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Flow through lattice networks with quenched disorder eibistrong correlation in the velocity field, even
if the link transmissivities are uncorrelated. This featuvhich is a consequence of the divergence-free con-
straint, induces anomalous transport of passive partadesed by the flow. We propose a Lagrangian statis-
tical model that takes the form of a continuous time randortk W(@TRW) with correlated velocities derived
from a genuinely multidimensional Markov process in spdde model captures the anomalous (non-Fickian)
longitudinal and transverse spreading, and the tail of teamfirst passage time observed in the Monte Carlo
simulations of particle transport. We show that reprodgitirese fundamental aspects of transport in disordered
systems requires honoring the correlation in the Lagrangiocity.
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Anomalous transport, understood as the nonlinear scalitigtime of the mean square displacement of transportedtjes;
is observed in many physical processes, including cont@mminansport through porous and fractured geologic médiafimal
foraging patterns [2], freely diffusing molecules in tied3], tracer diffusion in suspensions of swimming micrgmisms [4],
and biased transport in complex networks [5].

Anomalous transport often leads to a broad-ranged padistabution density, both in space and time [6—8]. Undmrding
the origin of the slow-decaying tails in probability degsis essential, because they determine the likelihood di-irigpact,
“low-probability” events and therefore exert a dominanticol over the predictability of a system [9]. This becomspexially
important when human health is at risk, such as in epidenmeasfing through transportation systems [10] or radioniecli
transport in the subsurface [11].

Past studies have shown that high variability in the flow prtips leads to anomalous transport [1, 7]. Depending on the
nature of the underlying disorder distribution anomaloeisdvior can be transient or persist to asymptotic scaleslf3]2 The
continuous time random walk (CTRW) formalism [14, 15] off@mn attractive framework to understand and model anomalous
transport through disordered media and networks [1, 5, T6B¢ CTRW model is intrinsically an annealed model because th
disorder configuration changes at each random-walk steparficfe that returns to the same position experiencesrdifite
velocity properties. The validity of the CTRW approach feresge transport in quenched random environments has been
studied for purely diffusive transport [e.g., 7] and biaddtusion [e.g., 9, 17-19]. Most studies that employ the @I Bpproach
assume that transition times associated with particldatispnents are independent of each other, therefore negjeetiocity
correlation between successive jumps [20]. Indeed, a testedy of transport on a lattice network has shown that CTRW w
independent transition times emerges as an exact macioscapsport model when velocities are uncorrelated [9].

However, detailed analysis of particle transport simaolai demonstrates conclusively that particle velocitiesnass-
conservative flow fields exhibit correlation along their tiglarajectory [17, 21, 22]. Mass conservation inducegaation
in the Eulerian velocity field because fluxes must satisfy diwergence-free constraint at each intersection. Thigutn,
induces correlation in the velocity sequence along a partiajectory. To take into account velocity correlatiomgrangian
models based on temporal [22, 23] and spatial [17, 21] Mddtoprocesses have recently been proposed. These models suc
cessfully capture many important aspects of the Lagranggtotity statistics and the particle transport behaviormparticular,
the study of Le Borgne et al. [17] shows that introducing efation in the Lagrangian velocity through a Markov prociess
space yields an accurate representation of the first andd@soments of the particle density. The model is restridtediever,
to particle trajectories projected onto the direction @& thean flow, and the study leaves open the question of whegih#als
Markov processes can describe multidimensional featurearsport.

Here, we investigate average transport in divergencefiisaethrough a quenched random lattice from the CTRW point of
view. We introduce a multidimensional spatial Markov mdelparticle velocity, and confirm that the model exhibitsetent
agreement with Monte Carlo simulations. We show that actiogror the spatial correlation in the Lagrangian velodgy
essential to capture the fundamental macroscopic tranlspbavior.

Random Lattice Network.We consider a lattice network consisting of two sets of paliadquidistant links oriented at an
angle of+a with the z-axis. The distance between node¢ [5ig. 1(a)]. Flow through the network is modeled by assuming
Darcy’s law [24] for the fluid fluxu;; between nodesandj, u;; = —k;;(®; — ®;)/I, where®; and®; are the flow potentials,
andk;; > 0 is the conductivity of the link between the two nodes. Impgsinass conservation at each nad®:; u;; = 0,
leads to a linear system of equations, which is solved fofitivepotentials at the nodes. A link from nod® j is incoming for
u;; < 0 and outgoing fow;; > 0. We denote by;; the unit vector in the direction of the link connectingnd;. A realization
of the random lattice network is generated by assigningpgeddent and identically distributed random conductisite each
link. Therefore, thek values in different links are uncorrelated. The set of alimations of the quenched random network
generated in this way form a statistical ensemble that toosi@ry and ergodic.

We study a simple flow setting of mean flow in the positivdirection, by imposing a no-flow condition at the top andibot
boundaries of the network, and fixed values of the poterttiddealeft @ = 1) and right (¢ = 0) boundaries.

Once the fluxes at the links are known, we simulate transgatpassive tracer by particle tracking. We neglect diffasio
along links, and thus particles are advected with the flowaigl between nodes. We assume complete mixing at the nodes.
Thus, the link through which the particle exits a node is emaandomly with flux-weighted probability. The Langevinuatjons
describing particle movements in space and time are

v(xy) l
A tnt1 = ln + ——7-
v ()]

@
If x,, is the position of theth node, the transition velocity is equaltx,,) = u;;e;; with probabilityp;; = |ui;|/ >, [wik]
where the summation is over outgoing links only, ad = 0 for incoming links. The velocity vectov in the following is
expressed ir{v, #) coordinates, in whichv = |v| cos(y¢)/| cos(¢)| is the velocity along a link withp = arcos(v,/|v|) and
6 = sin(p)/|sin(¢p)|, so thatv = [v cos(a), |v|0 sin(a)]. Note thaty can only assume values {R-o, a, 7 — o, ™ + .
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FIG. 1. (a) Schematic of the lattice network considered heith two sets of links with orientatiofeac = +7/4 and spacing = 1. (b)
Particle distribution at nodes (represented by circledféérént sizes) at = 30 for a single realization after injection at the origintat 0.

The system of discrete Langevin equations (1) describesseagained particle transport for a single realizatiorthef
guenched random lattice. Particle velocities and thussitian times depend on the particle position. The particisip
tion at timet is x(t) = x,,, wheren, denotes the number of steps needed to reach timéhe mean particle density is
P(x,t) = (§(x — x,,)), where the angular brackets denote both the noise averagalbyarticles in one realization and the
ensemble average over all network realizations. We solwesgrort in a single disorder realization by particle tragkbased on
Eqg. (1) with the initial conditions, = 0 and¢, = 0 [Fig. 1(b)]. From this, we obtain the mean particle dengttfxk, ¢) by
ensemble averaging.

To develop a transport model for the average particle de¥ik, t), we study average particle movements from a CTRW
point of view. This could be done, for example, by interprgtfirst-passage time distributions in the CTRW frameworét an
inferring an optimal distribution of transition times [20fere we follow a different rationale and analyze the enderstatistics
of the Lagrangian velocities because the CTRW model is baiséite assumption that particle velocities sampled at gspatial
positions along an average trajectory form a Markov pracess

Spatial Markov Property. To characterize average particle movement from a CTRW pdintew, we study the ensemble
statistics of the series of Lagrangian velocities expegerby particles along individual trajectories. We consttie transition
probability density to encounter a velocityaftern + m steps given that the particle velocity wesaftern steps, which in the
variableg(v, §) reads

rm(v, 0|V, 0) =
<6 [I/ N V(Xn+m)] 6070(x"+m)>‘V(xn):’j/a@(xn)ZO/ ’ (2)

We study the statistical properties of the Lagrangian vsloe(x,,) by particle tracking simulations ih0? realizations of
an ensemble of random lattices characterized by a lognderdatribution with variances?, , = 5. The use of a lognormal
distribution is motivated by measurements of conductivitypnany natural media [25]. The lattice size is 5D0 nodes and,
in each realization, we relea$é?® particles at the origin. To evaluate the transition prolighiumerically, the particle velocity
v is discretized into classes, € Uj.vzl(uj, vj+1). To emphasize the role of low velocities, velocity classesdefined on a
near-logarithmic scale. We define the transition probgitiatrix

Vit1 Vjt1
Tm(z’,9|j,6"):/ du/ ' (v, 010, 0). @3)

The aggregate transition matriX,, (i|j) = _, o Tm(i,0|7,60") shown in Fig. 2a formn = 1, clearly indicates that particle
velocities are correlated. The relatively large probébdiin the upper-left and lower-right corners of the tréiosi matrix
reflect flow reversal.

The series of Lagrangian velocitie$x,,) = v,, along particle trajectories can be approximated as a Mapkogess, if the
transition matrix satisfies the Chapman-Kolmogorov equig.g., 26], which in matrix form reads

T(i,6]5,0') = Y T (i, 011", 6" )T (i, 6”5, 6'). (4)

77,0”
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FIG. 2. (a) Aggregate transition matrix f&¥ = 100 velocity classes distributed with logarithmic scale. (lbafsition probabilities after
m = 5 steps from direct Monte Carlo computation (blue solid liaejl calculated from the Markov assumption (green symb8lspwn are
probability densities for two initial velocity classes:@uM velocity class{ = 5, o), and a high velocity clasg (= 90, ). Inset: probability of
returning to the same initial velocity class as a functiothef number of steps for a high initial velocity (clgss- 90).

Specifically, for a Markov process, the-step transition matri,,, is equal to then-fold product of thel -step transition matrix
T, with itself asT,, = T™. Figure 2¢ shows the transition probabilities for= 5 steps conditional to a lowj (= 5) and high
(j = 90) velocity class given byI's, which is obtained by direct Monte Carlo simulations, andemthe Markov assumption
from T°. The Markov model predicts accurately the transition philitees, as well as the return probability for any number
of steps [Fig. 2b, inset]. Our analysis suggests that thekbamodel captures the Lagrangian velocity statistics eately.
We repeated the analysis for truncated power-law and th&wtkess/alue of Cauchy distributions of conductivity, andfal that
the Markovianity assumption holds for these conductivistributions too. Therefore, a CTRW characterized by a dep s
correlation in velocity is a good approximation for desgrigpaverage transport.

Continuous Time Random Walk ModeParticle movements in the random lattice can, on averageeberibed by the
following system of Langevin equations

Vi l
Xn+1 =xXp + 17—, 1 =tn + —. (5)
[V | Vi |

We have already shown that the series of Lagrangian vedsditi,, }>° , is well approximated by a Markov process and thus
fully characterized by the one-point densitiw) = (§(v — v,,)) and the one-step transition probability density

ri(vIv') = (0(v = V1)) lva=v- (6)
The particle density can be written as
P(x,t) = /dv(é(x — X, )0(V —vp,)), @)

in whichn; = max(n|t, < t), xis the position of the node at which the patrticle is at timendv is the velocity by which the
particle emanates from this node. Equation (7) can be resast

t
P(x,1) :/dv/t y ‘dt’R(x,v,t'), (8a)

in which we defined

R(x,v,t) =Y (6(x = %,)0(v = vn)d(t' — tn)). (8b)

n=0



The latter satisfies the Kolmogorov type equation

R(x,v,t) = 6(x)p(v)d(t) + /dv’rl(v|v’)

< [ axs - x =V DRGEV = UV), (8¢)
For independent successive velocities, i-e(v|v’) = p(v), one recovers the CTRW model [e.g., 14]
P(x,t) = /Ot dt'R(x,t’)/Oo dT/dxw(x7 7), (9a)
t—t’
whereR(x, t) satisfies
R(x,t) = §(x)d(t)
/dx/ dt' R(x', t"p(x —x',t —t') (9b)

and the joint transition length and time density is given by

v t) = [ Vo3~ V1V )3 = V). (%)

In the following, we refer to system (8) a®rrelated CTRW because subsequent particle velocities are cordglated to
model (9) asuncorrelatedCTRW because subsequent particle velocities are unctedela

Average Transport Behavior.The average transport behavior is studied in terms of theadgearticle densityP(x, ), its
mean square displacements in longitudinal and transvémsetidns and the distribution of the first passage time¢y), at a
control plane at a distaneefrom the inlet. We compare the results obtained from direchd Carlo simulations to correlated
CTRW and uncorrelated CTRW. Correlated CTRW is parametrimethe one-step transition matri®; determined from nu-
merical Monte Carlo simulations. Uncorrelated CTRW is paetrized by the Lagrangian velocity distributiptv), which is
obtained from Monte Carlo simulations as well.

The particle distribution is non-Gaussian and charaatdrizy a sharp leading edge and an elongated tail [Fig. 3]. ©he n
Gaussian features persist even after the center of massavalied a distance of about 100 links in the direction ofriresan
flow. Correlated CTRW captures the shape of the particle pluith remarkable accuracy, including its leading edgekpea
transverse spread, and low-probability tail near the origgnoring the correlated structure of the Lagrangian cigldeads to
predictions of longitudinal and transverse spreadingdeatate from the direct Monte Carlo simulation [Fig. 3, its}e

Figure 4a shows the time evolution of the longitudinal amai$verse spreading. The Monte Carlo simulation showsttleat t
longitudinal mean square displacement (MSD) with respeetiié center of mass evolves faster than linear with timepéstaf
1.33). Both the scaling and the magnitude of the longitudipeeading are captured accurately by correlated CTRWnTdael
also reproduces accurately the magnitude and time scalittiedransverse MSD. The uncorrelated model underprettiets
magnitude of longitudinal spreading.

Nonlocal theories of transport, including CTRW, are oftevoked to explain the empirical observation that the firsSpge
time (FPT) distribution is broad-ranged [1]. Early arrieald slow decay of the FPT is also observed in our model systeem,
when the conductivity distribution is lognormal and haszgyatial correlation [Fig. 4(b)]. The cumulative FPT diafition from
the Monte Carlo simulation exhibits a significantly slowercdy than uncorrelated CTRW. This behavior is accuratgijuced
by correlated CTRW, suggesting that the velocity corretatilong particle trajectories is responsible for the emecg of the
observed asymptotic behavior.

In conclusion, we have shown that the divergence-free ¢iomdarising from mass conservation is the source of strong
and nontrivial correlation in the Lagrangian velocity, ewghen the underlying conductivity field is completely unetated.
Accounting for such correlation in the velocity is importémobtain quantitative agreement for the mean particleitigand the
FPT distribution. Here, we have proposed and validated tadpsarkov model of transport on a lattice network that éaitlly
captures the multidimensional effects associated wittngba in direction along the particle trajectory. This staghgns the
door to understanding the interplay between two sourceglokity correlation: the divergence-free condition and $ipatial
correlation in the permeability field. Finally, we suspéxttcorrelation in the Lagrangian velocity exerts an everendominant
control over mixing (understood as the decay of the variaridbe particle density [27—29]) than it does on spreadingis T
remains an exciting open question.
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