results without temporal fluctuations and that the
temporal fluctuations are correctly modeled.

3. Results
[40] We first present the results for configurations corre-

sponding to uncorrelated (� ¼ 0) and equally variable lon-
gitudinal and transverse fluctuations (�v1 ¼ �v2) and a
Peclet number of 1000. We investigate the dependence of
the asymptotic dispersion coefficients with the amplitude
of the fluctuations. We then use these results as a reference
for analyzing the effect of a correlation between longitudi-
nal and transverse fluctuations and separate longitudinal or
transverse fluctuations.

3.1. Equal Fluctuations in the Longitudinal and
Transverse Directions

[41] Figure 3 display effective dispersion coefficients as
functions of time for standard deviations of the log-perme-
ability distribution �Y equal to 1 and 3, respectively. Both
figures share common trends. Temporal fluctuations induce
a decrease of the longitudinal effective dispersion (Figure
3a and Figure 4a) and an increase of the transverse effec-
tive dispersion (Figure 3b and Figure 4b). The longitudinal
as well as the transverse effective dispersion coefficients
display increasing variability when increasing the fluctua-
tion amplitudes. This variability classically observed in the
steady state case [Bellin et al., 1992; de Dreuzy et al.,
2007; Trefry et al., 2003] is enhanced by the temporal fluc-
tuations. However, it does not prevent convergence of the
effective dispersion toward an asymptotic value at late
times. The insert of Figure 3b compares the temporal evo-
lution of the effective second centered moment given by
equation (14) for the highest-fluctuating case �v1 ¼ �v2 ¼ 1
(dots) to the trend that would be derived from the asymp-
totic transverse dispersion coefficient D2A as computed
with equations (16) and (17). The good agreement between

the variance of the particle transverse positions and the lin-
ear trend strengthens the reliability of the estimated trans-
verse asymptotic dispersion coefficients.

[42] Figure 5 summarizes the asymptotic dispersion
coefficients obtained from equations (16) and (17). For the
small and moderate heterogeneity cases �Y ¼ 0.5 and 1
(crosses and squares of Figure 5), transverse dispersion is
critically enhanced by fluctuations as also shown by Cirpka
and Attinger [2003]. Temporal fluctuations cause the
steady state transverse dispersion coefficient to be multi-
plied by factors of 10 and 20 for �v1 ¼ �v2 equal to 0.5
and 1, respectively. As opposed to the transverse compo-
nent, the longitudinal asymptotic dispersion is reduced by
heterogeneity by at most 20% (Figure 5a). (see Figure 6.)
Figure 7, obtained by injecting particles over only 2� illus-
trates the strong increase of the transverse dispersion trig-
gered by the simultaneous presence of temporal fluctuations
and heterogeneity ð�v1 ¼ �v2 ¼ 1Þ.

[43] For the larger heterogeneity case �Y ¼ 3, fluctua-
tions also reduce the longitudinal asymptotic dispersion but

Figure 2. Comparison of the longitudinal and transverse
mean particle velocities dhxpi=dt normalized by the mean
velocity �u (squares and disks) with the imposed fluctuations
(black and red lines) for one simulation taken with �Y ¼ 1,
�v1 ¼ �v2 ¼ 1 and � ¼ 0.5.

Figure 3. (a) Longitudinal D1 and (b) transverse D2

effective dispersion coefficients for �2
Y ¼ 1 without any

correlation between longitudinal and transverse fluctuations
(� ¼ 0). The insert of Figure 3(b) shows the transverse var-
iance of particle positions (dots) and the trend given by the
asymptotic dispersion coefficient D2A (line).
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almost in the same proportion as for the smaller heteroge-
neity case, �2

Y ¼ 1, as shown by the superposition of
squares and stars on Figure 5a. In this large heterogeneity
case, the effect of fluctuations is similar to that of diffusion
in that both reduce the longitudinal asymptotic dispersion.
For a Peclet number of 103, diffusion reduces the asymptotic
dispersion by around 15% [de Dreuzy et al., 2007] while
fluctuations reduce it by 10% to 20% for �v1 ¼ �v2 ranging
from 0.5 to 1. The reduction induced by diffusion or fluctua-
tions are comparable in this case. In the transverse direction,
fluctuations still yield most of the enhancement of the trans-
verse dispersion coefficient. Figure 8 illustrates even more
than Figure 7 the simultaneous enhancement of the trans-
verse dispersion and reduction of the longitudinal dispersion.
For this particular realization, fluctuations cause the plume
to be even more spread in the transverse than in the longitu-
dinal direction.

[44] The effects of fluctuations on the absolute values of
longitudinal and transverse macrodispersion are compara-
ble whatever the heterogeneity level. Entering in details,
however, we note the following difference. The total (sum
of the longitudinal and transverse) dispersion increases
with increasing fluctuations in the low-heterogeneity case,

but decreases in the high-heterogeneity case (Figure 6).
The sum increases by at most 30% and decreases by at most
10%. In the intermediate case �Y ¼ 1, the sum remains
almost constant for moderate variances of the temporal fluc-
tuations (�v1 ¼ �v2 < 1). This implies, first, that total disper-
sion is not strictly conserved when introducing fluctuations
but also that it is not too far from conservative. Second, the
enhancement of the transverse macrodispersion is larger than
the reduction of the longitudinal macrodispersion for low het-
erogeneity. But the opposite occurs for high heterogeneity.

[45] We compare our numerical results with analytical
approximations. These can be obtained from the results pre-
sented by Dentz et al. [2011] using a first-order perturbation
expansion in �2

Y , �2
v1 and �2

v2 for flow and transport, which
leads to

D1Að��1 ¼ ��2Þ ¼ D1Að��1 ¼ ��2 ¼ 0Þ 1� �2
�2

�2 � �þ �3ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ �2
p

� �� �
(19)

Figure 4. Same as Figure 3 for �2
Y ¼ 9. Figure 5. (a) Longitudinal and (b) transverse asymptotic

dispersion coefficients as functions of �v1 and �v2. The lon-
gitudinal asymptotic dispersion coefficient D1A is normal-
ized by its value obtained without fluctuations.
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D2Að��1 ¼ ��2Þ
��u

¼
ffiffiffi
�

2

r
�2

Y �
2
�2

�ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ �2
p ; (20)

where we recall that � is the Kubo number defined by equa-
tion (18). Analytical expressions and numerical results are
qualitatively consistent (Figure 5). The agreement is excel-
lent for the transverse asymptotic macrodispersion as long
as �Y and �v remain much smaller than 1 (Figure 5b,
crosses versus dash-dotted line). The agreement is not as
good for the longitudinal macrodispersion under the same
conditions. For �Y and �v approaching and larger than 1,
numerical and analytical results differ significantly. Note
that the analytical results of Dentz and Carrera [2005] dif-
fer from our numerical results. This is due to an inconsis-
tency in the perturbation expansion for the effective
dispersion coefficients, which is what motivated the work
of Dentz et al. [2011].

3.2. Influence of Correlation Between Longitudinal
and Transverse Fluctuations

[46] Table 1 compares the asymptotic dispersion coeffi-
cients computed with a partial correlation between the longi-
tudinal and transverse fluctuations (� ¼ 0.5) and without any
correlation (� ¼ 0). Differences are small. For �v1 ¼ �v2

equal to 0.5 and 1, the global trend of the correlation is to
enhance the dispersion coefficients by at most 10% except
for the transverse dispersion case with �v1 ¼ �v2 ¼ 0:5 and
�Y ¼ 3. In this case, the relevance of the value of 0.7
remains however limited because the transverse asymptotic
value is almost not discernable behind the large temporal
variability of the dispersion.

3.3. Separate Effects of Longitudinal and Transverse
Fluctuations

[47] Table 2 displays the ratios of the dispersion coeffi-
cients computed with only longitudinal fluctuations (without
any transverse fluctuations) to those without any fluctua-
tions. For the longitudinal component, the ratios are equal
to 0.98 or 0.99, which suggests that the longitudinal fluctua-
tions do not have any influence on the longitudinal asymp-
totic dispersion coefficient. For the transverse component,

the ratios are slightly more variable between 0.95 and 1.17.
Still, the transverse asymptotic dispersion coefficients
remain very low, i.e., of the order or lower than the trans-
verse asymptotic dispersion coefficient without fluctuations.
They remain far below the order of magnitude enhancement
of transverse dispersion obtained with both longitudinal and
transverse fluctuations. In summary, longitudinal fluctua-
tions hardly affect the asymptotic dispersion coefficients.

[48] To analyze the effect of the sole transverse fluctua-
tions, we study a different ratio. Table 3 displays the ratio
of the asymptotic dispersion coefficients obtained for the
sole transverse fluctuations and for both longitudinal and
transverse fluctuations. Both for the longitudinal and trans-
verse components, the ratios are very close to 1, more pre-
cisely between 0.89 and 1.12. This shows that the effect of
sole transverse fluctuations is comparable to that of both
longitudinal and transverse fluctuations. The sole transverse
fluctuations induce both the reduction of longitudinal dis-
persion and the enhancement of transverse dispersion.

[49] The effects of the longitudinal and transverse fluctu-
ations cannot be rigorously summed because concentration
depends nonlinearly on the velocity u in the advection dif-
fusion equation (7). However, the previous results show
empirically that the cumulative effects of the longitudinal
and transverse fluctuations are in fact the sum of the effects
of the sole longitudinal and transverse fluctuations. Every-
thing happens as if the effect of both longitudinal and trans-
verse fluctuations amounts to the sole effect of the
transverse fluctuations irrespectively of longitudinal fluctu-
ations. The weak influence of the correlation between lon-
gitudinal and transverse fluctuations reported in section 3.2
probably reflects the small influence of the longitudinal
fluctuations. We underline that these results are so far dem-
onstrated only for the asymptotic dispersion.

4. Discussion
[50] The most striking result concerns the behavior of

the sum of the longitudinal and transverse dispersion coeffi-
cients, which we have termed total dispersion and which is
not far from conservative, especially at moderate to high
levels of heterogeneity (�2

Y > 1). Strict conservation of the
total dispersion had been obtained for sinusoidal fluctua-
tions by Goode and Konikow [1990] but they assumed a
homogeneous medium. In the analytical development of
Dentz et al. [2011] the enhancement of transverse disper-
sion is also associated to a reduction of longitudinal disper-
sion for low levels of heterogeneity. However, the sum of
both remains positive (dashed line of Figure 6) and larger
than those derived from the numerical results. The devia-
tion is largest for the high-heterogeneity case, when the
reduction of longitudinal dispersion more than offsets the
enhancement of transverse dispersion.

[51] These results are different from those published in
the scientific literature. Zhang and Neuman [2003] pre-
dicted a decrease of longitudinal dispersion in response to
transverse fluctuations, but also that it may decrease or
increase in response to longitudinal fluctuations. Rehfeldt
and Gelhar [2003] predicted that longitudinal decrease in
response to transverse fluctuations. Cirpka and Attinger
[2003] found an enhancement of the transverse dispersion
without any variation of the longitudinal dispersion under

Figure 6. Sum of the longitudinal and transverse disper-
sions normalized by their steady state counterpart.
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the assumption of sinusoidal transverse fluctuations. The
longitudinal dispersion was obtained numerically on peri-
odic unit cells with a random-walk method for transport.
The origins of the difference may come non exclusively
from the differences on the fluctuation type, on the Euclid-
ean dimensionality (2-D here, 3-D in the work of Cirpka
and Attinger [2003]) or from the limitations of unit cell
simulations.

[52] The effect of fluctuations on dispersion can be
addressed in the Lagrangian framework, where dispersion
is equal to the time integral of the Lagrangian velocity cor-
relation function [Gelhar, 1993]. In other words, the as-
ymptotic dispersion coefficient is equal to the Lagrangian
velocity variance times the integral correlation time scale.
Temporal fluctuations broaden the Lagrangian velocity
distribution in both the longitudinal and transverse direc-
tions (Figure 9). In the longitudinal direction (Figure 9a),
the distribution of the absolute value of the first velocity

component p(ju1j) is broadened for both �Y ¼ 1 and 3 both
toward higher positive velocities and toward negative coun-
tercurrent velocities. In the transverse direction (Figure
9b), the distribution of the absolute value of the second ve-
locity component p(ju2j) is extended toward higher values
and as p(u2) is symmetrical around 0, the full distribution
p(u2) is broadened toward both extremely low and high val-
ues. More quantitatively, from the steady state case to the
highest temporal fluctuating case (�v1 ¼ �v2 ¼ 1), the var-
iance of the Lagrangian velocity distribution increases by a
factor 4 in the longitudinal direction and by 4 to 10 in the
transverse direction.

[53] In the transverse direction for �Y ¼ 3 and �v1 ¼
�v2 ¼ 1, the increase of the Lagrangian velocity variance
by a factor of 10 causes the largest part of the dispersion
enhancement of 15. By deduction, the remaining part of
the enhancement comes from stronger correlations of the
transverse component of the Lagrangian velocity. In the

Figure 7. Evolution of the decimal logarithm of concentrations at three evolving times t�u=� ¼ (top)
18, (middle) 36, and (bottom) 54 for the moderately heterogeneous case (�Y ¼ 1). Simulations performed
without fluctuations and with independent fluctuations in both the (right) longitudinal and (left) trans-
verse directions, respectively, with the largest studied amplitudes �v1 ¼ �v2 ¼ 1. Five 105 particles have
been injected 10� downstream the left boundary condition along a vertical line of length 2�. These injec-
tion conditions are different from the extended line source used for computing the asymptotic dispersion
coefficients but better illustrate the dispersion tendencies. The black ellipse marks delimit twice the
extension of the plume as computed by its standard deviations.
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longitudinal direction, dispersion decreases despite the four
times increase of the variance of the longitudinal compo-
nent of the Lagrangian velocity. By deduction, this indi-
cates that the Lagrangian velocity correlation is reduced by
a factor larger than 4 in the longitudinal direction. Tempo-
ral fluctuations thus enhance weakly the Lagrangian veloc-
ity correlation in the transverse direction but reduce it
strongly in the longitudinal direction.

[54] These modifications of correlations are illustrated
on the snapshots of the highly heterogeneous case (Figure
8). Without fluctuations, the plume stretches in the longitu-
dinal direction. The fastest part of the solute ahead indi-
cated by the red arrow marked A highlights a strongly
correlated path of high longitudinal velocities. At the other
end, the slowest part of the solute indicated by the red
arrow marked B is held behind a small permeability zone.

Figure 8. Same as Figure 7 for the highly heterogeneous case (�Y ¼ 3) at three different times t�u=� ¼
(top) 12, (middle) 18, and (bottom) 25. The permeability field has been superimposed in the background
with permeability values increasing sharply from blue to red. Note on the right column the effect of the
periodic boundary conditions that transfer virtually solute from the lower to the higher side of the sys-
tem. However, for the computation of the transverse dispersion, everything happens as if particles are
below or above the displayed domains. The real position of the solute (out of the system size) is however
taken for the computation of the various plume moments.

Table 1. Ratio of Asymptotic Dispersion Coefficients With and
Without Correlation Between the Longitudinal and Transverse
Fluctuations

�v1 ¼ �v2

D1Að� ¼ 0:5Þ
D1Að� ¼ 0Þ

D2Að� ¼ 0:5Þ
D2Að� ¼ 0Þ

�2
Y ¼ 1 0.5 1.00 1.00

�2
Y ¼ 1 1 0.99 1.06

�2
Y ¼ 9 0.5 1.04 0.70

�2
Y ¼ 9 1 1.03 1.10

Table 2. Ratio of Asymptotic Dispersion Coefficients With the
Sole Longitudinal Fluctuations and Without Any Fluctuations

�v1

D1Að�v1; �v2 ¼ 0Þ
D1Að�v1 ¼ 0; �v2 ¼ 0Þ

D2Að�v1; �v2 ¼ 0Þ
D2Að�v1 ¼ 0; �v2 ¼ 0Þ

�2
Y ¼ 1 0.5 0.99 1.17

�2
Y ¼ 1 1.0 0.99 1.15

�2
Y ¼ 9 0.5 0.98 0.95

�2
Y ¼ 9 1.0 0.99 0.92
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The solute is blocked by slow advection behind a low per-
meability zone that acts as a barrier. To a lesser extent, it is
also trapped by diffusion within the low-K zone. The solute
gets away from blocking barriers and from diffusion traps
by slowly flowing around them.

[55] Transverse fluctuations affect both ends of the
plume. On the one hand, they carry solute away from the
high-velocity paths in the leading edge of the plume. As a
result, the mean velocity of the leading portion of the

plume is reduced. Effectively, as argued by Zhang and
Neuman [1996] for the conditional Eulerian velocity covar-
iance, the correlation of the leading particles is reduced at
the plume front by transverse fluctuations in the head
gradient.

[56] The trailing end of the plume, on the other hand is
accelerated by transverse fluctuations because they facili-
tate the solute getting away from flow barriers. They also
affect trapping, but to a lesser extent (compare diffusion
rings with and without fluctuations in Figure 7). In fact a
few trapping rings can be observed trailing the plume in
Figure 6. However, by reducing blocking time, transverse
fluctuations also reduce the relative importance of trapping.
Again, the Langragian correlation time is reduced. Notice,
however, that these effects would hardly be noticeable in
terms of Eulerian covariances because the velocity is small,
so that correlation is restricted to short distances.

[57] The effect of the reduction of the longitudinal dis-
persion is analogous to that obtained under steady state
conditions with diffusion as conjectured in the introduction
[de Dreuzy et al., 2007]. The origins of the effects are how-
ever different. Diffusion has a double effect of reducing the
velocity variance and the Lagrangian velocity correlation.
Both of these effects lead to a reduction of the kinematic
dispersion. In the case of temporal fluctuations, the effect
of the reduction of the Lagrangian correlation dominates
that of the increase of the velocity variability (Figure 9).
Reduction of correlation is the most important mechanism
and yields a similar effect as in Taylor dispersion [Taylor,
1953]. In fact, the Taylor dispersion coefficient is inversely
proportional to the diffusion coefficient that induces the
reduction of correlation of the Lagrangian velocity.

5. Conclusions
[58] We have studied the cumulative effects of heteroge-

neity and temporal fluctuations of the flow conditions on the
asymptotic dispersion coefficients. The longitudinal and
transverse dispersion coefficients have been estimated by
using extensive Monte Carlo simulations on large domains.

[59] Numerical results show that fluctuations parallel to
the main flow directions hardly change the macrodispersion
coefficients. As longitudinal fluctuations do not alter the flow
lines, they have a limited impact on macrodispersion. This
implies that the decomposition of the fluctuations in longitu-
dinal and transverse components is more relevant than the
other possible decomposition in direction and amplitude as
the sole influential fluctuation is the transverse one. It also
implies that this conclusion will hold in 3-D systems.

[60] Transverse temporal fluctuations (1) enhance trans-
verse spreading and (2) reduce longitudinal spreading.
Enhancement of transverse spreading comes from the wid-
ening of the velocity distribution supplemented by the
increase of the correlation of the transverse Lagrangian ve-
locity. Reduction of longitudinal spreading comes from the
deceleration of the plume front and acceleration of the
plume tail that dominates the widening of the velocity dis-
tribution. As a result of these opposed trends on the longitu-
dinal and transverse dispersions, the total dispersion (sum
of the longitudinal and transverse dispersion coefficients) is
not far from conservative. That is, temporal fluctuations
cause little change in total dispersion with respect to the

Figure 9. Asymptotic distribution of the (a) longitudinal
and (b) transverse components of the absolute value of the
velocity sampled by the particles with independent fluctua-
tions (�v1 ¼ �v2 ¼ 1) and without fluctuations (steady
state) for moderately (�Y ¼ 1) and highly (�Y ¼ 3) hetero-
geneous cases.

Table 3. Ratio of Asymptotic Dispersion Coefficients With the
Sole Transverse Fluctuations and With Both Fluctuations

�v2
D1Að�v1 ¼ 0; �v2Þ
D1Að�v1 ¼ �v2Þ

D2Að�v1 ¼ 0; �v2Þ
D2Að�v1 ¼ �v2Þ

�2
Y ¼ 1 0.5 1.00 1.06

�2
Y ¼ 1 1.0 0.89 1.02

�2
Y ¼ 9 0.5 1.00 1.04

�2
Y ¼ 9 1.0 1.03 1.12
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value obtained for steady state flux. Still, for high heteroge-
neity, this change occurs in the direction of somewhat
reducing total dispersion in response to temporal fluctua-
tions which contradicts expectations.

[61] Direct perspectives of this work are the analyses of
the apparent influence of temporal fluctuations on the dura-
tion of the preasymptotic regime and on mixing. As shown
by Figure 4, temporal fluctuations let transverse dispersion
converge at once to its asymptotic value while, in the longi-
tudinal direction, the convergence rate remains almost
unchanged. We also intend to quantify the strong mixing
effect hinted by Figure 7 and Figure 8 with the new meth-
ods developed recently for the steady state case [Le Borgne
et al., 2010, 2011]. Although desirable, the extension of
these results to 3-D systems is currently hindered by high
computational costs.
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