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[1] We investigate the upscaling of dispersion from a pore-scale analysis of Lagrangian
velocities. A key challenge in the upscaling procedure is to relate the temporal evolution of
spreading to the pore-scale velocity field properties. We test the hypothesis that one can
represent Lagrangian velocities at the pore scale as a Markov process in space. The
resulting effective transport model is a continuous time random walk (CTRW)
characterized by a correlated random time increment, here denoted as correlated CTRW.
We consider a simplified sinusoidal wavy channel model as well as a more complex
heterogeneous pore space. For both systems, the predictions of the correlated CTRW model,
with parameters defined from the velocity field properties (both distribution and
correlation), are found to be in good agreement with results from direct pore-scale
simulations over preasymptotic and asymptotic times. In this framework, the nontrivial
dependence of dispersion on the pore boundary fluctuations is shown to be related to the
competition between distribution and correlation effects. In particular, explicit inclusion of
spatial velocity correlation in the effective CTRW model is found to be important to

represent incomplete mixing in the pore throats.
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1. Introduction

[2] The ability to upscale dispersion is an important step
in predicting solute transport through porous media. This
topic has received continuous attention since the pioneer-
ing work of Taylor, who studied dispersion in a tube [Tay-
lor, 1953]. Taylor showed that this system, at late times,
once transverse diffusion has allowed the plume to sample
all the velocities in the tube cross section, can be character-
ized by an effective one-dimensional advection-dispersion
equation with an enhanced dispersion coefficient. This
enhanced dispersion coefficient can be quantified by the sec-
ond centered moment of the concentration distribution [Aris,
1956]. The Taylor dispersion coefficient reflects the interac-
tion between spreading driven by the heterogeneous velocity
field and diffusion that attenuates the resulting concentration
contrasts.

[3] Since this seminal study there has been a large
amount of work dedicated to quantifying dispersion in more
complex flow fields. A variety of methodologies, including
the method of local moments [Brenner, 1980; Brenner and
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Adler, 1982; Frankel and Brenner, 1989; Edwards and
Brenner, 1993], volume averaging [Bear, 1972 ; Plumb and
Whitaker, 1988 ; Valdes-Parada et al., 2009; Wood, 2009],
and the method of multiple scales [Auriault and Adler,
1995; Lunati et al., 2002; Attinger et al., 2001], have
emerged. The main goal of these methods is to develop an
effective asymptotic dispersion coefficient that quantifies
spreading and mixing in an upscaled effective equation and
in many cases they have been successful [Edwards et al.,
1991; Porter et al., 2010].

[4] Macrodispersion approaches describe asymptotic
heterogeneity-induced transport, which can be cast in an
advection-dispersion equation for the macroscale solute
concentration. Such Fickian models are characterized typi-
cally by a diffusive growth of the plume size. In many
applications, however, such an asymptotic regime is often
not reached on realistic space and time scales. In fact, there
is a large amount of data from field [Rehfeldt et al., 1992;
Gelhar et al., 1992; Sidle et al., 1998; Le Borgne and
Gouze, 2008] and laboratory experiments [Silliman and
Simpson, 1987; Silliman et al., 1987; Moroni et al., 2007 ;
Levy and Berkowitz, 2003] that suggests that the Fickian
behavior is often not observed. Theoretical predictions in
heterogeneous velocity fields anticipated this [Matheron
and de Marsily, 1980; Deng et al., 1993 ; Deng and Cush-
man, 1995; Dentz et al., 2000; Berkowitz et al., 2006;
Bijeljic and Blunt, 2006; Nicolaides et al., 2010; Wood,
2009]. This behavior can be traced back to incomplete mix-
ing on the macroscopic support scale [Le Borgne et al.,
2011; Dentz et al., 2011].

[5] Thus, for the realistic modeling of transport in heter-
ogeneous porous media, it is necessary to predict transport
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during this preasymptotic regime [e.g., Gill and Sankarasu-
bramanian, 1970; Latini and Bernoff, 2001; Bijeljic and
Blunt, 2006] and in particular capture the anomalous non-
Fickian behavior. Several nonlocal models have emerged
to model this behavior in porous media, including moment
equation approaches [Neuman, 1993; Morales-Casique
et al., 2006], projector formalisms [Cushman and Ginn,
1993, 1994], multirate mass transfer [Haggerty and Gore-
lick, 1995; Carrera et al., 1998; Cherblanc et al., 2007,
Chastanet and Wood, 2008], fractional advection-disper-
sion equations [Benson et al., 2000, 2001; Cushman and
Ginn, 2000], continuous time random walks [Berkowitz
and Scher, 1995 ; Berkowitz et al., 2006 ; Bijeljic and Blunt,
2006] and continuous Markovian stochastic processes in
time [Meyer and Tchelepi, 2010]. A review of these models
is provided by Neuman and Tartakovsky [2009]. One of the
main challenges within nonlocal modeling approaches is
how to relate microscale properties (e.g., velocity statistics)
to the effective macroscale models.

[6] In this paper we will focus on the continuous time
random walk (CTRW) approach. A popular approach for
defining CTRW model parameters is breakthrough curves
fitting [e.g., Berkowitz and Scher, 2010]. While useful in
practice, the limitation of this approach is that it is difficult
in general to relate the derived effective parameters to the
velocity field properties. Some analytical approaches con-
sidering simplified forms of heterogeneity have been devel-
oped that upscale exactly to a CTRW [Dentz and Castro,
2009; Dentz et al., 2009 ; Dentz and Bolster, 2011]. In par-
ticular, the importance of spatial velocity correlation and
its impact on anomalous transport is explicitly illustrated in
the simplified model of Dentz and Bolster [2011]. A differ-
ent approach that is not restricted to simplified types of het-
erogeneity was developed by Le Borgne et al. [2008a,
2008b]. By using the spatial Markov property of Lagran-
gian velocities, one can define a correlated CTRW model,
whose parameters are defined from the velocity field distri-
bution and spatial correlation properties. Thus, the upscaled
CTRW model is obtained without fitting its parameters to
the dispersion data; instead they are estimated from the
Lagrangian velocity field analysis. Velocity distribution
and spatial correlation are known two govern dispersion
heterogeneous media [Bouchaud and Georges, 1990]. Sol-
ute dispersion is enhanced when the width of the velocity
distribution is increased. It is also enhanced when the spa-
tial correlation of the velocity field is stronger. In other
words, when each solute particle tends to keep similar
velocities for a long time, the ensemble of particles is more
dispersed. The correlated CTRW approach quantifies sepa-
rately distribution and correlation effects. We will show in
the following that this is critical to understand and quantify
pore-scale dispersion as velocity distribution and spatial
correlation can have antagonist effects, hence competing
for governing the global dispersion.

[7]1 Here we invoke a CTRW approach characterized by
correlated successive particle velocities (termed correlated
CTRW in the following) to study dispersion in a pore-scale
context. To this end, we first consider a simplified periodic
representation of a pore introduced by Dykaar and Kitani-
dis [1996] (Figure 1) and then a more complex two-dimen-
sional heterogeneous porous medium [7Zartakovsky and
Neuman, 2008]. Because of its simplicity, the sinusoidal
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channel model can provide much insight to the understand-
ing of basic mechanisms that occur at the pore scale. The
conclusions derived from the analysis of this system can
also be used to understand and quantify the role of bound-
ary fluctuations, which is relevant for example for transport
at the fracture scale [Drazer et al., 2004; Drazer and
Koplick, 2002]. Additionally this model is appealing,
because, while quite simple, it displays some interesting and
perhaps unexpected features. For example, Bolster et al.
[2009] showed that increasing the fluctuation of the pore
wall does not necessarily result in an increase in asymptotic
dispersion, a result that may be counterintuitive on the basis
of other predictions [e.g., Gelhar, 1993 ; Prude ’Homme and
Hoagland, 1999; Tartakovsky and Xiu, 2006] that suggest
that as the fluctuations increase, so too should dispersion.
Some experimental evidence [Drazer et al., 2004; Drazer
and Koplick, 2002] and heuristic mathematical arguments
[Rosencrans, 1997] support this prediction of a reduction in
asymptotic dispersion. The reduction cannot be explained by
a classical Taylor-Aris type approach (see Bolster et al.
[2009] for details).

[8] In this work, we argue and illustrate that the corre-
lated CTRW model provides a solid framework that can be
used to physically interpret and understand such observa-
tions. Additionally we illustrate that it is capable of accu-
rately predicting the evolution of observed preasymptotic
non-Fickian dispersion. In section 2, we describe the peri-
odic pore representation for which we seek to upscale dis-
persion. In section 3, we introduce the correlated CTRW
model and compute the transition time distribution and the
probability transition matrix that parametrize it. In section
4, we compare the prediction of this upscaled model to the
results obtained from the fully resolved pore-scale simula-
tions. In section 5, we demonstrate the applicability of this
upscaling approach to a more complex heterogeneous po-
rous medium.

2. Sinusoidal Channel Model

[9] We consider flow in a two-dimensional channel that
is symmetric about the central axis at y = 0. The bounda-
ries of the channel fluctuate periodically in the horizontal
direction as

h(x) :Z+h’sin(2n%), 1)

where / is the average channel height. The aspect ratio is
defined by

_ 2h

2
T @

€
The ratio between the amplitude of the aperture fluctuations
K’ and the mean aperture, called the fluctuation ratio, is
denoted by
h/
a=—. 3
7 (3)

The flow at low Reynolds numbers within such a sinusoidal

channel, whose boundary changes slowly (i.e., € = % <1
was studied and derived analytically using a perturbation
method in € by Kitanidis and Dykaar [1997]. In order to
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(a) A schematic of the pore we are considering and (b) random walk simulations for Pe = 10° after a time of

507 (where 7 is the mean travel time of one pore). In Figure 1b, the top plot corresponds to a = 0, and the bottom plot cor-

responds to a = 0.4 and e = 0.4.

illustrate the different types of flow that can arise within
such a geometry, two sets of streamlines calculated using
this method are shown in Figure 1. A feature of this model
is that recirculation zones appear for aspect and fluctuation
ratios close to 0.4 [Bolster et al., 2009].

[10] We simulate transport in this flow field using a parti-
cle tracking approach. The Peclet number Pe, which char-
acterizes the ratio between the advective and diffusive time
scales, is defined by

4)

where D is the diffusion coefficient and % is the mean ve-
locity. In the following simulations, we set the parameter
values as Pe = 10°,% = 1, and & = 1/2. Figure 2 shows an
example of particle trajectories in a flow field characterized
by a = 0.4 and € = 0.4. Particles travel fast at the center of
the pore and move slowly close to the pore wall where they
can be trapped in recirculation zones. They jump from one
streamline to another by diffusion. The resulting longitudi-
nal dispersion can be characterized in terms of the longitu-
dinal width o of the solute distribution c(x, #)

o (f) = /dxx%’(x, 1) — [/ dxxe(x, t)r. 4)

Specifically, asymptotic longitudinal dispersion is quanti-
fied in terms of the effective dispersion coefficient
. 1. do*(1)
D= lim =g
[11] The dependence of the asymptotic coefficient on the
aspect and fluctuation ratios, obtained by Bolster et al. [2009],
is displayed in Figure 3. When the aspect ratio € is small, the
increase of the fluctuation ratio a leads to a decrease of the as-
ymptotic dispersion coefficient. On the other hand, when the
aspect ratio € is large, the increase of the fluctuation ratio a
leads to an increase of the asymptotic dispersion coefficient.
We demonstrate in the following that this nontrivial behavior
can be understood qualitatively by the competition between
distribution effects and correlation effects and can be quanti-
fied formally through a correlated CTRW model.

(6)

3. Correlated CTRW Model

[12] We seek to represent the longitudinal dispersion
process in the wavy channel model as a one-dimensional
random walk with distributed spatial and temporal incre-
ments (CTRW). The series of successive longitudinal parti-
cle positions {x"}>° ; and travel times {¢"}*  are

xTD = x() 4 Ax(m) (7
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Figure 2.

Examples of particle trajectories over two pores for two particles starting initially close to

the pore wall and at the center of the pore throat, respectively. The pore shape parameters are € = 0.4
and a = 0.4. The detailed streamlines in the upper recirculation zones are shown in red.

(D = ) AL 8)

where {Ax™1} and {Ar™}*  are the successive spatial
and temporal increments. In many CTRW models, the suc-
cessive temporal increments A7) are taken as independent
random variables. Thus, the dispersion dynamics depend
entirely on the increment distributions [Berkowitz and
Scher, 2010; Dentz and Bolster, 2011]. Figure 2 suggests
that, in the absence of complete mixing at pore throats,
there can be a significant correlation between successive
particle travel times. Particles moving quickly at the pore
center have a high probability to remain in a high-velocity
zone in the next pore. Similarly, particles have a significant
probability to be successively trapped in successive pores
when they travel close to the pore walls.

[13] Transit times are related to Lagrangian velocities by
{A1 = Ax/vW}> | where v is the mean particle ve-
locity across the length Ax. Diffusive jumps of particles
across streamlines induce a certain velocity decorrelation
such that ultimately the velocity memory is lost when the
particle has traveled over many pores. The process of
velocity decorrelation by diffusion is most efficient at the

S .Y
. ““:““ COISRANTY
S5

oS N\
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SO SO ST T ERSRN
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a

Figure 3. Dependence of the asymptotic dispersion coef-
ficient on € and a for Pe = 10°, from Bolster et al. [2009].
The dispersion coefficient is normalized by Dy, the value
corresponding to a parallel wall channel (e = 0, a = 0).

pore throat where streamlines converge close to each other.
Figure 4 displays the pore-scale Lagrangian velocity corre-
lation functions as a function of travel time and as a func-
tion of travel distance for the case @ = 0.4 and € = 0.4. The
Lagrangian velocities are found to have a short-range cor-
relation in space and a long-range correlation in time. The
latter is related to the low-velocity areas close to the pore
wall and to the recirculation areas, where particles can
remain trapped for a long time.

[14] In order to quantify the correlation between succes-
sive temporal increments, due to incomplete mixing at pore
throats, we represent the series of successive transit times
over one pore length {At<")}Z°:0 as a Markov chain, which
is motivated by the short range spatial correlation of
Lagrangian velocities (Figure 4). Note that this the Markov
property does not mean that the correlation length is
assumed to be equal to one pore size. The corresponding
correlation length depends on the transition probabilities
for successive transit times. Thus, setting the spatial incre-
ment equal to the pore length Ax") = L in (7), the corre-
sponding effective transport model is a correlated CTRW
defined by the probability distribution density p(At) and
the conditional probability density r(At|At), where At

1’0 " 1 " 1 " 1 " 1
0,8- ———-intime L
in space
5
5 0,64 -
C
=]
§ 04 .
s
[ .
5 0,2+ . -
° \\“——_
0,0 o=
0 20 40 60 80 100
t, x/<v>

Figure 4. Comparison of pore-scale Lagrangian velocity
correlation function in time and in space for parameters
a=04ande=04.
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and A7 are successive transit times across one pore. To test
the applicability of this model to upscale longitudinal dis-
persion, we numerically compute the transit time distribu-
tions across one pore p(At¢) and the conditional probability
density r(At|A¢') from transport simulations over two
pores (Figure 2).

[15] The Lagrangian transit time distributions across one
pore p(At), computed from particle tracking simulations,
are displayed in Figure 5 for different values of the aspect
and fluctuation ratios. They are characterized by a peak at
small times and a tail at large times, with a significant
probability for particles to experience large transit times.
The maximum transit time is defined by an upper cut off.
Both the minimum and maximum times depend on the
pore shape. A special case is a = 0.4 and ¢ = 0.4 for which
recirculation zones exist (Figure 1c). The impact of these
recirculation zones is that the width of the transit time
distribution increases by about 1 order of magnitude com-
pared to cases without recirculation zones. The probability
of large transit times increases because of trapping of
particles in these recirculation zones. At the same time,
the smallest transit time decreases, i.e., the maximum
velocity increases. This is due to an enhanced focusing of
flow lines in the center of the pore (Figure lc). For the
other cases, the increase of the aspect ratio e tends to
slightly decrease the minimum transit time while increasing
slightly the maximum transit time. The increase of the
fluctuation ratio a does not appear to affect the minimum
transit time, but does increase slightly the maximum transit
time.

[16] We now quantify the conditional probability density
r(At)A?) from particle tracking simulations over two suc-
cessive pores, where Af is the transit time across the first
pore and At is the transit time across the second pore. This
quantifies the correlation between successive transit time,
illustrated in Figure 2. For this purpose, we discretize the
transit time distribution p(At¢) into n classes {C;}, ;. of
equal probability of occurrence [Le Borgne et al., 2008b].
We define n = P(A¢) as the score corresponding to the
transit time Az, where P(A¢) is the cumulative transit time

10" 3 . ;
. OE a=0.1¢=0.4
s 10 a=0.4¢=0.1 3
“ a=0.1¢=0.1
8 104 ——a=04¢=04 -
o
£ 102 ]
2 10°] 1
g E

10 3

10° . .

10" 10° 10 10°

t/

Figure 5. Transit time probability density function p(f)
across one pore corresponding to different values of the
pore shape parameters € and a. The transit time is normal-
ized by the mean transit time over one pore 7.
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distribution. We discretize the 17 domain, which is bounded
between 0 and 1, into # classes of equal width 1/n, defined
by their boundaries 7),. The smallest transit time (largest ve-
locity) corresponds to 1; = 0 and the largest transit time
(smallest velocity) to 7,,; = 1. In this study, we use n =
49 classes. The influence of the number of classes on the
prediction of spreading is discussed in section 4. For a
given transit time A¢, the corresponding class C; is deter-
mined as follows: Ar € C; if n; < P(At) < ;.. The cor-
responding class boundaries in the temporal increment
space are At; = P~'(n;).

[17] The probability for a particle to travel through a
pore in a time Ar € C; given that it traveled through the
previous pore in a time A¢’ € C; is given by,

Aty Al
Ty = / dt/ de'r(t|t), )
At At

The transition matrix T is the discrete form of the condi-
tional probability density »(A¢|Ar') and describes the tran-
sition probability from class i to class j. The transition
matrix is shown for different pore shapes in Figure 6. The
transition probabilities are largest in the diagonal region
and tend to zero away from the diagonal. The probabilities
on the diagonal, i.e., T}, are the probabilities for a particle
to remain in the same class C,, i.e., to keep a similar transit
time over successive pores. The probabilities away from
the diagonal correspond to probabilities for a particle to
change its transit time from one pore to another, which
depends on its diffusion across streamlines.

[18] The correlation of successive times can be measured
by the probability to remain in the original class and by the
width of the banded matrix area around the diagonal, which
reflects the probability for particles to remain in neighbor-
ing transit time classes over successive pores. Notice that
the transition matrix quantifies some complex correlation
properties of the flow field. For instance, the correlation is
systematically stronger for small transit times (i.e., large
velocities) than for large transit times (Figure 6). As shown
in Figure 6, conditional probabilities in the upper left cor-
ner, corresponding to the probabilities for particles to keep
small transit times, are higher than the other conditional
probabilities, e.g., the probability for particles to keep inter-
mediate or large transit times across successive pores.

[19] The comparison of transition matrices in Figure 6
can be used to understand the effect of the pore shape pa-
rameters (equation (2) and Figure 1a) on the transit time
correlation. The effect of increasing the aspect ratio € from
0.1 to 0.4 is to decrease the width of the banded area in the
transition matrix around the diagonal, i.e., to increase the
correlation of the successive transit times, as successive
particle transit times have a high probability to be close to
each other. This can be explained as follows. For a given
mean channel height 4, increasing € is equivalent to
decreasing the pore length L. Decreasing L implies decreas-
ing the distance available for particles to diffuse across
streamlines. Thus, for large € the correlation of successive
transit times is strong.

[20] For a given aspect ratio €, the effect of increasing
the fluctuation ratio a from 0.1 to 0.4 is to decrease the
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Figure 6. Spatial transition matrices 7 corresponding to different values of the pore shape parameters ¢
and a (equation (9)). The horizontal axis represents the initial transit time class and the vertical axis rep-
resents the next transit time class. Small matrix indices correspond to small transit times (large Lagran-
gian velocities), and large matrix indices correspond to large transit times (small Lagrangian velocities).
The color scale represents the transit time transition probabilities along particle paths.

correlation of successive transit times, as shown by the
increase of the width of the banded area in the transition
matrix which implies that particle have a significant proba-
bility to change transit times over successive pores. This in
turn can be explained by the small width of the pore necks
for large a (Figure 1a) that induces a focusing of flow lines,
thus enhancing mixing between stream lines at the pore
necks. Thus, for large a, the correlation between successive
transit times is weak.

[21] The transit time distributions and correlation matri-
ces can be used to understand the nontrivial dependence of
the asymptotic dispersion coefficient on the pore shape pa-
rameters shown in Figure 3. In general, an increase in the
width of transit time distribution and an increase of the cor-
relation of successive transit times are both expected to
contribute to an increase of the asymptotic dispersion coef-
ficient. These effects are known as distribution- and corre-
lation-induced dispersion [Bouchaud and Georges, 1990;
Dentz and Bolster, 2011]. When changing the fluctuation
ratio a, these two effects evolve in opposite directions, thus
competing for controlling dispersion. An increase of the
fluctuation ratio a produces an increase the transit time var-
iability but a decrease of there correlation over successive
pores. In the absence of recirculation zones (¢ < 0.4), the
transit time variability depends only slightly on the fluctua-
tion ratio a. Since transit time decorrelation is the dominant
effect in this case, the increase of the fluctuation ratio a
leads to a decrease of the asymptotic dispersion coefficient.
Conversely, for large aspect ratios (¢ > 0.4), the appear-
ance of recirculation zones leads to a strong dependence of
the transit time distribution on the fluctuation ratio a. This
effect dominates over the effect of transit time decorrela-
tion, which implies that the asymptotic dispersion coeffi-
cient increases with the fluctuation ratio a in this case.

Thus, the dependence of dispersion coefficient on the pore
shape parameters is controlled here by the competition
between distribution and correlation effects.

4. Predictions of the Correlated CTRW Model

[22] The transit time distribution p(At) and the transition
matrix T together with the spatial Markov property define
the correlated CTRW model in (8). Using this effective
description, we can make predictions of the transport
behavior over a large range of temporal and spatial scales.
The equations of motion (8) of a particle are solved numeri-
cally using random walk particle tracking, which allows for
efficient transport simulations. We compare the predictions
of this effective random walk model with the numerical
random walk simulations of transport through the fully
resolved two-dimensional velocity fields (Figure 2) for
a=10.4 and € = 0.4. To probe the role of correlation we
also compare the transport behavior resulting from the cor-
related CTRW with the predictions of a CTRW model
without correlation, defined by (7) and (8) with the transi-
tion probability given as r(A#A¢) = p(At). Notice that
the predictions of both models are obtained without fitting
the model parameters to the dispersion data. Instead the
model’s parameters, here p(Af) and r(At|A¢) are esti-
mated from the Lagrangian velocity field analysis.

[23] Figure 7 displays the temporal evolution of the sec-
ond centered moment of the particle positions in the direc-
tion of the mean flow o?(¢) for the case a = 0.4 and
€ =0.4. The initial preasymptotic regime, where o?(¢)
evolves nonlinearly in time, lasts for about 307, where 7 is
the mean transit time across one pore. Hence, the Fickian
behavior is reached when the average position of the plume
has traveled over 30 pores. The spatial distribution of
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Figure 7. Comparison of the prediction of the correlated CTRW (red dashed line) and uncorrelated
CTRW (blue dashed line) with the numerical simulations for the second centered spatial moment in the
longitudinal direction o2, with @ = 0.4 and € = 0.4 (black dots). The time is normalized by the mean
transit time over one pore 7, and the spatial variance is normalized by L. Notice the overlap of the corre-
lated CTRW model predictions and the full pore-scale simulations.

particle positions, shown in Figure 8, is strongly non-Gaus-
sian during the preasymptotic regime.

[24] The correlated CTRW model is found to provide
very good predictions of the temporal evolution of the sec-
ond centered moment o2 () at all times and is able to pre-
dict accurately the evolution of the spatial particle position
distributions from non-Gaussian to Gaussian. In particular,
the persistent asymmetry of the spatial distributions, which
is due to trapping in low-velocity and recirculation zones,
is well captured. The uncorrelated CTRW model is found
to underestimate dispersion significantly. The discrepancy
for the second centered moment o?(¢) is about 1 order of
magnitude at large times. The uncorrelated CTRW model
used here has the same transit time distribution as the corre-
lated CTRW model but no correlation of successive transit
times. Thus, the comparison of these two models shows the
role of spatial correlations of particle motions, which are
due in this example to incomplete mixing at the pore
throats. Thus, successive transit time correlation, related
for instance the fact that particles traveling close to the
pore walls have a high probability of being successively
trapped in recirculation zones (Figure 2), is found to have
an important impact on dispersion.

[25] The good agreement of the correlated CTRW model
with pore-scale simulations validates the spatial Markov
property of Lagrangian velocities. This property implies that
large-scale dispersion can be predicted from solving transport
in just two characteristic pore sizes. The model parameters
are fully defined from the Lagrangian velocity properties. We
have performed the same comparison for a variety of other
pore shape parameters and found a similar agreement
between effective and pore-scale random walk simulations.
The transition matrices quantify high-order correlation
effects that are not included in classical two-point correla-
tion functions. The high probability region in the left upper
part of the transition matrices (Figure 6) indicate that small
transit times are more correlated than large transit times.
This implies that large velocities at the center of the pore
are more correlated over successive pores than small veloc-
ities. The dependency of correlation on the local velocity
was previously demonstrated by Le Borgne et al. [2007].

[26] In order to probe the minimum number of parame-
ters sufficient to capture this effect, we ran correlated

CTRW simulations with different numbers of transit time
classes (Figure 9). Decreasing the number of classes from
49 to 12 we found only a slight change in the prediction of
spatial variance. However, for a smaller number of classes,
the spatial variance is significantly underestimated. For
instance, the underestimation is about 40 percent when
using only 3 velocity classes. Thus, we estimate that the
minimum number of classes required in this case for cap-
turing the whole range of correlation effects may be around
10. This suggests that, although the transition matrix can be
simplified, it should contain a minimum of information for
representing complex correlation properties such as the de-
pendency of correlation on velocity.

5. Application to a Heterogeneous Porous
Medium

[27] In section 5, we apply the methodology to the more
complex 2-D heterogeneous porous medium studied by
Tartakovsky and Neuman [2008] and Tartakovsky et al.
[2008]. The Navier-Stokes equations for flow in the pore
network are solved using smoothed particle hydrodynamics

0,10

e pore scale simulation
correlated CTRW prediction
------- uncorrelated CTRW prediction o

0,084 i
0,06 |

0,04 §

probability density function

0 100
longitudinal position x/L

200

Figure 8. Comparison of the prediction of the correlated
CTRW (red lines) and uncorrelated CTRW (blue lines)
with the numerical simulations for the spatial distribution
of longitudinal particle positions (black line with dots).
Notice the overlap of the correlated CTRW model predic-
tions and the full pore-scale simulations.
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Figure 9. Prediction of the correlated CTRW model for
the second centered moment with different numbers of ve-
locity classes, n = 3,6, 12,24, 49.

(SPH) (Figure 10). The medium is composed of void and
circular grains with mean porosity ¢ = 0.42. The average
velocity of ¥ = 1072 results from application of a hydraulic
head gradient from top to bottom. The boundary conditions
for flux are periodic on all sides. All details of computa-
tions are given by Tartakovsky and Neuman [2008]. The
resulting velocity field shows the existence of a braided
network of preferential flow paths as well as low-velocity
or stagnation zones.

[28] In order to quantify the dispersion process in this
medium, we apply the methodology to analyze the statistics
of transit times along the SPH particle trajectories. SPH is a
Lagrangian particle method where particles representing el-
ementary fluid volumes are advected with the flow and
exchange mass between them by diffusion. Advective
Lagrangian trajectories are thus given by the trajectories of
the SPH particles. The Lagrangian velocities analyzed
along SPH particles trajectories can change because of ad-
vective heterogeneities but not because of diffusion across
streamlines. Hence, velocity decorrelation occurs solely
because of randomness in the velocity resulting from the
heterogeneous nature of the porous medium.

Figure 10. Heterogeneous pore-scale flow field showing
the distribution of v/v (the magnitude of velocity relative to
its spatial average), from Tartakovsky and Neuman [2008].
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Figure 11. Transit time distribution across the mean pore
size Ax = 2.6 for the heterogeneous porous media. It is
compared here to the sinusoidal channel distribution for
a=04ande=0.4.

[29] The transit time distribution and transition matrix
over the mean pore length Ax = 2.6 are computed by using
N = 27,620 SPH particles (Figure 11). The comparison
with the sinusoidal pore results shows that the large time
distributions are strikingly similar for the two systems. The
transition matrix (Figure 12) also shares some common fea-
tures with those of the sinusoidal channel. The small transit
times, corresponding to larger velocity channels, are found to
be more correlated than other transit time classes. The large
transit times are also more correlated than intermediate
transit times, showing the existence of repetitive trapping
phenomena. Thus, although the wavy channel model may
appear simplified, it contains several features relevant to

0.02

0.018

0.016
'EO.DM

F0.012

final class

50 100 150 200 250 300
initial class

Figure 12. Spatial transition matrix 7 across the mean
pore size Ax = 2.6 for the heterogeneous porous medium.
Small matrix indices correspond to small transit times
(large Lagrangian velocities), and large matrix indices cor-
respond to large transit times (small Lagrangian velocities).
Here the matrix is discretized into 300 classes.
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Figure 13. Comparison of the prediction of the correlated
CTRW model (red dashed line) and the uncorrelated
CTRW model (blue dashed line) for the second centered
moment with the numerical simulations for the heterogene-
ous media (black line with dots). The variances are normal-
ized by the mean pore size L = 2.6.

more complex media in regards to the transit time distribu-
tion and spatial correlation properties.

[30] The upscaled correlated CTRW model (equation (8))
can be parametrized by the transit time distribution p(At)
and the transition matrix T. As in the case of the sinusoidal
channel model, the predictions for second centered moment
0% (t) compares well with the full numerical simulations at
all times (Figure 13). Note that here the dispersion process is
non-Fickian over the entire simulation time. It is expected to
converge to Fickian at large time scales, when the particles
have sampled the whole velocity distribution. The underesti-
mation of dispersion by the uncorrelated CTRW model
shows the importance of spatial correlations also in this sys-
tem. This underlines the impact of incomplete mixing at
pore throats on effective dispersion.

6. Conclusions

[31] The statistical analysis of pore-scale transit time se-
ries along particle trajectories (which can be thought of as
the inverse of the Lagrangian velocities) shows that they
can be represented as a spatial Markov process both for the
wavy channel and heterogeneous porous media. The result-
ing upscaled CTRW model is shown to predict well the dis-
persion dynamics over the preasymptotic and asymptotic
transport regimes.

[32] The correlated CTRW model that results from the
spatial Markov property of the series of transition times
contains complex correlation information. For instance,
large velocities at the center of the pore are more correlated
over successive pores than small velocities. The nontrivial
dependence of dispersion on the pore boundary wall fluctu-
ations can be quantified by the interplay and competition
between distribution and correlation effects. In particular,
successive trapping of particles in low-velocity and recircu-
lation zones is found to be a key process. The two porous
media studied here are two-dimensional. We expect that
the transit time distribution and transition matrix would
probably be quite different in the three-dimensional case.
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The spatial Markov property itself needs to be tested in this
context.

[33] The upscaled correlated CTRW model is fully
defined from the velocity distribution and spatial correla-
tion properties. In this respect, the approach proposed here
is different from that consisting in parametrizing an effec-
tive CTRW model from a breakthrough curve fit [e.g.,
Berkowitz and Scher, 2010]. In the latter approach, one can
define an effective CTRW model with a limited number of
parameters by not explicitly including spatial correlation
effects. This approach is useful in field and experimental
applications, for which one does not easily have access to
the Lagrangian velocity field properties. For the porous
media considered in this study, we show that establishing
the relation between the upscaled CTRW model with the
pore-scale velocity statistics requires to account explicitly
for spatial correlation. The key physical process which is at
the root of persistent correlation of Lagrangian velocities
here is incomplete mixing at pore scale.
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