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SUMMARY

The poor results of Smith’s (1974, 1977) computations concerning the motions of the
solid inner core of a slowly rotating, ellipsoidal earth model can be explained by the fact
that Smith neglected in the equations of motion second-order terms in the ellipticity.
We demonstrate this statement by calculating the eigenfunctions associated with the
diurnal tilt-over mode (TOM) and inserting them into the equations of motion. Next,
we compute the free core nutation (FCN) and the free inner core nutation (FICN)
for various realistic earth models. We find that their respective periods are in good
agreement with the results of Mathews ef al. (1991b) and de Vries & Wahr (1991), who
have computed these modes by other means.
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1 INTRODUCTION

Analytical and numerical computations of the free modes of
a rotating, deformable earth model of ellipsoidal shape are
far more complicated than those of a non-rotating model of
spherical shape. The influence of rotation and ellipticity on the
usual seismic normal modes with periods smaller than 1 hr can
be studied by perturbation methods (Backus & Gilbert 1961;
Dahlen 1968, 1969; Dahlen & Sailor 1979). In this case, there is
no need to solve the equations of motion for an ellipsoidal
model. However, if we wish to deal with the free wobbles or free
nutations of the Earth, we can no longer treat rotation and
ellipticity as perturbations. Indeed, those motions are not free
motions of a spherical model.

The first studies of these motions for a deformable earth
model were performed by Bryan (1889) and Hough (1895, 1896)
towards the end of the 19th century. Owing to the simplicity of
the model considered, namely a homogeneous, incompressible,
liquid ellipsoid, Bryan (1889) was able to solve exactly the
equations of motion by using spheroidal harmonics and elliptic
coordinates. Hough (1896), considering a homogeneous, incom-
pressible, solid ellipsoid, made the a priori assumption that the
displacement field was the sum of a rigid rotation and a smaller
elastic displacement. He determined the latter by neglecting
the inertia forces and ellipticity in the equations of motion.
Expressing then the conservation of the angular momentum for
the whole body, he obtained an algebraic equation for the free
period. Roughly speaking, we may say that these two methods
are at the root of the main approaches for computing the free
wobbles of rotating bodies.

The former method has, in principle, the advantage of allow-
ing for the computation of @// the normal modes of the reference
body, but it has to face difficult problems when the body,
assumed to be initially in hydrostatic equilibrium, is hetero-

©2001 RAS

geneous and, as a consequence, the ellipticity of its strata
varies along the radius. Indeed, in this case there exists neither
a suitable coordinate system nor appropriate base functions.
Therefore, the equations of motion are generally solved in
spherical coordinates, using spherical harmonic functions.
Displacements associated with different harmonic degrees are
then coupled to each other and, in order to obtain numerical or
analytic solutions, the chain coupling must be truncated at a
given level. This truncation is sometimes questionable.

On the other hand, the latter method is designed to study
nutational motions only. It yields analytical expressions for the
proper periods, but relies on the assumption that the elastic
deformation is smaller than the rotational displacement.

In this paper, I shall focus on the theory of Smith (1974), who
derived the scalar equations governing the motion of a slowly
rotating, slightly ellipsoidal, elastic body. Later, Smith (1977)
published the results obtained by numerically solving these
equations. While the theory worked rather well for determining
the periods of the Chandler wobble (CW) and the nearly diurnal
free wobble (NDFW), also known as the free core nutation
(FCN), the motions of the solid inner core were not described
properly. In particular, the period of the inner core equivalent
of the Chandler wobble (named ‘Chandler wobble of the inner
core’ by Smith) did not agree at all with the period computed by
Busse (1970) for a very simple earth model. Moreover, Smith
discovered a free nutation of the inner core (FICN) but, in view
of his previous inconclusive results, he refused to give much
credit to his finding. He believed that the reason for the failure
of the theory in the inner core was the insufficient number of
terms retained in the coupling chain.

Later, Wahr (1981a,b,c) exploited Smith’s theory intensively
to compute the forced motions of an elliptical earth. Extending
the theory, Dehant (1987) allowed for material anelasticity
in the equations of motion, but used essentially Wahr’s numeric
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code based on the equations of Smith (1974). Recently, Schastok
(1997) argued that second-order terms in the ellipticity must be
kept in the equations of motion and the boundary conditions,
even if the ellipticity is as small as that of the Earth. Smith and
his followers, especially Wahr & Dehant, had neglected such
second-order terms. Schastok’s argument was founded on the
analytical form of the solution of the deformation equations of
a simple earth model. Thus, taking also into account the non-
hydrostatic structure of the Earth, he provided a new nutation
series. In particular, he found a period for the free core
nutation in agreement with the observations, and he mentioned
a period for the free inner core nutation close to that calculated
by de Vries & Wahr (1991) and by Mathews et al. (1991b). The
latter papers extend the theory of Sasao er al (1980), which
itself belongs to the second type of approach briefly described
above.

In the following, I shall give a different proof that second-
order terms in the ellipticity must be retained in the system of
differential equations of Smith (1974) in order to provide signi-
ficant results. My proof consists of showing that the deformation
equations yield the correct eigenperiod and eigenfunctions of
a specific mode of any elliptical earth model, namely the tilt-
over mode (TOM), only if second-order terms are accounted
for. The TOM is merely a rigid rotation of the body about an
axis that does not coincide with the space-fixed z-axis of the
uniformly rotating reference frame. In Section 2, I first establish a
formula yielding the variation of the gravity potential induced
by the rigid nutation of an ellipsoidal homogeneous model. In
Section 3, I then summarize the important steps of Smith’s
(1974) theory, and I introduce the known TOM eigenperiod
and eigenfunctions into the equations of motion to demon-
strate that they are not correct solutions of the problem unless
second-order terms in the ellipticity are retained. This result
invalidates part of the scheme of numerical integration of the
deformation equations written by Smith. Finally, in Section 4,
I compare my numerical results for the FCN and the FICN
with those of de Vries & Wahr (1991) and Mathews et al.
(1991b), and I provide plots of the eigenfunctions of both of
these modes.

2 RIGID NUTATION OF A SLIGHTLY
SPHEROIDAL UNIFORM BODY

2.1 Gravity potential of a slightly spheroidal uniform
body

Let us consider a slightly spheroidal homogeneous body,
possessing a density po. The term ‘spheroid’ designates here an
ellipsoid that has its symmetry of revolution about the polar
axis. In the following, we shall use the words ‘ellipsoid’ and
‘spheroid’ interchangeably, it being understood that the body
has the shape of a spheroid. ‘Slightly’ means that the difference
in lengths between the major and minor axes is small compared
to the lengths of any of these axes. We define a right-handed
reference system such that the origin O is at the centre of mass
of the body, the Oz-axis is directed along the minor axis, the
axis of symmetry of the body, and the Ox- and Oy-axes lie in
the equatorial plane. In this reference system, spherical coordi-
nates are denoted by r, 0 and ¢. To first order in the flattening,
the gravity potential inside (¢;) and outside (¢.) the body may

be written as

2 R 2
¢ =47Gp [E* o 5 bl 9)} W
and
R R
¢e = 41Gp, {— 355 $2P>(cos 9)} , )

where R is the radius of the equivolumetric sphere, P, is the
Legendre polynomial of degree 2 and s, is a figure function
related to the flattening ¢ by

2
n=—Ze. )

If the body was not homogeneous, eq. (3) would still hold but
s> and ¢ would be functions of r. The continuity conditions to
be satisfied by the potential may be applied either at the surface
of the ellipsoid,

r=R(1+5P,), 4)

or at the surface of the equivolumetric sphere of radius R, i.e.
r=R. In the first case, we have

¢i(R+Rs2Pr) = ¢ (R+ Rs2 P>)

1 2
=4nGp,R* (— 3715 ssz) (5)

and

— V¢i(R =+ RSsz)

= 7V¢S(R -+ RS2P2)
1 1 3 .
=4nGpyR K— 3 + 15 ssz) e + 3 $ cos 0 sin OeH} . (6)

In the second case, at r=R, ¢ is still continuous,

61(R) = 6u(R) =47Gpy R (— L Szpz) , o

but the normal component of the gravity is discontinuous,

1 2
—V¢i(R)=4nGpyR { ( 3 + 3 Ssz) e+ % §7 cos 0 sin 069]

®)

and

1 3 3 .
— Vpe(R) = 4nGpyR K—g ~3 ssz)e,. + 3 5> cos 0sin 969:| .

&)
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Therefore, we recover the usual boundary condition to be
imposed on the gravity of a deformed spherical body, namely

(Vi +4nGpou) - €, = Ve e, (10)
provided the displacement is

u=Rs, Pre, . (11)

2.2 Geometrical description of a rigid nutation

Let us now suppose that the ellipsoidal body undergoes a small
rigid rotation through an angle ff about an axis that is in the
equatorial plane of the undisturbed body. We define a second
system of reference, Ox'y’z’, obtained by rotating the Oxyz
system with the body. In Ox'y’z’, the spherical coordinates are
denoted by r, 6" and ¢'. The Euler angles are then o, f and —a,
where o is the angle between Ox and the axis of rotation, which
is thus also the line of nodes. They correspond to a rotation
through the angle « about Oz, followed by a rotation through
the angle  about Ox, and a rotation through the angle —o
about Oz'. The basis vectors e,, e,, e. can be expressed as
functions of e,, e,, e. by means of the matrix operation

ey cosa —sina 0 1 0 0
ey | =| sina cosa O 0 cosfp sinf
e 0 0 1 0 —sinf cosf
cosa sino 0 e,
x| —sina cosa 0 e, |. (12)
0 0 1 e.

As f is infinitesimal, this relation simplifies to

ey 1 0 —fsina e
ey | = 0 1 pcosa e |, (13)
e psina  —fcosa 1 e,

or, on inverting,
e, 1 0 Psino ey
e | = 0 1 —fcosa ey |. (14)
e. —fsino fcosa 1 e

The sine and cosine of the spherical coordinates 6’ and ¢’ can
then be expressed as functions of 6 and ¢ by substituting the
relations (14) into

r=xe,+ye,+ze.=x'ey+)e,+z'es (15)

and equating the terms proportional to e, e, e... In this way
we find

cos ' = cos 0+ Bsin Osin(o— @), (16)

sin@ = sin 6 — Bcos Osin(a — ), 17

cosgp'=cos|l+p cos 0 sin(z—q)| —B cos 0 sina (18)
= P sin 0 o sin 0 ’

cos

cosa. (19)

sin 0

sin @' = sin ¢ {1 +B S0

sin(a — (p)} +p cos 0
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The basis vector ey is given by
ey = cos b cos p'ey + cos 0 sing'ey — sin e

= cos 0 cos pe, + cos 0sin pe,, — sin Oe.

B . .
* Snd {[— sina+ cos ¢ sin(a— @)]ex
+[cos o+ sin @ sin(x—g)]e, } . (20)

Thus, we obtain to first order in f

_ B
ey =eg+ e cos(a—q)e, . (21

Since the rotation through the angle f is infinitesimal, it can be
represented by a vector,

B=P(cosxe,+ sinxe,), (22)
and the displacement vector of a particle is
u=pgxr=rp[sin(a—p)eg— cos O cos(x—p)e,] . (23)

This is easily seen to be a toroidal displacement of degree 1 and
order 1:

1 0w ow

"= Sno g 7 a0 o @4)
where
W = rfsin 0 cos(x — ). (25)

2.3 Variation of the gravity potential of a slightly
spheroidal homogeneous body undergoing a rigid
nutation

The gravity potential ¢’ of the tilted body described in
Section 2.2 is obviously of the form (1) or (2), with 0 replaced
by 0. The relations (16) and (17) allow us to write

2 R 2
¢£=4nGp0{ € 5 % $2[P2(cos 0)
+3ﬁcosOsinOSin(a—(p)]}, (26)
R3 S
@, :477:Gp0{ 3, A% [P (cos 0)

+3pcos Osin O sin(a — @)]} . 27

Thus, the variations of the gravity potential ¢, =¢'—¢ caused
by the rigid nutation inside and outside the body become

2
¢1;=4nGp, {f 3% 2 cos@sin@sin(afgo)} , (28)
3R’ . .
o1, = 4nGp, |— 53 syfcos OsinBsin(a — )| . (29)
I

They are harmonic functions of degree 2 and order 1. The
quantity ¢, is continuous at =R or at the ellipsoidal surface
(eq. 4). It is proportional to s, and § and, of course, vanishes
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for a spherical body. The gravity is

1 2
—Vgi =4nGp0r{ {— 3 + 3 52(P2+3Bsin0cos Osin(e—)) | e,

+§ 52[cos 0sin 0 — B(cos? 0 — sin’ 0) sin(o — @) ] e

3
+ 3 szﬁcosﬁcos(oc—q))egﬂ} (30)
and
—V¢. =4nGp,

XE 7i,§s(1) + 3B sin 0 cos Osin(x — @)) | e
= 3R2 5V i

+ % 52 [cos O'sin 0 — B(cos” 0 — sin’ 0) sin(o— )] e

3
+§ szﬁcosecos(uf(p)e(p}. 31
Thus, the variation of the radial component of the gravity,
0 o¢ 0
ROV
or or or

between the reference position and the tilted position is

- 52“ =4rGp, % 523 cos 0'sin 0 sin (o — @} (32)
and

091 R L
_76 = 47Gp, [_F s23fcosOsinfsin(a — )| . (33)

Since these variations are of first order in s5, the jump of radial
gravity is, to first order in the flattening, the same at the
spherical surface, r=R, and at the spheroidal surface (eq. 4):

0y S 0
g}}‘ +471Gpy|R s23f cos Osin O sin(a— )] = ?;e . (34)
The latter expression can be rewritten as
od1; 3 S
a0 + ﬁgb]i: —4nGpy[R 523 cos OsinOsin(a— )] . (35)

3 COMPUTATION OF A RIGID
NUTATION BASED ON THE
DEFORMATION EQUATIONS

3.1 Summary of the method

Smith (1974) developed a theory for calculating the normal modes
and the forced motions of a deformable, slightly ellipsoidal,
rotating body, described by an isotropic elastic constitutive
relation. Here, our goal is to rederive the results obtained in the
previous section using Smith’s method. However, beforehand
we must be sure that a rigid nutation of a deformable body, in a
given reference frame, is indeed a possible motion. Obviously,
this is the case because the particular motion considered
corresponds to a free mode usually called the tilt-over mode
(TOM). The latter exists for every rotating body. Viewed in an
inertial reference frame, the TOM is merely the steady rigid
rotation of the body about an axis that does not coincide with

any axis of the relative reference system Oxyz described above.
Thus, its period is the spin period of the body, namely one
sidereal day for the Earth. It does not depend on the internal
constitution of the body (Smith 1977; Moritz & Mueller 1987).

We briefly describe the main steps of the method elaborated
by Smith (1974), adopting throughout this section the notation
of Smith’s paper and matching it with the notation used earlier.
The reference body is assumed to be in hydrostatic equilibrium
and slowly rotating. It is, therefore, slightly flattened into a
spheroidal shape. Because, as a rule, earth models are tabulated
as spherically symmetric models, we must start by computing
the flattening &(r) that the internal strata would assume if
the models were steadily rotating about a fixed axis. Various
methods can be used to perform this task. The most efficient
ones are explained in detail in the paper by Denis et al. (1998).
The density at a geometrical point (r, 6, ¢) of the spheroidal
body can then be expressed as a function of the density po(r) at
the same geometrical point of the corresponding non-rotating
spherical body by the formula

p(r, 0, @) =po(r)+ pa(r) Pa(cos 0) , (36)

where

palr) = —sa(r)r 220 37)
2 dr

The two elastic parameters can be split in the same way, whilst
the gravity potential is

dgo Q(z) 2
o(r, 0, o) =o(r)— |s2(r) ¥ r + 37 P>(cos0), (38)
Q) being the angular speed of rotation of the reference frame.

After linearizing and Fourier-transforming the equations
of motion, they can be written as a set of scalar differential
equations in the same way as is done for the deformation
equations of a spherical model, that is, the vector fields are
decomposed into toroidal and spheroidal parts described in
terms of scalars. Each scalar field is then represented as a series
of surface spherical harmonics. In practice, generalized surface
spherical harmonics are used instead of common spherical
harmonics, but this is a somewhat technical point.

In the spherical, non-rotating case, the spheroidal and
toroidal deformations are uncoupled from each other, as are
the different harmonic degrees, and, for a given degree, the
order is irrelevant. In the rotating spherical and/or ellipsoidal
case, owing to expressions such as eq. (36), to the Coriolis force
and to the centrifugal force, the presence of products of
spherical harmonics couples the spheroidal and toroidal motions.
However, since a spheroidal model has axial symmetry, there
is no coupling between deformation of different harmonic
orders, and a spheroidal deformation of odd (even) degree is
coupled to toroidal deformations of even (odd) degrees and to
spheroidal deformations of odd (even) degrees. To solve the
equations of motion effectively, the coupling chain must be
truncated at some level. Nobody has ever proved that such a
truncation procedure is valid and leads to correct results, but
we assume that it is in the circumstances we are interested in.
An additional approximation introduced by Smith is to neglect
the terms of orders higher than first in the flattening.

The second important step of the theory, after separating the
unperturbed density, elastic parameters and gravity potential
into a sum of terms of harmonic degree 0 and a term of
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harmonic degree 2 and order 0, consists of writing down the
continuity and boundary conditions of the perturbed quantities
and the displacement. These conditions obviously apply at
the spheroidal surfaces. The trick here is to expand each of the
perturbed quantities, displacement and unit normal with respect
to the spheroidal surface into a Taylor series in the neighbour-
hood of the corresponding equivolumetric sphere of radius r
and to neglect the terms of order higher than 1 in the flattening.
If we put

h(l’, 9) =5 I’Pz = h2P2 (39)

to reconcile Smith’s notation with ours, the normal to an
ellipsoidal surface is

1 oh

n=e —— — ¢.
"o or

(40)
For example, consider a simple interface described by the
position vector

p=r+mPe,. (41)

The condition that this interface is welded (solid-solid) is
expressed by the condition that the displacement vector

u(r)+ /P aj (42)
ar

must be continuous at r. According to Smith, only terms of first
order in the flattening ought to be retained in this condition, as
well as in the other transformed continuity conditions and in
the linearized equations of motion. This set of approximate
equations and conditions would then give the same results
as the exact equations of motion and continuity conditions. I
will now show that this approximation is not a good one under
certain circumstances. The reason for this is in fact quite
simple: for certain motions, such as the TOM or the free core
nutation, the terms of order 0 in the flattening (that is, terms
that do not depend on the flattening) are smaller than or of the
same amplitude as terms of order 1. It thus becomes necessary
to take into account terms of order 2 in the flattening to obtain
acceptable numerical results.

3.2 The TOM as a solution of the deformation
equations

Knowing a particular proper mode specific to a rotating body,
i.e. the TOM, we want to verify that the latter is indeed a
solution of the equations of motion and satisfies the appro-
priate boundary conditions. Since the TOM is a pure rotation
without deformation, although it involves a variation of gravity,
we may keep only two terms amongst the infinite number of the
chain, namely

u=1|+aj, (43)

where 7{ denotes the degree 1 and order 1 toroidal displace-
ment, and o3 denotes the degree 2 and order 1 spheroidal
displacement. The second term, 62, is exactly zero, but we keep
it to remind us that a degree 2 and order 1 perturbation of the
gravity potential is involved. The spheroidal scalars, that is,
the radial displacement U3 and the scalar V2 proportional to the
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displacement tangential to the equivolumetric sphere, are thus
null. Because there is no deformation at all, the elastic stress
tensor must also be zero. This means that the spheroidal and
toroidal parts of the normal stress, and their derivatives,
vanish:

Pl=0, Q)=0, RI=0. (44)

Finally, we know that the period of the TOM is exactly one
sidereal day, corresponding to an angular frequency

w=0y=7.292115x10">rads™". (45)

3.2.1 The TOM of a homogeneous body

Let us first consider a homogeneous body. Then, pg is constant
and /i, and ¢, are

—5Q2%r
= G, (46)
and
dgy 5
¢y = —hy % =20, (47)

In this special case, as p,=0, we can use the equations of
motion given by Smith (1974). His three scalar equations,
(5.28), (5.29) and (5.30), then reduce to

1
¢y =V3W| (6 Qgr—%), 48)

where Wi is the degree 1 and order 1 toroidal scalar of the
displacement, and ¢,3 is the radial part of the degree 2 and

order 1 variation of the gravity potential. ¢, obeys the Laplace
equation,

¢,  2dgy  6¢1)
i Trar e )

(49)

The solution of eq. (49), which is regular at the origin, is
proportional to 1. This is consistent with eq. (48) if W] is a
linear function of r, that is, the motion is a rigid rotation about
an axis lying in the equatorial plane:

V3
¢1£ = % Wllgé’

= ¥ WinGpgsar . (50)
That W! must be a linear function of r is also consistent
with equation (5.24) of Smith, which gives the radial derivative of
W1, By replacing sin (¢ —¢) with ¢~ in eq. (28) and calcu-
lating the Fourier transform, we obtain, if a=—Qu¢ and
Wl=4rnv2 r B, the solution (50) multiplied by the generalized
spherical harmonic 23, and by the delta function d(w — Q).
The factor /2 in W} stems from the definition of the generalized
spherical harmonics,

73,0, ([))Z?COS@SiH@Cw, (51)
71,0, ) = ? sin@e’ . (52)
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We can now look at the boundary conditions. Of course, at
the external boundary,

Pr=[R+m(R)P:le:, (53)

we must also find the relation (48). The continuity conditions
were written down by Smith, but not the boundary conditions.
Consequently, we shall first derive the latter for an arbitrary
movement. As usual, the variation ¢; of the gravitational
potential must be continuous at the external boundary, and its
gradient must obey the relation

(Vo1;+4nGpu) -n=Vey, n. (54)

Using eq. (40), expanding ¢;(pr) and V¢,(pr) into Taylor
series, and noting that

p(Pr) =po(Re;), (55)
we find to first order in A,
6(1511 +4nG(py+p,Pr)u-e,+ — P <h2P2 Ojll +4nGpyu- e,)

= V(haP2) - (Vor; + 4nGpou)

=0 g 1 (P ) < Vnry) - B, (56)

We skip the detailed and tedious expansion of this relation into
generalized spherical harmonics. The result for the left-hand
side is

L 20
[e+2]
d‘bi“‘ +4nGpy U +hy 00 0
o =}—2|
m 0 m
el(”—i_l) Po m 2p0 dp() m
X |:47[G<— T 7 VZ’ + '——7 o
L 2 7
d jr
2 ¢’11/ + (Z )¢|1 +10 1 -1 ﬁ
roodr r
m 0 m

n/7 s ) 7V'}1
o [@TM %(H(—I)HZ)JAHGP{ ‘ H

(57)
The brackets
-

Wyt

mean that we must take — V)7 if / + /' is even and W/ if £ + ¢’
is odd, whereas the arrays such as

L 20
0 0 0
m 0 m

designate products of Wigner 3-j symbols, as defined by Smith
(1974). These coefficients come from products of generalized
spherical harmonics Z/,y. At present, we know that ¢y, is a
solution of the Laplace equation. Therefore, we may write

“. B,
01e= 2 i1 Tno - (58)

(=0

where the B, are constants. If we substitute this formula into the
boundary condition expressing the continuity of the variation
of the gravity potential,

¢ 20
le+2)
aif+ Y. |0 0 0|k d¢;11
Tty r
m 0 m
¢ 20
[+2] d
=o'+ >, |0 0 0|k ‘bl“’ (59)
o=1¢-2]
m 0 m

we obtain an algebraic system whose unknowns are the
coefficients B,. If we denote the left-hand side of eq. (59) by ®,,
we can write that system under the form ® =AB, where B and
® are the column vectors

B=(...By_4, Bi_3, By, Bi12, Bryy, ...)
and
D=(.. DOy Oy Oy Dpyr, Oy, ...).

The matrix A is tridiagonal with off-diagonal elements of first
order in /1, and diagonal elements given by

k 2 k
1 h
pe 1—(k+1)72 00 0%, (60)
m 0 m

where k can take the values ... /—4,/—-2,¢,/+2,/+4, ....
Still neglecting terms of order higher than first in /,, we easily
obtain the solution

k 2 k]
Bi=® ! (k+1)h2 00 0
m 0 m]
[k 2 k—2]
+ @ o (k—1)]0 0 0
Lm0 m |
(i 2 k+2
+ Doy (k+3){0 0 0 |. (61)
Lm0 m |
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The boundary condition for gravity finally becomes

¢11( +4 GpOUm ( )¢ll,,1
20
&2 1( pr
+hy Z 0 0 O |:4T[G< @@ V;,"
=|(-2| I
m 0 m
20 _dpo ), U=1) dorii (U= )(zﬂ+1)
+( . d U/r ; dr + ) ¢11
(2 0
_pm
3 14
+10 1 -1 4nGp0£ ] —=0. (62)
r Wm
[/

m 0 m

We now go back to our main task, which is the derivation of
the boundary conditions applying for the TOM. Noting that

2 (-1

B m 3(0—m)(L+m)
0 b =li==5 20(0—1) (63)

m 0 m

it is not very complicated to see that the condition (62) yields, to
first order in /,, the first equality of eq. (50).

The other three boundary conditions state that the com-
ponents of the traction vanish at the surface of the homo-
geneous ellipsoid. We consider here the radial component P3,
but our reasoning would be the same for the tangential
components. Thus, at the ellipsoidal boundary, the continuity
condition (5.44) of Smith (1974) gives

1dPy V30, V3Rl
1 72 772_77
P2+1’2<7 & Ta s 2y =0. 64)

Of course, Pi, its derivative, Qé and R] are exactly zero,
because there is no deformation. However, it can happen
when we solve the problem numerically that on substituting in
(dPY)/dr—its expression provided by the radial part of the
equation of motion—we must keep terms of first order in /,,
and thus terms of second order in the constraint equation (64).
Indeed, the equation of motion (5.28) of Smith (1974) yields

dip V3 W] V3 50,
R S T B (65)

dpy _ (dén
ar =Po

which obviously agrees with eq. (48) if (dP3)/dr =0. This shows
that if we retain only the first-order terms in eq. (64), we would
not recover eq. (50). Thus, I have found numerically, for a
homogeneous model of density py=>5515 kg m >, a period
of 87 109 s when the terms of second order are neglected.
This value disagrees significantly with the period of the TOM
(Ttom =386 164.1 s). Including the second-order terms, I find a
period equal to 86 164.33 s. Of course, from a numerical point
of view, it would be more practical to replace directly in eq. (64)
the value of (dP3)/dr computed from the equations of motion.
In the following, we show that the second-order terms also
ought to be kept in the equations of motion of a heterogeneous
ellipsoid.
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3.2.2 The TOM of a heterogeneous body

For a heterogeneous body, the density and flattening are no
longer constants, but vary along the radius r. The function &(r)
can be obtained, for example, by solving Clairaut’s equation
(Denis et al. 1998). Denoting the Cauchy stress tensor by T

the equation of motion in vector form can then be written as

VT =(po+pyP2) (i1 +1p+113) s (66)

where

2
n=- o’u+ V¢ — (V-u) (V¢0 - % re,,>

2
+V {u . (ngbo — % re,.)} R (67)

7, =2i0Q xu (68)

and

3 = Vu-V($y Pp)] = (V-u)V( Py). (69)

In his equation (5.27a), Smith assumes that the term p, P 113
is negligible. (We note that Smith’s vector g is our vector ;3
multiplied by po). However, this term is certainly not negligible,
since, in the case of the TOM, our equation of motion yields the
following scalar equations:

dP%_ _ 1 d¢l; d¢2\/_W1 \/§ 2 1971
W“”(”’*#’Z)(W* A N

2 r 3
(70)
do! 1 f 3 W}
(1)
and
drR} 3 2V3 3¢2 W et
W_O_Ep ( 7¢’12 p +QeWy ), (72)

from which the solution (48) can again be deduced. As ¢, obeys

d*¢y  2ddy 6
@ trar e Ao (73

it can be shown that the solution (48) is also a solution of the
Poisson equation,

dpry  2ddry 61y _
dr? rodr r?

—4nGp, — 74

f w
pa
In view of (48), the reason why the second-order terms are
not negligible now becomes evident: whereas the spheroidal
part of the displacement vector vanishes, the potential pertur-
bation is proportional to the flattening and to the toroidal
displacement of degree 1. In the equation of motion (66), #;
is thus of the same order as #; and #,, i.e. of first order in
ellipticity. Obviously, the second-order terms must also be kept
in the continuity conditions.
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Numerically, for earth model PREM (Dziewonski & Anderson
1981), I obtain a period of 86 164.22 s. The discrepancy between
this period and the sidereal day is only 0.12 s. Moreover,
the spheroidal scalars U} and V3 are found to be, at most, of
the order of 10~° W1. The function Wi(r) is plotted in Fig. 1.
The plot clearly represents a rigid rotation of the whole body.
Without considering the second-order terms in ellipticity in the
equations of motion and in the continuity conditions, I obtain
a period of 86 703.74 s and a function Wi(r) showing three
different rigid rotations for the mantle and the inner and outer
cores.

In Smith (1977) and Smith & Dahlen (1981), the only
second-order terms that are not neglected are the second-order
centrifugal terms. They stem from the product between the
latitude-dependent part of the density, p, P,, and the centri-
fugal potential contained in the vector #,. However, their
influence is very small because they only involve the spheroidal
scalars U} and V), which are much smaller than the dominant
toroidal scalar W} in nutational motions.

Schastok (1997) went one step further: he developed p,, ¢»
and 7, up to second order in ¢ and some of the continuity
conditions up to second order in /,. He also added a fourth-
degree harmonic term, A4, proportional to &%, in the equations
of the boundary surfaces. Although it is fully justified to
include in the theory all of the terms of second order in the
ellipticity, and it thus seems necessary to consider a second-
order hydrostatic theory as explained e.g. in Denis et al. (1998),
Schastok did not achieve a better precision than us regarding
the period of the TOM. To obtain for this particular mode a
period of exactly one sidereal day, he adjusted the ellipticity of
the earth model in a somewhat arbitrary way, without altering
the density of the model. Such a procedure is inconsistent with
hydrostatic theory (Smith & Dahlen 1981).

We can now turn to other free motions of an ellipsoidal earth
characterized by a large degree 1 toroidal displacement of some
of'its layers, associated with much smaller deformation, namely
free core nutation and free inner core nutation.

10 ——————7———

4 FREE CORE NUTATION AND FREE
INNER CORE NUTATION

Smith (1977) applied his method to investigate the free modes
of rotating, slightly ellipsoidal earth models. Besides the success-
ful computation of the periods of the Chandler wobble of the
mantle and the free core nutation (FCN, also called the nearly
diurnal free wobble, NDFW), the computation of the nutation
or the Chandler wobble of the solid inner core was problematic
and the inner core showed an anomalous behaviour for the
TOM, the FCN and the Chandler wobble of the mantle. The
arguments used by Smith (1977) to explain this failure of
the method were of two kinds. First, Smith stated that the
anomalous behaviour of the inner core during the diurnal or
nearly diurnal motions were in part due to the limited precision
of the numerical algorithm. Moreover, Smith gave a second
argument to explain the unexpectedly large rigid rotation that
he found of the inner core during the Chandler wobble of
the mantle. This argument was based on a paper by Busse
(1970), who considered a simple non-gravitating model with a
rigid oblate inner core undergoing a Chandler wobble. Busse
showed that the associated motion occurring in the liquid,
incompressible, non-viscous core surrounding the inner core
and enclosed within a rigid oblate mantle at rest vanishes
outside the cylinder with axis parallel to the initial rotation axis
and a radius equal to the semi-major axis of the inner core.
Thus, the almost discontinuous displacement within the fluid
could not be approximated by means of the truncated series

u=t{' o' +fl. (75)

However, as second-order terms in the ellipticity cannot be
neglected, we have adopted a technique different from that of
Smith (1977) when applying the continuity conditions and
propagating the numerical solutions across boundaries where
the density and/or the Lamé parameters are discontinuous.
This is especially the case at the ICB and the CMB. If the

1
W, .
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[ Earth model PREM ||

0.0 0.2

0.6 0.8 1.0
r/R

Figure 1. Toroidal displacement scalar W of degree 1 and order 1 for the tilt-over mode (TOM) of an oceanless version of PREM as a function of the
fractional radius r/R. The normalization of the eigenfunction is such that W} =1 at r=R. A linear regression shows that the non-linear part of W},
which theoretically should be strictly zero, is of the order of 10~° |W}|, and the spheroidal scalars Ul and V3 are of the same magnitude or even
smaller. This shows that the overall numerical accuracy is about 10 ~°. The computed eigenperiod is 86 164.22 s. The locations of the inner core (ICB)
and core-mantle (CMB) boundaries are indicated. Because W1 is a linear function of the radius, the motion consists of a rigid rotation of the whole

body about an axis lying in the equatorial plane.
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displacement vector is assumed to be sufficiently well approxi-
mated by the truncated series (75), the system of differential
equations in a solid part of the earth is of order 10. Starting
near the centre, we must consequently propagate through the
inner core five linearly independent vectors ¥, ..., ™), which
are regular at r=0. The 10 components of the vectors y are the
spheroidal and toroidal components of the displacement and of
the traction, the potential perturbation ¢ 14251 and the scalar

dey!

QZ; +4nGp, UZJ—rl .

In the liquid outer core, the differential system is of order 4
only. There we propagate four linearly independent vectors,
3O ..., 7™V, from the top side of the ICB up to the bottom
side of the CMB. The vectors j have seven components, the
tangential components of the traction being zero in a non-
viscous fluid. Next, we integrate 10 linearly independent vectors
from the top of the CMB to the free surface, the propagation of
the solution vectors through solid-solid interfaces posing no
real problem. (We do not consider earth models with a global
ocean or we modify the existing models to replace the global
ocean with a solid crust, but the presence of a liquid outer shell
could be treated in the same way as the liquid outer core.)
Finally, the vanishing of the determinant of the 19 x 19 matrix
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built on the continuity conditions at the ICB and the CMB and
on the boundary conditions at the free surface will occur when
the frequency of the motion is an eigenfrequency of the model.

Some results of our computations for PREM are shown
in Figs 2-5 and in Table 1. Fig. 2 displays the scalar of the
toroidal displacement field of degree 1 and order 1 relative to
the FCN. The corresponding calculated period is —458.6
sidereal days. The normalization of the eigenfunctions is such
that W(R)=1. Itis seen that the inner and outer cores rotate in
the same sense whereas the mantle rotates in the opposite sense.
Table 1 compares our results with the corresponding results of
Mathews et al. (1991b) and de Vries & Wahr (1991). Both
studies extended the semi-analytical computation of the free
and forced nutations of the Earth developed by Sasao et al
(1980) to take into account the presence of a solid inner core.
By means of a linear regression, we have estimated the linear
part of W} in each shell. The ratio between the amplitudes of
the rigid rotations of the inner core and of the mantle is
designated by ,/(; the corresponding ratio for the outer core
is denoted by Gt

The methods of Sasao et al. (1980), Mathews et al. (1991a)
and de Vries & Wahr (1991) rely on the calculation of static
Love numbers of a spherical model. However, Denis et al
(1998) have demonstrated that for realistic earth models, static

10 ————7— | — :
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0.0 ]
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2.0 ]
8.0 . FCN | 1
40 [t mode prEnt ]

50 T ISR
0.0 0.2 0.6 08 , g 10

Figure 2. Same as Fig. 1 but for FCN. The period is —458.6 sidereal days. Note that the inner core and the outer core rotate in the same sense while

the mantle rotates in the opposite sense.
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Figure 3. The heavy solid line represents the non-linear part of the degree 1 and order 1 toroidal scalar W} of the FCN for an oceanless PREM model
as a function of the fractional radius. It was obtained by subtracting the linear fit of W} from W} separately in the inner core, in the outer core and in
the mantle. The dashed lines are the degree 2 and order 1 spheroidal scalars, and the light solid line is the degree 3 and order 1 toroidal scalar describing

the displacements involved in the FCN.
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Table 1. Periods (in sidereal days) of the FCN and FICN, and the corresponding relative rotation angles between the outer or inner core and the
mantle. The negative (resp. positive) sign of an eigenpeji({d reﬂect§ the retrograde (resp. prograde) motion of the rotation axis in space. The model of
reference is an oceanless version of PREM. The ratios {/{ and (¢/( are not given explicitly in the paper of de Vries & Wahr (1991), but can be deduced

from other results provided.

FCN FICN
Period Z e Period &t e
Mathews et al. (1991b) —457.04 —17.821 —4393 476.8 12.40 —3139
de Vries & Wahr (1991) —457 —7.835 —4.287 471 11.69 —3017
This paper —458.6 —7.83 —427 473.9 11.4 —3025
100 71— T T T 8
/ r(a
W, . r(a ICB 1 w!
1
-100 T 1 6
200 CMB ]
4
-300 _— 7
. FICN |
-400 o= 3 )
[ arth model PREM ]
-500 T
-600:"""""“"“ O“‘\.‘..|“.‘|‘.“\
0.0 0.2 0.4 0.6 0.8 /R 1.0 0.20 0.30 0.40 0.50 /R

Figure 4. (a) Same as Fig. 1 for the FICN (period 473.9 sidereal days).
outer core drawn at a smaller scale.

Love numbers sensu stricto do not exist and, therefore, such a
calculation is a priori meaningless. Nevertheless, we assume that,
in this case, the physically incorrect numerical trick necessary
to overcome the problem of static deformations, implying dis-
continuity of the radial displacement at the CMB (e.g. Smylie
& Mansinha 1971; Chinnery 1975), leads to numerically
acceptable results for the nutations. In order to compare the
amplitude of the deformation associated with the nutation,
the non-linear part of W/ is plotted in Fig. 3 with the degree 2
spheroidal and degree 3 toroidal scalars of the displacement

displacements

There is almost no rotation in the outer core and in the mantle. (b) W1 in the

fields. The discrepancy between the computed FCN period and
that deduced from the observations, i.e. about 431.2 sidereal
days, has been tentatively explained by Gwinn et al. (1986) and
Neuberg et al. (1987) and more recently Dehant & Defraigne
(1997) and Schastok (1997) by considering the non-hydrostatic
structure of the earth.

We now look at the free inner core nutation, or FICN. Fig. 4
shows the W} function corresponding to an eigenperiod of
473.9 sidereal days. The graph obviously represents a free
nutation of the inner core. Moreover, a closer examination of
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Figure 5. Same as Fig. 3 for the FICN. Near the CMB, the non-linear part of W} is clearly greater than its linear part.
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Table 2. Periods (in sidereal days) of the FCN and FICN and corresponding relative rotation angle between the outer or inner core and the mantle.
The negative (resp. positive) sign of an eigenperiod reflects the retrograde (resp. prograde) motion of the rotation axis in space. (ICB) and ¢(CMB) are

the geometrical flattenings at the ICB and CMB, respectively. Apo(ICB) is the density jump at the ICB (in g cm 7).

Model g1 g1 Apo FCN FICN
(ICB) (CMB) (ICB)
Period ZE &g Period &It ZJE
PREM 4129 392.5 0.597 —458.6 —7.83 —4.27 4739 11.4 —3025
PEM-c 412.2 392.4 0.565 —4575 -7.77 —423 468.4 11.5 —3093
PREMM 403.1 386.3 0.368 —448.7 —7.99 —433 433.7 11.7 —3147
CGGM 398.9 386.2 0.000 —448.7 —7.99 —4.28 388.4 11.0 —3169

this function in the outer core and in the mantle reveals a well-
marked non-linear trend near the ICB, a fact that contradicts
the hypothesis of de Vries & Wahr (1991), as well as that of
Mathews et al. (1991a) that the rotational part of the displace-
ment is greater than the deformational part by a factor of
the order of the inverse of the ellipticity. However, since the
portion of the outer core where the behaviour of W} is not
quasi-linear is not very large, and since the amplitude of the
motion in the outer core is much smaller than in the inner core,
this incorrect assumption should not influence their results
for the FICN to a large extent. Numerical experimentation
shows that, unlike the FCN period, which depends mainly on
the dynamical ellipticity at the CMB and on the ratio between
the equatorial moments of inertia of the whole Earth and the
mantle, the FICN period is very sensitive to core structure. In
particular, the density jump at the ICB plays an important
role, as can be seen in Table 2. This table contains data and
results relating to four earth models: PREM (Dziewonski &
Anderson 1981), PEM-C (Dziewonski ez al. 1975) and CGGM
and PREMM (Denis et al. 1997). The first two models were
obtained by inversion techniques by fitting a large series of data
comprising seismic normal mode periods and an inertia coeffi-
cient y=0.3308. CGGM and PREMM are modified versions of
PREM that possess an inertia coefficient y =0.33224. The latter
leads to a surface flattening &(R) =1/298.3, against 1/299.9 for
PREM. Their structure differs from PREM mainly in the core.
CGGM and PREMM have not been obtained by a general
inversion procedure, but their eigenperiods agree well with all
the observed seismic free periods.

We should add that, for the FICN, the correlation coefficient
of the linear regression applied to the W] function in the
outer core varies from 0.905 for CGGM to 0.989 for PEM-C
(for PREM it is 0.965). This confirms the non-linear trend of
Wi mentioned above.

5 CONCLUSIONS

Having justified the introduction of second-order terms in
ellipticity in the equations of motion of a slowly rotating,
slightly elliptical earth derived by Smith (1974), we may state
that the normal mode computation used in this paper is also an
efficient tool for exploring the dynamics of the solid inner core.
We have calculated the eigenperiods and eigenfunctions of the
FCN and FICN, which are nearly diurnal wobbles in a rotating
reference frame, for different realistic earth models that are
assumed to be initially in hydrostatic equilibrium. Our results
agree with those of de Vries & Wahr (1991) and Mathews et al.
(1991b). Moreover, we have shown that one of the assumptions
underlying their method, that is, that the deformational part of
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the displacement is everywhere smaller than the rotational part,
may not hold in the fluid core, near the ICB, if we consider the
FICN. We defer to another paper the study of the Chandler
wobble of the mantle and of the Chandler wobble of the inner
core, as well as the possible influence of the inertial gravity
modes of the liquid outer core on these modes.
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