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[1] Fracture-matrix interactions can significantly affect solute transport in fractured porous
media and rocks, even when fractures are major (or sole) conduits of flow. We develop a
semi-analytical solution for transport of conservative solutes in a single fracture. Our
solution accounts for two-dimensional dispersion in the fracture, two-dimensional diffusion
in the ambient matrix, and fully coupled fracture-matrix exchange, without resorting to
simplifying assumptions regarding any of these transport mechanisms. It also enables one to
deal with arbitrary initial and boundary conditions, as well as with distributed and point
sources. We investigate the impact of transverse dispersion in a fracture and longitudinal
diffusion in the ambient matrix on the fracture-matrix exchange, both of which are
neglected in standard models of transport in fractured media.

Citation: Roubinet, D., J.-R. de Dreuzy, and D. M. Tartakovsky (2012), Semi-analytical solutions for solute transport and exchange in

fractured porous media, Water Resour. Res., 48, W01542, doi:10.1029/2011WR011168.

1. Introduction
[2] Fracture-matrix interactions can significantly affect

solute transport in fractured porous media and rocks, even
when fractures are major (or sole) conduits of flow. Bodin
et al. [2003] provided a thorough review of experimental and
theoretical studies that identified advection, dispersion, chan-
neling effects, matrix diffusion, and sorption reactions as key
fracture-scale transport mechanisms. Our analysis focuses on
the relative effects of advective-dispersive transport in a frac-
ture and molecular diffusion in the ambient matrix.

[3] The first analytical treatment of these combined trans-
port mechanisms is generally attributed to Tang et al. [1981],
who considered transport in a single fracture imbedded in a
semi-infinite matrix. Their solution was extended by Sudicky
and Frind [1982] to account for the presence of neighboring
parallel fractures. These analytical solutions are routinely
used to interpret field and experimental observations [Calla-
han et al., 2000; Maloszewski and Zuber, 1993; Moreno
et al., 1985; Zhou et al., 2007] and to simulate transport in
fractured media with complex fracture geometries [Liu et al.,
2007; Roubinet et al., 2010].

[4] Given the widespread use of the Tang et al. [1981]
and Sudicky and Frind [1982] analytical solutions, it is im-
portant to ascertain their limitations. Both solutions assume
that transport in a fracture is one-dimensional and advec-
tion-dominated, i.e., they neglect the transverse variability
of solute concentration in the fracture. They also assume
matrix diffusion to be one-dimensional, in the direction per-
pendicular to the fracture, i.e., they neglect the longitudinal
variability of solute concentration in the matrix. A final

assumption is to replace the full coupling of transport proc-
esses in the fracture and the ambient matrix with a one-way
coupling, which represents the fracture-matrix exchange
(expressed in terms of matrix properties) via a source term
in the fracture transport equation. This partial coupling
implies that the fracture-matrix exchange is driven by ma-
trix properties and that solute is perfectly mixed throughout
the fracture aperture regardless of its width and transport
conditions. These assumptions are not universally valid,
being appropriate for some parameter values and/or initial
and boundary conditions but not for others.

[5] For example, the experiments conducted on centime-
ter-to-decimeter cores of fractured volcanic tuff [Callahan
et al., 2000] found the ratio of fracture to matrix diffusion
and the fracture Péclet number to be large enough to justify
the assumptions of the Tang et al. [1981] and Sudicky and
Frind [1982] solutions. On the other hand, the field-scale
data reviewed by Zhou et al. [2007] suggest that equivalent
matrix diffusion increases with the observation scale,
reaching values that may undermine the validity of the
assumptions underlying the solutions of Tang et al. [1981]
and Sudicky and Frind [1982]. (It is worthwhile emphasiz-
ing that these and other experimental studies do not mea-
sure matrix diffusion directly, inferring it instead from
analytical or numerical solutions of the transport equa-
tions.) The numerical simulations of Buckley and Loyalka
[1994] revealed that solute concentration is sensitive to pa-
rameters that are absent in these solutions, further under-
mining their universality.

[6] The main goal of our analysis is to provide a closed-
form, computationally efficient description of transport of
solutes in a fracture and their exchange with the ambient
matrix. We derive a semi-analytical solution for transport
in a fracture imbedded in the semi-infinite matrix, without
resorting to the simplifying assumptions of Tang et al.
[1981] and Sudicky and Frind [1982]. Our solution
accounts for transverse dispersion in the fracture, two-
dimensional diffusion in the matrix, and matrix anisotropy
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(with differing transverse and longitudinal diffusion coeffi-
cients in the matrix). It reduces to the solution of Tang
et al. [1981] in the limit of the longitudinal diffusion coeffi-
cient in the matrix going to zero and the transverse disper-
sion in the fracture going to infinity. Finally, unlike its
existing counterparts, our solution is capable of handling
both point and distributed sources whose strength may vary
in space and/or time.

[7] We used our solution to determine the limits of
applicability of the Tang et al. [1981] analysis and to inves-
tigate the relative impact of various transport parameters, in
both the fracture and the ambient matrix, on solute migra-
tion through fractured rocks. Other uses of our solution
include the validation of numerical codes and its deploy-
ment as a component in systems-based models of complex
subsurface systems. In the latter application, the matrix rep-
resents a low-permeability portion of a flow domain (e.g.,
mildly fractured ‘‘safe’’ rock) and the diffusion coefficients
represent effective transport properties. The rock’s heteroge-
neity and the topology of its fracture network might result in
two-dimensional anisotropic effective diffusion that can be
modeled with our solution.

[8] The solution developed in this study describes a gen-
eral transport phenomena occurring in mobile-immobile
environments. Transport in aquifer-aquitard systems is
another example of such processes, which has been studied
analytically by Zhan et al. [2009]. Their study focused on
the relative effects of the transport parameters controlling
the transverse solute spreading (transverse dispersion in an
aquifer and transverse advection in an aquitard) and did not
consider longitudinal diffusion in the immobile part. De-
spite certain similarities between the two solutions, our so-
lution is different in both its methodology and its scope.
The former difference stems from the fact that our solution
is based on the Green’s functions, which provide it with a
solid mathematical foundation and allow for the presence
of nontrivial initial and boundary conditions, sources, and
sinks. As far as the scope is concerned, we will demonstrate
that the Zhan et al. [2009] conclusions are specific to sys-
tems that exhibit a strong transverse displacement in the
aquitard and are not applicable to classical fracture-matrix
systems.

[9] A mathematical formulation of the transport problem
is presented in section 2. Section 3 contains the semi-
analytical solution in the form of a Fredholm equation.
This solution is used in section 4 to explore the impact of
transport parameters on fracture-matrix exchange and to
identify a parameter range within which a two-dimensional
solution reduces to a one-dimensional solution, as the solu-
tion of Tang et al. [1981]. Conclusions and implications of
our study are summarized in section 5.

2. Problem Formulation
[10] Consider transport of a conservative solute in a sin-

gle fracture with half-aperture b, embedded in an infinite
matrix (Figure 1). The solute concentration cf ðx; z; tÞ in the
fracture �f ¼ fðx; zÞ : 0 � x <1; 0 � z � bg satisfies an
advection-dispersion equation

@cf

@t
þ u

@cf

@x
¼ D f

L

@2cf

@x2
þ D f

T

@2cf

@z2
þ f ; ðx; zÞ 2 �f ; (1)

where u is the (constant) macroscopic fluid velocity,

f ðx; z; tÞ is a source term, and D f
L ¼ Dm þ �Lu and D f

T ¼
Dm þ �T u are the longitudinal and transverse dispersion
coefficients, respectively. Here Dm is the molecular diffu-
sion coefficient, and �L and �T are the longitudinal and
transverse dispersivities, respectively.

[11] The ambient matrix �m ¼ fðx; zÞ : 0 � x <1;
b � z <1g is assumed to be impervious to flow. The sol-
ute spreads throughout the matrix by diffusion. Its concen-
tration in the matrix cmðx; z; tÞ, is governed by a diffusion
equation

@cm

@t
¼ Dm

L

@2cm

@x2
þ Dm

T

@2cm

@z2
; ðx; zÞ 2 �m; (2)

where Dm
L and Dm

T are the longitudinal and transverse diffu-
sion coefficients, respectively. While hydrogeologists typi-
cally treat effective molecular diffusion in porous media as
isotropic, numerous theoretical (e.g., Battiato et al. [2009],
Battiato and Tartakovsky [2011], and references therein)
and experimental (e.g., Van Loon et al. [2004], Altmann
et al. [2012], and references therein) studies demonstrate
that it can be anisotropic. The formulation (2) with
Dm

L 6¼ Dm
T allows for this eventuality.

[12] Let c0
f ðx; zÞ and c0

mðx; zÞ denote the solute’s concen-
trations, at time t ¼ 0, in the fracture and the matrix,
respectively. Then the transport equations (1) and (2) are
subject to initial conditions

cf ðx; z; 0Þ ¼ c0
f ðx; zÞ; cmðx; z; 0Þ ¼ c0

mðx; zÞ: (3a)

At the fracture-matrix interface z ¼ b, both the solute con-
centration and the mass flux are continuous, giving rise to
two interfacial conditions

cf ¼ cm; D f
T

@cf

@z
¼ �mDm

T

@cm

@z
� r; z ¼ b; (3b)

where �m is the matrix porosity, and rðx; tÞ is the
(unknown) mass flux between the fracture and the ambient
matrix. Equation (1) is also subject to boundary conditions

cf ð0; z; tÞ ¼ c0; cf ð1; z; tÞ ¼ 0;
@cf

@z
ðx; 0; tÞ ¼ 0; (3c)

Figure 1. A schematic representation of the fracture-
matrix system.
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where c0ðz; tÞ is the prescribed concentration at the frac-
ture’s inlet, and the latter condition reflects the concentra-
tion’s symmetry with respect to the fracture’s center z ¼ 0.
Finally, equation (2) is subject to boundary conditions

cmð0; z; tÞ ¼ 0; cmð1; z; tÞ ¼ 0; cmðx;1; tÞ ¼ 0: (3d)

Equations (1), (2) and (3a)–(3d) represent a coupled system
of two boundary-value problems (BVPs). They are solved
below by means of the Green’s functions.

3. Solution Formulation
3.1. General Solution

[13] Let G f ðx; z; x0; z0; t � t0Þ denote the Green’s function

for the fracture BVP (1), (3a), (3c), and D f
T@c f =@z

ðx; z ¼ b; tÞ ¼ r, and Gmðx; z; x0; z0; t � t0Þ the Green’s
function for the matrix BVP (2), (3a), (3d), and
�mDm

T @cm=@zðx; z ¼ b; tÞ ¼ r. Their analytical expressions
are given in Appendix A.

[14] Solutions of the two BVPs, expressed in terms of
the corresponding Green’s functions, yield the solute con-
centrations in the fracture (A9) and the matrix (A10). Their
Laplace transforms,

AðsÞ ¼
Z1
0

AðtÞe�stdt; 8 AðtÞ (4)

take the form

cf ¼
Zb

0

Z1
0

c 0
f G

f
dx0dz0 þ

Zb

0

c0 uG
f þ D f

L

@G
f

@x0

" #
jx0¼0

dz0

þ
Z1
0

rG
f
jz0¼b

dx0 þ
Zb

0

Z1
0

f G
f
dx0dz0

(5)

and

cm ¼
Z1
b

Z1
0

c 0
mG

m
dx0dz0 � 1

�m

Z1
0

rG
m
jz0¼b

dx0; (6)

where the Laplace transforms G
f

and G
m

of the Green’s
functions G f and Gm are given by (A3)–(A5) and (A8),
respectively.

[15] The Laplace transform of the fracture-matrix
exchange rate, rðx; sÞ, is obtained from the first continuity
condition in (3b) which yields

c f ðx; z ¼ b; sÞ ¼ cmðx; z ¼ b; sÞ: (7)

Combining (5)–(7) yields a Fredholm equation of the first
kind for rðx; sÞ. A numerical algorithm used to solve this
equation is described in Appendix B.

3.2. Explicit Semi-analytical Expression

[16] To demonstrate the salient features of our solution
and to explore its parameter space, we consider solute

transport with zero initial concentrations in the fracture and
the ambient matrix, (c0

f ¼ 0 and c0
m ¼ 0), in the absence of

internal sources/sinks ( f ¼ 0), driven by the uniform con-
centration at the fracture’s inlet, c0ðtÞ. This corresponds to
the transport regime considered by Tang et al. [1981].

[17] With these driving forces, (5) and (6) reduce to

cf ¼ c0

Zb

0

uG
f þ D f

L

@G
f

@x0

" #
jx0¼0

dz0 þ
Z1
0

rG
f
jz0¼b

dx0 (8)

and

cm ¼ �
1

�m

Z1
0

rG
m
jz0¼b

dx0: (9)

Let us introduce dimensionless parameters

Pe ¼ ubffiffiffiffiffiffiffiffiffiffiffiffi
D f

L D f
T

q ; D fm ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
D f

L D f
T

q
�m

ffiffiffiffiffiffiffiffiffiffiffiffiffi
Dm

L Dm
T

p ; (10)

dimensionless independent variables

s f ¼
b2s

D f
T

; sm ¼
b2s

Dm
T

; zm ¼
z

b
;

x f ¼
x

b

ffiffiffiffiffiffi
D f

T

D f
L

s
; xm ¼

x

b

ffiffiffiffiffiffiffi
Dm

T

Dm
L

s
;

(11)

and normalized dependent variables

Cf ¼
c f

c0
; Cm ¼

cm

c0
; R ¼ r

c0
: (12)

Substituting (A3)–(A5) and (A8) into (8) and (9) leads to

C f ¼ F�1 ðx f Þ þ
1ffiffiffiffiffiffiffiffiffiffiffiffi

D f
L D f

T

q Z1
0

R
1

2
F�2 ðx f ; xf

0; s f Þ
�

þ
Xþ1
n¼1

ð� 1Þncos ðn�zmÞF�2 ðx f ; xf
0; s f þ n2�2Þ

�
dx0

(13)

and

Cm ¼
1

��m

ffiffiffiffiffiffiffiffiffiffiffiffiffi
Dm

L Dm
T

p Z1
0

R F�3 ðxm; xm
0 ; zm; smÞdx0: (14)

Here the functions F�1ðx; sÞ, F�2ðx; x0; sÞ, and F�3ðx; x0; z; sÞ
are given by

F�1 ¼ f �1 ðxÞf �2 ðx; sÞ; (15a)

F�2 ¼ f �1 ðx� x0Þ f
�

2 ðjx� x0j; sÞ � f �2 ðxþ x0; sÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pe2=4þ s

p ; (15b)
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F�3 ¼ K0ð
ffiffiffiffiffiffiffi
�1s

p
Þ � K0ð

ffiffiffiffiffiffiffi
�2s

p
Þ; (15c)

with

f �1 ðxÞ ¼ exPe=2; f �2 ðx; sÞ ¼ e�x
ffiffiffiffiffiffiffiffiffiffiffiffiffi
Pe2=4þs
p

; (15d)

�1 ¼ ðxm þ xm
0 Þ2 þ ðzm � 1Þ2, �2 ¼ ðxm � xm

0 Þ2 þ ðzm �1Þ2,
and K0ð�Þ denoting the modified Bessel function.

[18] Equating (13) with (14), both evaluated at zm ¼ 1,
yields a Fredholm equation for Rðx; sÞ,

Z1
0

Kðx; x0; sÞRðx0; sÞdx0 ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffi
D f

L D f
T

q
F�1 ðx f ; sÞ; (16)

where the kernel Kðx; x0; sÞ has the form

K ¼ 1

2
F�2 ðx f ; x f

0; s f Þ þ
Xþ1
n¼1

F�2ðx f ; x f
0; s f þ n2�2Þ

�D fmF�3 ðxm; xm
0 ; zm ¼ 1; smÞ:

(17)

This integral equation is solved numerically following the
procedure outlined in Appendix B.

4. Results
[19] Unless specified otherwise, the results reported

below represent the relative fracture concentration
C f ¼ c f =c0 averaged over the aperture width. We call the
concentration C f ðx; tÞ computed with the full model, which

accounts for both transverse dispersion in the fracture (D f
T )

and longitudinal diffusion in the matrix (Dm
L ) and fully cou-

ples transport in the fracture and matrix domains, a ‘‘2-D

solution.’’ The limit of this solution as D f
T !1 (complete

instantaneous mixing throughout the fracture’s aperture)
and Dm

L ! 0 (no longitudinal diffusion in the matrix) is
referred to as a ‘‘1-D solution.’’ (Computationally, the lim-

its D f
T !1 and Dm

L ! 0 indicate the use of a sufficiently

large value of D f
T and a sufficiently small value of Dm

L ,
such that their respective increase and decrease do not
affect the simulation results.) The 1-D solution preserves
the full fracture-matrix coupling. This is in contrast to the
Tang et al. [1981] solution, which relies on the partial

fracture-matrix coupling and corresponds to D f
T !1 and

Dm
L ¼ 0. Table 1 contains default (reference) parameter

values similar to those used by Tang et al. [1981]. The
Stehfest algorithm with 12 terms was used to compute the
Laplace transforms.

4.1. Comparison with the Tang et al. [1981] Solution

[20] Figure 2 exhibits the fracture concentration pro-
files C f ðx; tÞ computed alternatively with the 1-D and
Tang et al. [1981] solutions at t ¼ 105, 106, and 107 s.
The parameters are set to their ‘‘high-velocity’’ default

values in Table 1, except for D f
T !1 and Dm

L ¼ 0. The
two solutions yield identical concentration profiles

C f ðx; tÞ, demonstrating that in this transport regime the
one-way coupling of Tang et al. [1981] might be
appropriate.

4.2. Effects of Transverse Dispersion in Fracture

[21] The absence of transverse dispersion in the analyti-
cal solutions of Tang et al. [1981] and Sudicky and Frind
[1982] is equivalent to the assumption that the parameter
D f

T is large enough to allow for complete mixing of the sol-
ute throughout the fracture aperture. Figure 3 demonstrates
the impact of this approximation on predictions of both the
average solute concentration in the fracture (Figure 3a) and
the cumulative fracture/matrix exchange (Figure 3b). With
a few exceptions specified below, e.g., b ¼ 10�3 m, the pa-
rameters are set to their ‘‘high-velocity’’ default values in
Table 1. To isolate the effects of transverse dispersion in
the fracture, we set Dm

L ¼ 0 and report the results in terms
of the ratio � ¼ D f

T=Dm
T of the transverse transport coeffi-

cients in the fracture and the matrix.

Table 1. The Default Parameter Values

Parameter Symbol Low-Velocity High-Velocity

Fracture flow velocity u 10�7 m s�1 10�5 m s�1

Fracture aperture b 5 � 10�5 m 10�4 m
Longitudinal dispersion in

fracture
Df

L 10�9 m2 s�1 10�5 m2 s�1

Transverse dispersion in
fracture

Df
T 10�9 m2 s�1 10�7 m2 s�1

Longitudinal diffusion in
matrix

Dm
L 10�10 m2 s�1 10�10 m2 s�1

Transverse diffusion in
matrix

Dm
T 10�10 m2 s�1 10�10 m2 s�1

Matrix porosity ’m 0.01 0.35

Figure 2. Relative solute concentration in the fracture,
Cf ðx; tÞ, computed with the 1-D (lines with squares) and
Tang et al. [1981] (lines) solutions at times t ¼ 105 s (solid
lines), 106 s (dashed lines), and 107 s (dash-dotted lines).
The parameters are set to their ‘‘high-velocity’’ default val-
ues (Table 1), except for D f

T !1 and Dm
L ¼ 0.
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[22] Figure 3a shows the concentration profiles C f ðxÞ
computed with the 1- and 2-D solutions for u ¼ 10�4 m s�1.
For � � 1, the two solutions coincide, i.e., transverse dis-
persion in the fracture has no discernible impact on the con-
centration profiles. In other words, if Dm

T is small (Dm
T ¼

10�10 m2 s�1 in our simulations), changes in D f
T do not

affect the concentration profiles as long as its value remains
larger than Dm

T , i.e., the condition � � 1 holds. In this trans-
port regime, transverse diffusion in the matrix is the limiting
parameter that controls both solute transfer from the fracture
to the matrix and its concentration in the fracture. For
� � 1, the errors introduced by the 1-D solution (i.e., by
neglecting transverse dispersion in the fracture) become dis-
cernible, and they grow with time. The 2-D solution reveals

that for a given value of D f
T (D f

T ¼ 10�9 m2 s�1 in our sim-
ulations), changes in Dm

T do not affect the concentration pro-

files as long as its value remains larger than D f
T , i.e., the

condition � � 1 holds. In this transport regime, which is
atypical for transport in classical fracture-matrix systems,
transverse dispersion in the fracture is the limiting parame-
ter that reduces the fracture-matrix exchange and, corre-
spondingly, increases the solute concentration in the
fracture.

[23] Figure 3b exhibits the temporal evolution of the cu-
mulative relative exchange

Qðt�Þ ¼
Zt�ta
0

Z1
0

rðx; tÞ
uc0

dxdt; (18)

where rðx; tÞ is the mass flux between the fracture and
the ambient matrix defined by the second equation in

(3b), and computed by solving numerically (16). The
temporal fraction t� � t=ta 2 ½0; 1	 is the time t normal-
ized with the advection time ta ¼ xa=u for a given dis-
tance xa. It can be expressed in terms of the Péclet
number Pe and the dimensionless coordinate xf and time

t f ¼ D f
T t=b2 as

t� ¼ Pe
t f

x f
; (19)

where Pe and xf are defined in (10) and (11), respectively.
The mass exchange between the fracture and the matrix is
normalized with the total mass flux entering the fracture,
uc0. In the simulations reported in Figure 3b, we set
xa ¼ 10 m and consider several values of flow velocity
u ¼ 5� 10�5, 10�4, and 2� 10�4 m s�1. For the Péclet

number defined as Pe� ¼ ub=D f
L , this corresponds to

Pe� ¼ 5� 10�3, 10�2, and 2� 10�2.
[24] Consistent with the concentration results reported in

Figure 3a, the 1- and 2-D solutions predict the identical cu-
mulative fracture/matrix exchange Qðt�Þ when � > 1, i.e.,
when transverse dispersion in the fracture (D f

T ) is larger than
transverse diffusion (Dm

L ) in the matrix. The 1-D solution
underestimates the cumulative fracture/matrix exchange
Qðt�Þ when � < 1, with the errors growing with time.

[25] These findings are in agreement with those obtained
by Zhan et al. [2009] for the mass exchange in an aqui-
fer-aquitard system. Specifically, they found that the 1-D
solution (labeled as the ‘‘AA method’’ by Zhan et al.
[2009]) overestimates the mass exchange when transverse
displacement in the aquitard exceeds that in the aquifer,
i.e., when � < 1 in our notation. It is worthwhile noting
that in the work of Zhan et al. [2009], this result is

Figure 3. 1- and 2-D solutions of (a) solute concentration Cf at times t ¼ 5 � 104 s (solid lines),
t ¼ 105 s (dashed lines), and t ¼ 2 � 105 s (dash-dotted lines), and (b) cumulative exchange rate Q for
Pe� ¼ 5 � 10�3 (solid lines), 10�2 (dashed lines), and 2 � 10�2 (dash-dotted lines). The parameters are
set to their ‘‘high-velocity’’ default values (Table 1) except for (Figure 3a) b ¼ 10�3 m and u ¼ 10�4 m s�1

and (Figure 3b) u ¼ 5 � 10�5, 10�4, and 2 � 10�4 m s�1. In the 2-D solution, Dm
L ! 0.
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preordained by their formulation of the exchange term,
which is defined in terms of the aquitard properties. In
our solution, the exchange between mobile and immobile
domains is an emerging characteristic determined by the
full explicit coupling of transport processes in the two
domains.

[26] While not shown here, we found that the relative
error between the 1- and 2-D solutions for the fracture-
matrix exchange with � < 1 increases as the Péclet
number decreases, i.e., the impact of transverse disper-
sion in the fracture decreases with Pe. This is because
flow velocity (u) and longitudinal dispersion in the

fracture (D f
L ), two parameters defining Pe, affect the

solute’s interfacial concentration. Small u results in
slow renewal of the solute at the fracture/matrix inter-

face and large D f
L leads to longitudinal sprawl, both of

which decrease the interfacial concentration. These
phenomena enhance the effects of transverse dispersion
in the fracture.

[27] This analysis suggests that transverse dispersion
might play an important role in aquifer/aquitard systems
with � < 1, which is the case considered by Zhan et al.
[2009]. Fracture/matrix systems, which are the focus of our
analysis, are typically characterized by � > 1, so that trans-
verse dispersion in the fracture does not impact the frac-
ture/matrix exchange.

4.3. Effects of Longitudinal Diffusion in Matrix

[28] Figure 4 demonstrates the effects of longitudinal
diffusion in the matrix (Dm

L ) on the solute concentration in
the fracture, C f ðxÞ, computed alternatively with the 1-
(which is independent of Dm

L ) and the 2-D solution (which
depends on Dm

L ). Except for flow velocity u and matrix po-
rosity �m, all of the parameters in these simulations are set
to their ‘‘low-velocity’’ default values in Table 1. The val-
ues of u and �m vary to yield the following dimensionless
parameters in (10): Pe ¼ 10�3, 10�2; and 10�1, and
D fm ¼ 5� 102, 103, and 2� 103. To isolate the effects of

longitudinal diffusion in matrix, we set D f
T !1.

[29] The concentration Cf is plotted as a function of the
relative distance along the fracture, x� � x=xa, where
xa ¼ uta is the distance the solute would reach solely due to
advection by a certain time ta (in these simulations we set
ta ¼ 2:5� 109 s). This allows us to compare the impact of
longitudinal diffusion on fracture concentration for several
values of flow velocities u. In terms of the dimensionless
parameters defined above, x� is given by

x� ¼ x f

Pe t f
: (20)

[30] Figure 4 reveals that the magnitude of flow velocity
u has no discernible effect on the solute concentration pro-
files C f ðx�Þ computed with the 1-D solution, i.e., when

D f
T !1 and Dm

L ! 0. It also demonstrates that longitudi-
nal diffusion in the matrix (the 2-D solution corresponding
to finite values of Dm

L ) decreases the solute concentration
C f ðx�Þ due to the corresponding increase in the fracture-
matrix exchange. It is observed in the transport regimes for
which both Dfm (the ratio between fracture dispersion and
matrix diffusion) and Pe (the Péclet number) are small
(Figure 4a).

4.4. Pulse Injection at Fracture Inlet

[31] Since our solution is expressed in terms of the
Green’s functions, it is capable of handling an arbitrary

Figure 4. Spatial profiles of the relative fracture concen-
tration computed with the 1- (lines) and 2-D (lines with
squares) solutions. The parameters are set to their ‘‘low-
velocity’’ default values (Table 1), except for �m and u
whose variation results in Dfm ¼ 5� 102 (solid lines), 103

(dashed lines), and Dfm ¼ 2� 103 (dash-dotted lines), and
(a) Pe ¼ 10�3, (b) 10�2, and (c) Pe ¼ 10�1. In the 2-D

solution, D f
T !1.
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juxtaposition of driving forces, such as space-time varying
sinks, sources, and initial and boundary conditions. We
demonstrate this versatility by considering pulse injection
at the fracture inlet (x ¼ 0) of solute mass M ¼ uc0ti during
the injection time interval 0 � t � ti. At x ¼ 0, the solute
concentration c0 along the fracture’s aperture is uniform
and constant during the injection time ti.

[32] The average normalized concentration in the frac-
ture, C�f � C f =M , at the fracture outlet (xa ¼ 1 m) is
shown in Figure 5 as a function of the temporal fraction t�

defined by (19). These simulations correspond to the injec-
tion interval ti ¼ 10 s. The other parameters are set to their
‘‘low-velocity’’ default values in Table 1. We consider the
three flow velocities u corresponding to Pe ¼ 10�3,
5� 10�3, and 10�2.

[33] Temporal variability of the solute injection magni-
fies the disparity between the 1- and 2-D solutions, espe-
cially for small Péclet numbers (Pe � 10�3). By accounting
for both longitudinal diffusion in the matrix and the depend-
ence of matrix diffusion of transport in the fracture, the 2-D
solution predicts that the fracture/matrix exchange occurs
closer to the fracture outlet than does the 1-D solution. Con-
sequently, longitudinal diffusion in the matrix reduces both
the amplitude and the range of solute arrival times. This
effect is amplified by the enhanced storage of solute in the
matrix. Similar to the case of constant solute injection, the
fracture concentration Cf is affected by transverse diffusion
in the matrix (especially when the Péclet number is small)
and is largely insensitive to transverse dispersion in the
fracture.

[34] The breakthrough curves predicted with the 2-D so-
lution separate the solute dispersing through the fracture
from the solute that diffuses the same distance (at later
times, of course) through the matrix. Such breakthroughs

are precisely what are measured in a tracer experiment,
since not all of the solute injected at the fracture’s inlet
reaches its outlet. By ignoring this effect, the 1-D solution
overpredicts the spread of arrival times. Consequently, the
reliance on the 1-D solutions (including the Tang et al.
[1981] solution) to analyze tracer-test data overestimates
molecular diffusion.

5. Conclusions
[35] We developed a semi-analytical solution for trans-

port of conservative solutes in a single fracture. Our solu-
tion accounts for two-dimensional (2-D) dispersion in the
fracture, 2-D diffusion in the ambient matrix, and fully
coupled fracture-matrix exchange, without resorting to
simplifying assumptions regarding any of these transport
mechanisms. It enables one to deal with arbitrary initial
and boundary conditions, as well as with distributed and
point sources. Consequently, our solution generalizes the
widely used solutions of Tang et al. [1981] and Sudicky
and Frind [1982], both of which neglect transverse disper-
sion in a fracture and longitudinal diffusion in the ambient
matrix, and replace the full coupling between the transport
processes in the fracture and the matrix with a partial (one-
way) coupling.

[36] Our analysis leads to the following major
conclusions.

[37] 1. Transverse diffusion in the matrix is the key pro-
cess controlling the fracture-matrix exchange, if the trans-
verse matrix diffusion coefficient (Dm

T ) is smaller than the
transverse dispersion coefficient in the fracture (D f

T ).
[38] 2. If Dm

T > D f
T , the fracture-matrix exchange is con-

trolled by transverse dispersion in the fracture, as quantified
by the corresponding Péclet number. The assumption of
complete mixing in the fracture leads to an overestimation
of the fracture-matrix exchange. This effect is enhanced for
small Péclet numbers.

[39] 3. Longitudinal diffusion in the matrix has an
impact on the fracture concentration for a small Péclet
number. Ignoring this process leads to an overestimation of
the fracture concentration. This effect becomes more pro-
nounced as the ratio D f

T=Dm
T decreases.

[40] 4. Longitudinal diffusion in the matrix decreases both
the magnitude and range of arrival times in pulse-injection
tracer experiments. The standard fracture/matrix transport
models ignore this process, leading to the overestimation of
the transport parameters from tracer tests. By accounting for
longitudinal diffusion in the matrix our solution improves
the interpretation of tracer tests in fractured media.

[41] The methodology developed in the present analysis
can be extended to account for the spatial fracture-scale vari-
ability of flow velocity. Numerical studies [Buckley and Loy-
alka, 1994] have shown the impact of no-slip conditions at a
fracture’s surface on the fracture-matrix exchange; yet we
are not aware of analytical attempts to quantify this effect.

[42] Such two-dimensional solutions will enhance the
reliability of parametric identification procedures. They can
also be incorporated into hybrid (fracture-/continuum-scale
or pore-/continuum-scale) models of transport in fractured
rock and porous media [Tartakovsky et al., 2008; Battiato
et al., 2011], especially those dealing with complex fracture
networks.

Figure 5. Pulse injection: Temporal evolution of the rel-
ative solute concentration in the fracture computed with the
1- (lines) and 2-D (lines with squares) solutions. The pa-
rameters are set to their ‘‘low-velocity’’ default values
(Table 1), with variations of u leading to Pe ¼ 10�3 (solid
lines), 5 � 10�3 (dashed lines), and Pe ¼ 10�2 (dash-dotted
lines).
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Appendix A: Green’s Functions and Solute
Concentrations

A1. Green’s Function for Fracture BVP
[43] Two-dimensional Green’s function G f ðx; z; x0; z0;

t � t0Þ for the fracture BVP (1), (3a), (3c), and D f
T@c f =@

zðx; z ¼ b; tÞ ¼ r is obtained [Carslaw and Jaeger, 1959] as
the product of two one-dimensional Green’s functions,
G f ¼ G f

x G f
z , where G f

x ðx; x0; t � t0Þ and G f
z ðz; z0; t � t0Þ are

given by

G f
x ¼

e
u 2ðx�x0Þ�uðt�t0 Þ

4D f
L

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D f

L�ðt � t0Þ
q e

� ðx�x0Þ2

4D f
L ðt�t0Þ � e

� ðxþx0 Þ2

4D f
L ðt�t0Þ

2
4

3
5 (A1)

and

G f
z ¼

1

b
þ 2

b

X1
n¼1

e�D f
T�

2
nðt�t0Þcos ð�nzÞcos ð�nz0Þ (A2)

with �n ¼ n�=b:
[44] The Laplace transform of G f has the form

G
f ¼ G

f
x

b
þ 2

b

Xþ1
n¼1

cos ð�nzÞcos ð�nz0Þðsþ D f
T�

2
nÞG

f
x ; (A3)

where

G
f
x ¼ e

uðx�x0Þ
2D f

L
e�jx�x0 j� � e�ðxþx0Þ�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

u2 þ 4D f
L s

q (A4)

and

� ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

D f
L

u2

4D f
L

þ s

 !vuut : (A5)

A2. Green’s Function for Matrix BVP
[45] Two-dimensional Green’s function Gmðx; z; x0; z0;

t � t0Þ for the matrix BVP (2), (3a), (3d), and �mDm
T @cm=@

zðx; z ¼ b; tÞ ¼ r is expressed as the product of the one-
dimensional Green’s function Gm

x ðx; x0; t � t0Þ and
Gm

z ðz; z0; t � t0Þ, which are given by [Carslaw and Jaeger,
1959]

Gm
x ¼

1

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�Dm

L ðt � t0Þ
p e

� ðx�x0Þ2
4Dm

L ðt�t0Þ � e
� ðxþx0Þ2

4Dm
L ðt�t0Þ

" #
(A6)

and

Gm
z ¼

1

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�Dm

T ðt � t0Þ
p e

� ðz�z0 Þ2
4Dm

T ðt�t0Þ þ e
� ðzþz0�2bÞ2

4Dm
T ðt�t0 Þ

" #
: (A7)

[46] The Laplace transform of Gm is

G
mðsÞ ¼ K0ð�11Þ þ K0ð�12Þ � K0ð�21Þ � K0ð�22Þ

2�
ffiffiffiffiffiffiffiffiffiffiffiffiffi
Dm

L Dm
T

p ; (A8)

where �ij ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðai þ bjÞs

p
for i; j ¼ 1; 2, a1 ¼ ðx� x0Þ2=Dm

L ,

a2 ¼ ðxþ x0Þ2=Dm
L , b1 ¼ ðz� z0Þ2=Dm

T , and b2 ¼ ðzþ z0�
2bÞ2=Dm

T .

A3. Concentrations in Fracture and Matrix
[47] Solutions of the fracture and matrix BVPs, expressed

in terms of the corresponding Green’s functions G f and
Gm, can be written as

c f ðx; z; tÞ ¼
Zb

0

Z1
0

c 0
f ðx0; z0ÞG f ð�; �; tÞdx0dz0

þ
Z t

0

Zb

0

c0ðz0; t0Þ uG f þ D f
L

@G f

@x0

� �
ð�; 0; z0; �Þdz0dt0

þ
Z t

0

Z1
0

rðx0; t0ÞG f ð�; x0; b; �Þdx0dt0

þ
Z t

0

Zb

0

Z1
0

f ðx0; z0; t0ÞG f ð�; �; �Þdx0dz0dt0

(A9)

and

cmðx; z; tÞ ¼
Z1
0

Z1
0

c 0
mðx0; z0ÞGmð�; �; tÞdx0dz0

� 1

�m

Z t

0

Z1
0

rðx0; t0ÞGmð�; x0; b; �Þdx0dt0:

(A10)

Appendix B: Solution of Fredholm Equation
[48] To facilitate the solution of the Fredholm equation of

the first kind (16), we transform its left-hand side into

Z1
0

Iðx0Þdx0 ¼
Z1

0

Iðx0Þ þ I 1

x0

� �
1

x02

� �
dx0; (B1)

where Iðx0Þ � Kðx; x0; sÞRðx0; sÞ. The integration interval is
subdivided into Nx subintervals of length �x ¼ 1=Nx, so
that

Z1
0

Iðx0Þdx0 ¼
XNx

j¼0

Zxjþ1

xj

Iðx0Þ þ I 1

x0

� �
1

x02

� �
dx0 (B2)

with xj ¼ j�x. The change of the integration variable
x ¼ 1=x0 in the second term of the integrand yields
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Z1
0

Iðx0Þdx0 ¼
XNx

j¼0

Zxjþ1

xj

Iðx0Þdx0 þ
Z1=xj

1=xjþ1

Iðx0Þdx0

2
64

3
75: (B3)

Thus, the integral in (16) is transformed into a sum of
N� ¼ 2Nx integrals

Z1
0

Iðx0Þdx0 ¼
XN�

j¼0

Z�jþ1

�j

Iðx0Þdx0; (B4)

where �j ¼ j�x for j ¼ 0; . . . ;Nx and �j ¼ 1=ð j�xÞ for
j ¼ Nx; . . . ; 2Nx:

[49] The expected behavior of Rðx0; sÞ on the integration
intervals ½�j; �jþ1	 determines the numerical approximation

of the corresponding integrals of Iðx0Þ � Kðx; x0; sÞRðx0; sÞ
[Fogden et al., 1988]. If Rðx; sÞ varies slowly with
x 2 ½�j; �jþ1	, then

Z�jþ1

�j

Iðx0Þdx0 
 Rð�xjÞ
Z�jþ1

�j

K�ðx; x0; sÞdx0: (B5a)

If Rðx; sÞ varies quickly with x 2 ½�j; �jþ1	, then

Z�jþ1

�j

Iðx0Þdx0 
 �Rð�xjÞ
Z�jþ1

�j

K�ðx; x0; sÞdx0: (B5b)

In (B5a) and (B5b), �xj ¼ ð�j þ �jþ1Þ=2, K�ðx; x0; sÞ ¼
K�ðx; x0; sÞ=x0; and �Rð�xj; sÞ ¼ �xjRð�xj; sÞ:

[50] This approximation enables us to replace the Fred-
holm equation (16) with one of the two linear systems of
algebraic equations,

Ar ¼ b or A� r�¼ b; (B6)

depending on whether Rðx; sÞ varies slowly or quickly with
x. The N� � N� matrices A and A� have components

Aij ¼
Z�jþ1

�j

Kðxi; x
0Þdx0; �Aij ¼

Z�jþ1

�j

K dx0

x0
; (B7)

and the components of N�-dimensional vectors r, r� , and b
are given by

rj ¼ Rð�xj; sÞ; �rj ¼ �xjRð�xj; sÞ; (B8)

bj ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffi
D f

L D f
T

q
F�1 ðxj; sÞ: (B9)

The matrix components �Aij are computed numerically,
while the components Aij are evaluated analytically as
follows.

[51] Substituting (17) into the first relation in (B7) yields

Aij ¼
1

2
H�f ðx fi; �j; �jþ1; sf Þ

þ
X1
n¼1

H�f ðxfi; �j; �jþ1; s f þ D f
T�

2
nÞ

þ D fmH�mðxmi; �j; �jþ1; smÞ;

(B10)

where

H�f ðx f ; �j; �jþ1; s f Þ ¼
Z�jþ1

�j

F�2ðx f ; xf
0; s f Þdx f

0

¼
h f ðx; �j; �jþ1; sÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Pe2=4þ s f

p
(B11)

and

H�mðxmi; �j; �jþ1; smÞ ¼
Z�jþ1

�j

F�3 ðxm; xm
0 ; b; smÞdxm

0

¼ T 1ðk; x; x0Þ � T 2ðk; x; x0Þ:

(B12)

[52] In (B11),

h f ¼
eðc��1aÞðx��jÞ � 1

c� �1a
� eðc��2aÞðx��jþ1Þ � 1

c� �2a

þ exðc�aÞ��jþ1ðcþaÞ

cþ a
� exðc�aÞ��jðcþaÞ

cþ a
;

(B13)

where a2 ¼ ½u2=ð4D f
L Þ þ s	=D f

L , c ¼ u=ð2D f
L Þ, �1 ¼ sign

ðx� �jÞ; and �2 ¼ signðx� �jþ1Þ:
[53] In (B12),

T 1 ¼
�

2
ðxþ x0Þ L�1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kðxþ x0Þ2

q� �
K0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kðxþ x0Þ2

q� ��

þL0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kðxþ x0Þ2

q� �
K1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kðxþ x0Þ2

q� �� (B14)

and

T 2 ¼
�

2
ðx� x0Þ L�1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kðx� x0Þ2

q� �
K0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kðx� x0Þ2

q� ��

þL0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kðx� x0Þ2

q� �
K1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kðx� x0Þ2

q� ��
;

(B15)

where k ¼ s=Dm
L and Lnð�Þ denotes the modified Struve

function of order n.
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