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S U M M A R Y
The normal-mode theory of a rotating earth model is based on the superposition of two per-
turbations. The first one is the perturbation of a spherically averaged model of reference by
rotation: it provides the rotating earth model. The second one is a perturbation of the rotating
model: it is a normal mode. In both cases, we consider Lagrangian perturbations. This implies
that we define first a new coordinate system in the spherical configuration of reference. These
coordinates, which are non-orthogonal, are such that the parameters of the spherical model
depend on one of the coordinates only. The relation between the physical spherical coordi-
nates in the rotating configuration and the new coordinates involves the radial discrepancy h
between the spherical model of reference and the rotating model. We assume that, prior to
being perturbed, the rotating model is in hydrostatic equilibrium. We determine the shape of
the rotating configuration to the second order in h, using the theory of hydrostatic equilibrium
figures. Next, we write the equations of motion of the rotating model in the new coordinate
system. We suppose that the stress–strain relation is linearly elastic and isotropic. By inserting
the analytical solution for the tilt-over mode in the equations of motion, we show that the terms
containing the initial equilibrium gravity must be computed to the second order in h. Finally, we
separate the variables in the equations of motion by expanding the unknown functions on the
basis of surface spherical harmonics. We obtain an infinite set of coupled first-order ordinary
differential equations which, if truncated, is suitable for numerical integration.

Key words: Earth’s rotation, hydrostatic figures, normal modes, nutation.

1 I N T RO D U C T I O N

We can arbitrarily divide the spectrum of elastic-gravitational free oscillations of a rotating earth model into three sets. To the first infinite
set belong the seismic normal modes whose periods are below one hour and the three translational modes of oscillation of the inner core,
usually named the Slichter modes, whose periods are a few hours for most realistic earth models. The seismic free oscillations also exist for
non-rotating, spherical earth models. Their eigenfrequencies and eigenfunctions are little changed by rotation and the non-spherical shape
of the rotating body. Hundreds of seismic modes have been observed. The inertia-gravity modes of the liquid outer core form the second
infinite set of free oscillations. Their computed eigenperiods are above a few hours. Rotation strongly affects the core modes of a non-rotating,
spherical model. Core modes are still unobserved. The last set includes the five principal rotational modes: the tilt-over mode (TOM), the
free core nutation (FCN), the free inner core nutation (FICN), the Chandler wobble (CW) and the inner core wobble (ICW) (Mathews et al.
1991a,b). Except for the TOM, the eigenperiods of the rotational modes heavily depend on the shape of the rotating body. The TOM period is
diurnal, the FCN and FICN periods are nearly diurnal, the CW period is about 430 sidereal days, and the computed period of the ICW is of the
order of a few years for realistic earth models. The main feature of the eigenfunctions of the rotational modes is a dominant rigid rotation of
the mantle (CW), of the inner core (FICN, ICW), of the outer core (FCN), or of the whole earth (TOM) about an equatorial axis. The CW, the
FCN, and the FICN have been observed, whereas the ICW is still unobserved. The TOM is presented in more detail in Section 6 of this paper.

In order to study theoretically the normal modes of a slowly and steadily rotating body it is first necessary to relate the unperturbed
physical properties of this body to the physical properties of a corresponding non-rotating, spherical model of reference. This means that
we must compute the perturbation of the spherical model by rotation before we consider the free oscillations of the rotating body. The usual
two descriptions of a perturbation are provided by the Lagrangian and the Eulerian approaches. The Lagrangian description of a perturbation
of a quantity consists in evaluating the variation of that quantity between the initial position of a material particle and its current position.
The Eulerian description consists in evaluating its variation in time at a fixed position in space. In Smith’s (1974) theory of the infinitesimal
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elastic-gravitational motions of a rotating earth model, the physical quantities describing the rotating model, i.e. the density and the Lamé
parameters, are related to those of the mean spherical model of reference by a first-order Eulerian perturbation scheme. The rotating model being
assumed to be initially in hydrostatic equilibrium in a co-rotating frame of reference, Clairaut’s theory of hydrostatic figures of equilibrium
(Zharkov & Trubitsyn 1978, pp. 221–295; Denis 1989; Denis et al. 1998) shows that, in a first-order approximation, the shape of the rotating
body is a slightly flattened ellipsoid of revolution whose minor axis is parallel to the axis of rotation. Moreover, the density of the mean
spherical model being known as a function of the radius, Clairaut’s theory provides the small radial distance h between a mean spherical
surface where the density takes on a given value and the corresponding rotating ellipsoidal surface where the density takes on the same value.
This radial distance is a function of the radius q of the spherical surface and of the colatitude θ , which we will denote by χ throughout the
paper, and depends linearly on the flattening of the ellipsoidal surface. The flattening is here defined as (a − c)/a, where a and c are the
equatorial and polar radii, respectively. In a Eulerian perturbation scheme, the density at a geometrical point of the rotating ellipsoidal model is
given in terms of the density of the mean spherical model at the same geometrical point. Since the density at a point of the rotating ellipsoidal
model is equal to the density of the mean spherical model at the radial distance h, a first-order Taylor’s expansion furnishes the density of
the rotating model in terms of the density of the mean model at the same geometrical point. Smith (1974) also supposes that the surfaces
of constant Lamé parameters coincide with the surfaces of constant density. Consequently, the Lamé parameters of the rotating model are
also determined when the equation of the isopycnic surfaces is known. Once the physical parameters of the rotating model are known, the
Lagrangian vector equation of motion of the rotating earth and the associated Poisson’s equation for the variation of the gravitational potential
are transformed into scalar ordinary differential equations by using spherical coordinates and spherical harmonics.

Although Smith’s pioneering work and the numerical results that he subsequently published (1976, 1977) are mostly consistent, we can
point out three improvements that either have been made or can be made to a normal-mode theory of a rotating earth.

First, owing to Taylor’s expansion of the parameters of the spherical model, their derivatives are introduced into the theory. This may
be harmful to the numerical results derived from the theory because the derivatives of the physical parameters of published spherical models
of reference may not be well constrained by observations (e.g. Dziewonski et al. 1975; Dziewonski & Anderson 1981). Moreover, when
the parameters of the reference model are given at discrete radius values instead of as piecewise continuous functions of the radius, the
differential scalar equations that contain their radial derivatives are not suitable for numerical integration. In this respect, it is noteworthy that
the transformation of the vector equation of motion of a non-rotating, spherical model into a set of scalar differential equations was designed
to avoid the use of the radial derivatives of the density and of the Lamé parameters (Alterman et al. 1959).

Second, in small regions near the boundaries where the density or the Lamé parameters are discontinuous, Taylor’s expansion of them
fails. Indeed, rotation has deformed the spherical model of reference into an ellipsoidal model, and the material particles have been displaced
along a radial distance h(q, χ ) from their initial position. The boundaries have moved and have occupied successively geometrical points where,
consequently, the physical parameters have changed abruptly during the deformation. This prevents Taylor’s expansion at these geometrical
points as well as the imposition of the continuity conditions, at the ellipsoidal boundaries, to the infinitesimal deformation of the ellipsoidal
rotating model. When Smith imposes the continuity conditions at the ellipsoidal boundaries, he must resort to a Lagrangian perturbation of the
spherical configuration by rotation. Actually, he imposes modified continuity conditions at the spherical boundaries of the reference model.
The perturbation of the spherical model by rotation is, therefore, treated from a Eulerian point of view in the equations of motion and from a
Lagrangian point of view in the boundary conditions.

Third, it has been shown independently by Schastok (1997) and Rogister (2001) that the proper theoretical treatment of the rotational
motions of a rotating, slightly flattened hydrostatic earth model requires that terms of second order in the flattening be included in the equations
governing the infinitesimal deformations of the rotating model. Both studies are based on the theory developed by Smith, who neglects the
terms of orders higher than the first in the flattening. The arguments invoked by Schastok and by Rogister are different: Schastok shows that
the solution for the rotational motions of a particular model, namely an incompressible and homogeneous solid ellipsoid, is correct only if
second-order terms in the flattening are taken into account, whereas Rogister shows that the solution for one particular rotational eigenmode,
that is the TOM, satisfies the equations of motion only if second-order terms are included in them. The TOM is independent of earth model
and its frequency is exactly one sidereal day. Nevertheless, neither Schastok nor Rogister retains all the terms of second order in the flattening.

A further difficulty encountered in Smith’s theory has to do with the representation of the infinitesimal deformation of the rotating model
as a series of coupled terms. Indeed, the infinitesimal displacement vector is split into a spheroidal part and a toroidal part, and each part is
expanded on the basis of vector spherical harmonics. In the non-rotating spherical case, the spheroidal components do not couple with the
toroidal components, none of them depends on the harmonic order m, and components of different harmonic degrees do not couple with each
other. This implies that a harmonic deformation of degree � and order m does not couple to any other harmonic deformation of degree �′ �= �

or of order m′ �= m, and that it is a solution of a differential system of finite order. In the rotating case, the spheroidal and toroidal harmonic
components depend on m, but components of different azimuthal order still do not couple. A spheroidal (toroidal) component of harmonic
degree � couples with the spheroidal (toroidal) components of degrees � − 2, � + 2, � − 4, � + 4, . . . and with the toroidal (spheroidal)
components of degrees � − 1, � + 1, � − 3, � + 3, . . . . Thus, the displacement vector is expressed as a series that must be truncated arbitrarily
at some finite level for the purpose of numerical resolution. The replacement of a series by a sum is sometimes questionable, in particular
when dealing with the inertia-gravity modes of the liquid core.

The aim of this paper is to build a normal-mode theory of a rotating model that is based both on a Lagrangian perturbation of the spherical
model of reference by rotation and on a Lagrangian infinitesimal perturbation of the rotating configuration (Fig. 1).
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876 Y. Rogister and M. G. Rochester

Figure 1. Meridional cross-section of a spherical reference earth model (A), the corresponding rotating spheroidal model (B), and the perturbed rotating
spheroidal model (C). Radial Lagrangian displacement h(q, χ ) er , where er is the radial unit vector, carries a mass element from PA(q, χ, ν) to PB(q + h, χ, ν)
and Lagrangian displacement s carries a mass element from PB to PC. The first perturbation, by steady rotation Ω0, maintains hydrostatic equilibrium. The
second infinitesimal perturbation may be a tidal deformation, a normal-mode vibration, a nutational oscillation, ect..

Therefore, a physical parameter at a point in the ellipsoidal configuration is equal to the same parameter evaluated at the corresponding
point in the spherical configuration. There is no need to expand the parameters in Taylor’s series.

Moreover, both in the equations of motion of the rotating model and in the boundary conditions that the infinitesimal motion must satisfy,
we treat the perturbation of the spherical model of reference from a Lagrangian point of view.

Practically, adopting a Lagrangian point of view consists in defining a new set of non-orthogonal coordinates (q, χ , ν) in the spherical
configuration of reference, such that the parameters of the spherical model of reference are constant over the surfaces q = constant. The
coordinate q is related to the radial coordinate r of the physical spherical coordinates in the rotating configuration by r = q + h, where, as we
have seen, h is given by the theory of hydrostatic figures of equilibrium. The angular coordinates χ and ν correspond to the colatitude θ and
longitude ϕ, respectively. A similar change of coordinates was suggested by Jeffreys (1942) in order to solve the tidal equations.

To determine to what order in h the equations of motion must be computed, we search for the conditions for the TOM to be a solution of
the equations of motion. We then show that certain terms must be computed up to the second order in h. It is therefore necessary to compute
the hydrostatic shape of the rotating body to second order. To this order of approximation, unless the body is homogeneous, the hydrostatic
figure of the body is no longer an ellipsoid of revolution but, of course, remains close to it.

It is well known that the representation of an infinitesimal displacement by a series of coupled spheroidal and toroidal vectors cannot be
avoided as long as spherical harmonics are used to describe the deformation. The reason is that the symmetry properties of the rotating body
are not the same as those of the spherical harmonics. If the rotating body is homogeneous, its hydrostatic shape is, rigorously, an ellipsoid
of revolution, and the flattening of the equisurfaces is a constant. In this case, using spheroidal coordinates and spheroidal harmonics to
represent the deformation may lead to the decoupling of the deformations of different harmonic degrees and of different harmonic orders
(Bryan 1889; Usami 1962). If the rotating body is not homogeneous, there are no basis functions adapted to the symmetry of the body. It is
therefore customary to use the surface spherical harmonics. We will do so in this paper, and it should not be expected that the coupling chain
that represents the displacement vector will be simpler than the one obtained in the theory of Smith (1974).

The paper is organized as follows. In Section 2, we define the new set of coordinates (q, χ , ν) in the spherical configuration of reference.
In Section 3, we establish useful formulae of tensor calculus in the coordinate system (q, χ , ν). We also introduce the usual decomposition of
a vector into spheroidal and toroidal vector fields. Section 4 is devoted to the hydrostatic figures of equilibrium. The Lagrangian perturbation
of a spherical model of reference by rotation is the first perturbation that we must take into account. We suppose that, on very long timescales,
the Earth behaves like a liquid body. Therefore, the theory of hydrostatic figures of equilibrium is adequate for determining the perturbation
by rotation. The goal of this theory is to compute the radial discrepancy h between the spherical model of reference and the steadily rotating
hydrostatic configuration. In Sections 5 to 7, we consider an infinitesimal perturbation of the rotating model. Our aim is to transform the partial
differential equations of motion of the rotating earth into ordinary differential equations over radius q by separating the variables q, χ and ν.
The vector equations of motion and the associated boundary conditions are given in Section 5. We assume that the stress–strain relation is
linearly elastic and isotropic. Among the possible motions, only the normal modes are considered. To separate the variables q, χ , and ν in the
equations of motion, it is necessary to use an approximate expression for h. Thus, in Section 6, we show how the TOM imposes constraints
on the approximations allowed for h and we discuss the validity of our conclusions for the other rotational motions. In Section 7, we expand
the Fourier-transformed equations of motion on the basis of the surface spherical harmonics, allowing for the separation of the variables q,
χ , and ν. Therefore, we obtain the first-order ordinary differential equations governing the harmonic components of the displacement vector,
the traction and the gravitational field variation of a rotating earth model.
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2 C O O R D I N AT E S Y S T E M I N T H E S P H E R I C A L C O N F I G U R AT I O N O F R E F E R E N C E

In this section, we define a set of non-orthogonal curvilinear coordinates (q, χ , ν) such that the parameters of the reference earth model depend
on q only. We introduce the natural basis associated with the coordinates (q, χ , ν), the components of the metric tensor and the Christoffel
symbols. The reader is referred to, for example, Synge & Schild (1978) for an introduction to Riemannian space, of which the space of the
reference configuration is a particular case.

2.1 Definition of the coordinate system and basis vectors

We consider a spherically symmetric model of reference given by the density ρ 0 and the Lamé parameters λ0 and µ0 as functions of the radius
q. We then consider a perturbation that brings a material particle from the position qer to the position rer , where er is the radial unit vector
and where r and q are related by

r = q + h(q, χ ), (1)

θ = χ, (2)

ϕ = ν. (3)

h is, for the time being, an arbitrary twice continuously differentiable function of q and χ . The coordinates r , θ and ϕ are the usual spherical
coordinates, whereas q , χ and ν form a new set of coordinates. Because we will consider only an axially symmetric perturbation of the
reference configuration, h does not depend on ν. The covariant basis vectors associated with the coordinate system q, χ , ν are

eq =
(

1 + ∂h

∂q

)
er , (4)

eχ = ∂h

∂χ
er + (q + h) eθ , (5)

eν = (q + h) sin χeϕ, (6)

where eθ and eϕ are, along with er , the unit vectors of the local basis associated with the spherical coordinates (r , θ , ϕ). The basis vectors
eq , eχ and eν are not normalized, and the vectors eq and eχ are not mutually orthogonal. The vectors eq , eχ , eν form the natural basis of the
coordinate system q, χ , ν. The position vector r = rer then becomes

r = q + h

1 + ∂h
∂q

eq . (7)

The unit normal to a surface q= constant is given by

n =
∂r
∂χ

× ∂r
∂ν

| ∂r
∂χ

× ∂r
∂ν

| = 1

(q + h)

√
(q + h)2 +

(
∂h
∂χ

)2


 (q + h)2 +

(
∂h
∂χ

)2

1 + ∂h
∂q

eq − ∂h

∂χ
eχ


 . (8)

From now on, we will consider the curvilinear coordinates (q, χ , ν) only.

2.2 Metric tensor

The covariant components of the symmetric metric tensor g are defined by

gi j = ei · e j , (9)

where the subscripts i and j designate q , χ or ν. The non-vanishing covariant components of the metric tensor are

gqq =
(

1 + ∂h

∂q

)2

, (10)

gqχ =
(

1 + ∂h

∂q

)
∂h

∂χ
, (11)

gχχ =
(

∂h

∂χ

)2

+ (q + h)2 , (12)

gνν = (q + h)2 sin2 χ. (13)
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Inverting, we obtain the non-vanishing contravariant components of the metric tensor:

gqq =
(

∂h
∂χ

)2
+ (q + h)2

(
1 + ∂h

∂q

)2
(q + h)2

, (14)

gqχ = −
∂h
∂χ(

1 + ∂h
∂q

)
(q + h)2

, (15)

gχχ = 1

(q + h)2 , (16)

gνν = 1

(q + h)2 sin2 χ
. (17)

The determinant g of the metric tensor is

g = (q + h)4

(
1 + ∂h

∂q

)2

sin2 χ. (18)

2.3 Christoffel symbols

The Christoffel symbols of the second kind are defined by

	i
jk = 1

2
gil

(
gl j,k + glk, j − g jk,l

)
, (19)

where the Einstein summation convention is used and the comma in a subscript position designates a partial derivative with respect to q, χ

or ν. Noting that 	i
jk = 	i

kj, some algebra gives the non-vanishing Christoffel symbols:

	q
qq = 1

1 + ∂h
∂q

∂2h

∂q2
, (20)

	q
qχ = 1

1 + ∂h
∂q

∂2h

∂q∂χ
− 1

q + h

∂h

∂χ
, (21)

	q
χχ = 1(

1 + ∂h
∂q

)
(q + h)

[
− (q + h)2 + (q + h)

∂2h

∂χ2
− 2

(
∂h

∂χ

)2
]

, (22)

	q
νν = sin χ

1 + ∂h
∂q

[
∂h

∂χ
cos χ − (q + h) sin χ

]
, (23)

	χ
χχ = 2

q + h

∂h

∂χ
, (24)

	χ
qχ =

1 + ∂h
∂q

q + h
, (25)

	ν
qν = 	χ

qχ , (26)

	ν
χν = 1

(q + h)

∂h

∂χ
+ cos χ

sin χ
, (27)

	χ
νν = − sin χ cos χ. (28)

The metric tensor and the Christoffel symbols are the quantities that we need to introduce tensor calculus in a Riemannian space. We
turn to tensor calculus in the coordinate system q , χ , ν in the next section.
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3 T E N S O R A N A LY S I S I N T H E S P H E R I C A L C O N F I G U R AT I O N O F R E F E R E N C E

We now collect a series of useful formulae of tensor calculus in coordinates (q, χ , ν). These formulae include: the components of the gradient
of a scalar function, the divergence of a vector field, the Laplacian of a scalar function, the Helmholtz representation of a vector field that
allows for the splitting of that vector field into a spheroidal vector and a toroidal vector, the components of the small strain tensor, and the
divergence of a tensor field. Again, the reader is referred to, for example, Synge & Schild (1978) for basic definitions of tensor calculus.

3.1 Gradient of a scalar function

The covariant components of the gradient of a scalar function f (q, χ , ν) are defined by

(∇ f )i = f,i . (29)

Its contravariant components are obtained by index-raising:

(∇ f )i = gi j f, j , (30)

i.e.

(∇ f )q =
(

∂h
∂χ

)2
+ (q + h)2

(
1 + ∂h

∂q

)2
(q + h)2

∂ f

∂q
−

∂h
∂χ(

1 + ∂h
∂q

)
(q + h)2

∂ f

∂χ
, (31)

(∇ f )χ = −
∂h
∂χ(

1 + ∂h
∂q

)
(q + h)2

∂ f

∂q
+ 1

(q + h)2

∂ f

∂χ
, (32)

(∇ f )ν = 1

(q + h)2 sin2 χ

∂ f

∂ν
. (33)

3.2 Divergence of a vector field

If v = vq eq + vχ eχ + vν eν is a differentiable vector function of q, χ , and ν, its divergence is the scalar

∇ · v = vi
;i = vi

,i + 	i
j iv

j , (34)

where the semicolon in a subscript position denotes the covariant derivative. We find that

∇ · v = ∂vq

∂q
+ ∂vχ

∂χ
+ ∂vν

∂ν
+

(
1

1 + ∂h
∂q

∂2h

∂q2
+ 2

1 + ∂h
∂q

q + h

)
vq +

(
1

1 + ∂h
∂q

∂2h

∂q∂χ
+ 2

q + h

∂h

∂χ
+ cos χ

sin χ

)
vχ . (35)

3.3 Laplacian of a scalar function

If f is a twice differentiable function of q, χ and ν, the Laplacian of f is the scalar

∇2 f = ∇ · ∇ f = (
gi j f, j

)
;i
, (36)

from which we deduce that

(q + h)2 ∇2 f = 1(
1 + ∂h

∂q

)2

[(
∂h

∂χ

)2

+ (q + h)2

]
∂2 f

∂q2
− 2

∂h

∂χ

1(
1 + ∂h

∂q

) ∂2 f

∂q∂χ
+ ∂2 f

∂χ2
+ 1

sin2 χ

∂2 f

∂ν2
+

[
cos χ

sin χ
− 2

(q + h)

∂h

∂χ

]
∂ f

∂χ

+ 1(
1 + ∂h

∂q

)

2 (q + h) − ∂2h

∂χ2
+ ∂h

∂χ


 2(

1 + ∂h
∂q

) ∂2h

∂q∂χ
− cos χ

sin χ


 −

[(
∂h

∂χ

)2

+ (q + h)2

]
∂2h

∂q2

1(
1 + ∂h

∂q

)2




∂ f

∂q
.

(37)

3.4 Helmholtz representation of a vector field

In what follows, we will need the scalar product and the vector product of two vectors, so we define these now. The scalar product of two
vectors was introduced when we computed the components of the metric tensor. We recall that the scalar product of two vectors u and v is the
scalar defined by

u · v = uiv
i = uivi . (38)
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The vector product of u and v is the pseudo-vector w whose contravariant components are

wq = 1√
g

(
uχvν − uνvχ

)
, wχ = 1√

g

(
uνvq − uqvν

)
, wν = 1√

g

(
uqvχ − uχvq

)
. (39)

The Helmholtz representation of a vector field s is

s = U
r

r
+ r

r
× [∇ × (V r)] + ∇ × (W r) , (40)

where U , V and W are three scalar functions. The first two terms on the right-hand side form the spheroidal part of s and the last term is the
toroidal part of s. A toroidal vector field is divergence-free and perpendicular to the position vector r. Using the identities

∇ × ( f r) = f ∇ × r − r × ∇ f (41)

and

∇ × r = 0, (42)

we find that the contravariant components of s are

sq = 1

1 + ∂h
∂q

[
U + 1

q + h

∂h

∂χ

(
−∂V

∂χ
+ 1

1 + ∂h
∂q

∂h

∂χ

∂V

∂q
− 1

sin χ

∂W

∂ν

)]
, (43)

sχ = 1

q + h

(
∂V

∂χ
− 1

1 + ∂h
∂q

∂h

∂χ

∂V

∂q
+ 1

sin χ

∂W

∂ν

)
, (44)

sν = 1

q + h

1

sin χ

(
1

sin χ

∂V

∂ν
− ∂W

∂χ
+ 1

1 + ∂h
∂q

∂h

∂χ

∂W

∂q

)
. (45)

By index-lowering, we obtain the covariant components of s:

si = gi j s
j . (46)

Explicitly,

sq =
(

1 + ∂h

∂q

)
U, (47)

sχ = ∂h

∂χ
U + (q + h)

(
∂V

∂χ
− 1

1 + ∂h
∂q

∂h

∂χ

∂V

∂q
+ 1

sin χ

∂W

∂ν

)
, (48)

sν = (q + h) sin χ

(
1

sin χ

∂V

∂ν
− ∂W

∂χ
+ 1

1 + ∂h
∂q

∂h

∂χ

∂W

∂q

)
. (49)

The divergence of s is

∇ · s = 1

1 + ∂h
∂q

∂U

∂q
+ 1

(q + h)


2U + 1(

1 + ∂h
∂q

)2

(
∂h

∂χ

)2
∂2V

∂q2
− 2

1 + ∂h
∂q

∂h

∂χ

∂2V

∂χ∂q




+ 1

(q + h)

1

1 + ∂h
∂q


− ∂2h

∂χ2
+


−cos χ

sin χ
+ 2

1 + ∂h
∂q

∂2h

∂χ∂q
−

∂2h
∂q2(

1 + ∂h
∂q

)2

∂h

∂χ


 ∂h

∂χ




∂V

∂q

+ 1

(q + h)

(
∂2V

∂χ2
+ cos χ

sin χ

∂V

∂χ
+ 1

sin2 χ

∂2V

∂ν2

)
.

(50)

3.5 Strain tensor

If s denotes the infinitesimal displacement vector, the linearized strain tensor e has covariant components given by

ei j = 1

2

(
si ; j + s j ;i

) = 1

2

(
si, j + s j,i − 2	k

i j sk

)
. (51)

Define

F(χ ) = ∂V

∂χ
− 1

1 + ∂h
∂q

∂h

∂χ

∂V

∂q
+ 1

sin χ

∂W

∂ν
(52)

C© 2004 RAS, GJI, 159, 874–908



Normal-mode theory of a rotating earth 881

and

F(ν) = 1

sin χ

∂V

∂ν
− ∂W

∂χ
+ 1

1 + ∂h
∂q

∂h

∂χ

∂W

∂q
. (53)

Consequently,

∂ F(χ )

∂q
= ∂2V

∂χ∂q
+ 1(

1 + ∂h
∂q

)2

∂2h

∂q2

∂h

∂χ

∂V

∂q
− 1

1 + ∂h
∂q

∂2h

∂χ∂q

∂V

∂q
− 1

1 + ∂h
∂q

∂h

∂χ

∂2V

∂q2
+ 1

sin χ

∂2W

∂q∂ν
, (54)

∂ F(χ )

∂χ
= ∂2V

∂χ2
+ 1(

1 + ∂h
∂q

)2

∂2h

∂χ∂q

∂h

∂χ

∂V

∂q
− 1

1 + ∂h
∂q

∂2h

∂χ2

∂V

∂q
− 1

1 + ∂h
∂q

∂h

∂χ

∂2V

∂q∂χ
− cos χ

sin2 χ

∂W

∂ν
+ 1

sin χ

∂2W

∂χ∂ν
, (55)

∂ F(χ )

∂ν
= ∂2V

∂χ∂ν
− 1

1 + ∂h
∂q

∂h

∂χ

∂2V

∂q∂ν
+ 1

sin χ

∂2W

∂ν2
, (56)

∂ F(ν)

∂q
= 1

1 + ∂h
∂q

∂h

∂χ

∂2W

∂q2
− ∂2W

∂q∂χ
− 1(

1 + ∂h
∂q

)2

∂2h

∂q2

∂h

∂χ

∂W

∂q
+ 1

1 + ∂h
∂q

∂2h

∂χ∂q

∂W

∂q
+ 1

sin χ

∂2V

∂ν∂q
, (57)

∂ F(ν)

∂χ
= 1

1 + ∂h
∂q

∂2h

∂χ2

∂W

∂q
+ 1

1 + ∂h
∂q

∂h

∂χ

∂2W

∂q∂χ
− ∂2W

∂χ2
− 1(

1 + ∂h
∂q

)2

∂2h

∂q∂χ

∂h

∂χ

∂W

∂q
− cos χ

sin2 χ

∂V

∂ν
+ 1

sin χ

∂2V

∂χ∂ν
, (58)

∂ F(ν)

∂ν
= 1

sin χ

∂2V

∂ν2
− ∂2W

∂ν∂χ
+ 1

1 + ∂h
∂q

∂h

∂χ

∂2W

∂ν∂q
. (59)

The covariant components of the strain tensor are then

eqq =
(

1 + ∂h

∂q

)
∂U

∂q
, (60)

eqχ = 1

2

(
1 + ∂h

∂q

) (
∂U

∂χ
− F(χ )

)
+ 1

2

∂h

∂χ

∂U

∂q
+ 1

2
(q + h)

∂ F(χ )

∂q
, (61)

eqν = 1

2

(
1 + ∂h

∂q

) (
∂U

∂ν
− sin χ F(ν)

)
+ 1

2
(q + h) sin χ

∂ F(ν)

∂q
, (62)

eχχ = (q + h)

(
U + ∂ F(χ )

∂χ

)
− ∂h

∂χ
F(χ ), (63)

eχν = 1

2

{
∂h

∂χ

∂U

∂ν
−

[
∂h

∂χ
sin χ + (q + h) cos χ

]
F(ν) + (q + h)

(
∂ F(χ )

∂ν
+ sin χ

∂ F(ν)

∂χ

)}
, (64)

eνν = (q + h) sin χ

(
sin χU + cos χ F(χ ) + ∂ F(ν)

∂ν

)
. (65)

By index-raising twice, we obtain the contravariant components of the strain tensor:

eqq = 1(
1 + ∂h

∂q

)2
(q + h)2




(q + h)2 +
(

∂h
∂χ

)2

(
1 + ∂h

∂q

) ∂U

∂q
+ ∂h

∂χ

[
−3

2

∂U

∂χ
+ F(χ ) + 1

(q + h)

∂h

∂χ

(
U + ∂ F(χ )

∂χ

)
−

(q + h)2 +
(

∂h
∂χ

)2

(q + h)
(

1 + ∂h
∂q

) ∂ F(χ )

∂q





 ,

(66)

eqχ = 1(
1 + ∂h

∂q

)
(q + h)2


− ∂h

∂χ


1

2

1(
1 + ∂h

∂q

) ∂U

∂q
+ 1

(q + h)

(
U + ∂ F(χ )

∂χ

)
 +

1
2 (q + h)2 +

(
∂h
∂χ

)2

(q + h)
(

1 + ∂h
∂q

) ∂ F(χ )

∂q
+ 1

2

(
∂U

∂χ
− F(χ )

)
 , (67)

eχχ = 1

(q + h)3


U − 1(

1 + ∂h
∂q

) ∂h

∂χ

∂ F(χ )

∂q
+ ∂ F(χ )

∂χ


, (68)
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eqν = 1

2
(

1 + ∂h
∂q

)
(q + h)2 sin2 χ

{
∂U

∂ν
+

[
cos χ

(q + h)

∂h

∂χ
− sin χ

]
F(ν)

+ 1

(q + h)


[

(q + h)2 +
(

∂h

∂χ

)2
]

sin χ(
1 + ∂h

∂q

) ∂ F(ν)

∂q
− ∂h

∂χ

(
∂ F(χ )

∂ν
+ sin χ

∂ F(ν)

∂χ

)



 , (69)

eχν = 1

2 (q + h)3 sin2 χ


− cos χ F(ν) − sin χ(

1 + ∂h
∂q

) ∂h

∂χ

∂ F(ν)

∂q
+ ∂ F(χ )

∂ν
+ sin χ

∂ F(ν)

∂χ


 , (70)

eνν = 1

(q + h)3 sin3 χ

(
sin χU + cos χ F(χ ) + ∂ F(ν)

∂ν

)
. (71)

3.6 Divergence of a tensor field

If t is a differentiable second-order tensor function of q, χ and ν, its divergence is the vector ∇ · t whose i contravariant component is

[∇ · t]i = t i j
; j = t i j

, j + 	i
k j t

k j + 	
j
jk t ik . (72)

Therefore,

[∇ · t]q = ∂tqq

∂q
+ ∂tqχ

∂χ
+ ∂tqν

∂ν
+ 2

(
	q

qq + 	χ
qχ

)
tqq + (

3	q
qχ + 	χ

χχ + 	ν
χν

)
tqχ + 	q

χχ tχχ + 	q
νν tνν (73)

[∇ · t]χ = ∂tχq

∂q
+ ∂tχχ

∂χ
+ ∂tχν

∂ν
+ (

3	χ
χq + 	q

qq + 	ν
νq

)
tχq + (

2	χ
χχ + 	q

qχ + 	ν
χν

)
tχχ + 	χ

νν tνν (74)

[∇ · t]ν = ∂tνq

∂q
+ ∂tνχ

∂χ
+ ∂tνν

∂ν
+ (

3	ν
χν + 	q

qχ + 	χ
χχ

)
tνχ + (

4	ν
νq + 	q

qq

)
tνq . (75)

The formulae established in this section and in Section 2 are exact in h, but no expression has been given yet for h. We recall that h is
the radial distance between the position of a particle in the spherical configuration of reference and its position in the deformed state. The
deformation of the spherical model is due to the uniform rotation of the body. To determine h, we must make assumptions as to the rheological
behaviour of the body. We will suppose that on very long timescales the Earth behaves like an incompressible liquid body. Therefore, the
rotating Earth is supposed to be in hydrostatic equilibrium in a rotating frame of reference. The next section is devoted to the computation of
h by means of the theory of hydrostatic figures of equilibrium.

4 H Y D RO S TAT I C F I G U R E S O F E Q U I L I B R I U M

The rotating body being in a state of hydrostatic equilibrium, the function h(q, χ ) is determined as soon as the density profile ρ 0(q) of the
corresponding spherically averaged earth model and its constant angular speed of rotation Ω0 = 
0 ez are known. We show how in this
section. Our computations rely on the theory of hydrostatic figures of equilibrium (e.g. Zharkov & Trubitsyn 1978, pp. 221–295; Denis 1989;
Denis et al. 1998).

We consider a system of reference rotating at a constant angular speed Ω0 about its z-axis, which is fixed in absolute space. The earth
also rotates steadily about the z-axis at the angular speed Ω0. The equation of hydrostatic equilibrium is

∇p = −ρ∇φ̃, (76)

where p is the pressure and φ̃ is the gravity potential given by

φ̃ (r) = φ (r) − 1

2
|Ω0 × r|2. (77)

The gravitational potential φ at r is

φ (r) = −G
∫
V

ρ(r′)
|r − r′| dV ′. (78)

Of course, ρ is the density, G is the universal constant of gravitation, and V designates the volume occupied by the rotating earth. Then, φ̃ is
a solution of Poisson’s equation:

∇2φ̃ = 4πGρ − 2
2
0. (79)
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It can be shown that eq. (76) implies that a surface of constant pressure coincides with an equipotential surface and that it is a surface of
constant density. Our goal is to establish the equation of the equisurfaces under the form of eq. (1), knowing the density profile of a spherically
averaged reference model. Because of the axial symmetry of the rotating body, h does not depend on ν, in agreement with eq. (1). We seek
for h a solution that is a series of Legendre polynomials of cos χ :

h (q, χ ) =
∞∑

�=0

h2�(q)P2�(cos χ ), (80)

where P �(x) is the Legendre polynomial of degree � (see Appendix A1). Because of the symmetry of the rotating body with respect to the
equatorial plane, series (80) does not contain terms of odd degree. Now, we have to determine the figure functions h2�(q).

Let us denote by ρ 0 (q) the density profile of a spherical earth model and by ρ0 (r , θ ) the density of the corresponding rotating model as
a function of the spherical coordinates. Since we consider a Lagrangian perturbation of the spherical model with no density change, we have

ρ0 [r (q, χ ) , θ (χ )] = ρ0(q). (81)

We have seen that the equidensity, equipressure and equipotential surfaces of the rotating model coincide. Therefore, the pressure and the
gravity potential depend only on q when they are written as functions of the coordinates (q, χ , ν). Let us denote these functions by p0(q) and
φ̃0(q), respectively. The figure functions h2� are then determined in the following way: eq. (77) is written in the coordinates (q, χ , ν) and we
require that φ̃0 does not depend on χ and ν. We also take into account the fact that the spherical model and the rotating model enclose the
same volume.

In practice, we limit the expansion of h to three terms:

h = h0 + h2 P2 + h4 P4, (82)

where P 2 and P 4 are given in the Appendix A4. The second term is dominant because the dominant term in the rotational potential −| Ω0

× r|2 / 2, expressed as a function of q and χ , is the second-degree term. Moreover, |h2| is obviously expected to be of the order of 
2
0q/Gρ̄,

where ρ̄ is the mean density of the sphere of radius q:

ρ̄(q) = 3

q3

∫ q

0
ρ0q ′2dq ′. (83)

The zeroth-degree term in the rotational potential is of the same order as the second-degree term, but h0 is much smaller than h2 because we
assume that the Lagrangian perturbation is incompressible. It can indeed be shown that the conservation of volume gives

h0 = − h2
2

5q
. (84)

Moreover, we will show that h4/q is of the order of (h2/q)2. More generally, we would have h2�/q = O
[
(h2/q)�

]
for � ≥ 1, where the symbol

O(x) means ‘of the order of x’.
Let us now write the rotational potential and the gravitational potential φ in terms of q and χ . For the former we have, to second order

in h2/q,

−1

2
|Ω0 × r|2 = −1

3

2

0q2

[
1 − 2

5

h2

q
−

(
1 − 10

7

h2

q

)
P2 − 36

35

h2

q
P4

]
, (85)

where we have used eq. (A23). Next, eq. (78), formulae listed in Appendix A4, and the well-known expansion of 1/|r − r′| in series of
spherical harmonics Dm

� defined in Appendix A1 (the star denotes complex conjugation), namely

1

|r − r′| = 1

r

∞∑
�=0

(
r ′

r

)� �∑
m=−�

Dm
�

∗ (
χ ′, ν ′)Dm

� (χ, ν) if r ′ < r

= 1

r ′

∞∑
�=0

(
r

r ′

)� �∑
m=−�

Dm
�

∗ (
χ ′, ν ′)Dm

� (χ, ν) if r ′ > r,
(86)
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give

φ0(q, χ ) = −4πG

{
1

q

∫ q

0
ρ0q ′2

[
1 + 2h0

q ′ + dh0

dq ′ + 1

5

(
2h2

q ′
dh2

dq ′ + h2
2

q ′2

)]
dq ′

− 1

q

[
h0

q
+ h2

q
P2 + h4

q
P4 − h2

2

q2

(
1

5
+ 2

7
P2 + 18

35
P4

)] ∫ q

0
ρ0q ′2dq ′

+ 1

5q3

[
P2 − 3h2

q

(
1

5
+ 2

7
P2 + 18

35
P4

)]

∫ q

0
ρ0q ′4

[
4

h2

q ′ + dh2

dq ′ + 2

7

(
4h2

q ′
dh2

dq ′ + 6h2
2

q ′2

)]
dq ′

+ P4

9q5

∫ q

0
ρ0q ′6

[
6

h4

q ′ + dh4

dq ′ + 18

35

(
6h2

q ′
dh2

dq ′ + 10h2
2

q ′2

)]
dq ′

+
∫ R

q
ρ0q ′

(
1 + h0

q ′ + dh0

dq ′ + 1

5

h2

q ′
dh2

dq ′

)
dq ′

+q2

5

[
P2 + 2h2

q

(
1

5
+ 2

7
P2 + 18

35
P4

)]

∫ R

q

ρ0

q ′

[
dh2

dq ′ − h2

q ′ + 2

7

(
h2

2

q ′2 − h2

q ′
dh2

dq ′

)]
dq ′

+q4 P4

9

∫ R

q

ρ0

q ′3

[
dh4

dq ′ − 3
h4

q ′ + 54

35

(
2h2

2

q ′2 − h2

q ′
dh2

dq ′

)]
dq ′

}
,

(87)

where the Legendre polynomials P � are functions of cos χ . As the gravity potential φ̃0, which is the sum of the gravitational potential and of
the rotational potential, does not depend on χ , we obtain, after some tedious manipulations of eqs (85) and (87),

[
ρ̄

(
1 − 4

7

dh2

dq
+ 8

7

h2

q

)
+ 
2

0

2πG

]
q

d2h2

dq2
+

[
(6ρ0 − 2ρ̄) + (48ρ0 − 100ρ̄)

h2

7q
+ 1

7
(4ρ̄ − 6ρ0)

dh2

dq
− 2
2

0

πG

]
dh2

dq

−
(

4ρ̄ + 18ρ0
h2

q
+ 2
2

0

πG

)
h2

q
= 0 (88)

and

ρ̄q
d2h4

dq2
+ (6ρ0 − 2ρ̄)

dh4

dq
− 18ρ̄

h4

q

+54

35
ρ0

[
4h2

2

q2
+

(
dh2

dq

)2
]

+ 36

5
ρ̄

(
h2

2

q2
+ 4

7

h2

q

dh2

dq
− h2

7

d2h2

dq2

)

+ 54

175

[
3

q3

(
q

d2h2

dq2
− 6

dh2

dq
− 8

h2

q

) ∫ q

0
ρ0q ′4

(
4h2

q ′ + dh2

dq ′

)
dq ′

−2

(
q

d2h2

dq2
+ 4

dh2

dq
− 18

h2

q

) ∫ R

q

ρ0

q ′

(
dh2

dq ′ − h2

q ′

)
dq ′

]

+ 9

35


2
0

πG

(
q

d2h2

dq2
+ 4

dh2

dq
− 18

h2

q

)
= 0. (89)

In the same way, the associated boundary conditions at the surface q = R are shown to be

dh2

dq
+ h2

R
− 46

7

h2
2

R2
− 2

7

h2

R

dh2

dq
+ 
2

0

4πGρ̄

(
5 + 24

7

dh2

dq
− 94

7

h2

R

)
= 0 (90)
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and

h4

R
+ 1

3

dh4

dq
− 12

35

h2

R

(
h2

R
+ dh2

dq

)
+ 54

175R5

(
h2

R
+ dh2

dq

) ∫ R

0
ρ0q ′4

(
4

h2

q ′ + dh2

dq ′

)
dq ′ + 12

35


2
0

4πGρ̄

(
6h2

R
+ dh2

dq

)
= 0. (91)

Moreover, h2 and h4 must be finite at q = 0.
Since the second-order ordinary differential equation (88) and boundary condition (90) do not contain h4, they can be solved first to

obtain the figure function h2 (q). If only a first-order approximation is needed, we neglect the terms of second order in h2 and products of

2

0 and h2 or its derivatives. Eq. (88) then becomes a homogeneous differential equation and boundary condition (90) shows that indeed
h2 = O(−
2

0q/πGρ̄).
Once h2 has been computed, the second-order differential equation (89), boundary condition (91), and function h2 (q) determine the

figure function h4 (q). The inhomogeneous terms in (89) and (91) are of the order of (h2/q)2. Therefore, h4/q = O
[
(h2/q)2

]
at most. Since

h0 is given by eq. (82), the equation of the equisurfaces is now determined up to the second order. For example, in the case of a homogeneous
body, we readily find that

h2 = − 5
2
0

8πGρ0
q (92)

and

h4 = 3

35

h2
2

q
. (93)

Taking the mean density of the Earth to be ρ 0 = 5515 kg m−3, we find that h2/q 	 − 0.0029.
In this section, we have computed the equilibrium shape of the rotating body up to the second order. In the next section, we consider a

small perturbation to the state of steady rotation and we write the linearized vector equations of motion. We also write the boundary conditions
both at a welded interface and at a sliding interface.

5 E Q UAT I O N S O F M O T I O N F O R A RO TAT I N G P L A N E T I N H Y D RO S TAT I C
E Q U I L I B R I U M

A mass element of a slowly rotating body that is initially in hydrostatic equilibrium obeys the following linearized equation of linear momentum
conservation:

ρ
d2s

dt2
= fext + ∇ · δt − ρ∇ (�φ) + ρ (∇ · s) ∇φ̃ − ρ∇

(
s · ∇φ̃

) − 2ρΩ0 × ds

dt
. (94)

Here, s is the small displacement vector of the mass element from r, �φ is the Eulerian variation of the gravitational potential φ, δt is the
Lagrangian variation of the Cauchy stress tensor, and fext is the sum of all the external volume forces. We recall that ρ is the equilibrium
density of the mass element initially at r, φ̃ is the equilibrium gravity potential at r, and Ω0 = 
0 ez is the constant angular velocity of the
reference system. As we are interested in the normal modes of the Earth, we will not consider the total external force fext further. We also
know that φ̃ and φ are given by (77) and (78), respectively, and that �φ must then satisfy Poisson’s equation

∇2 (�φ) = −4πG ∇ · (ρs) . (95)

In the vector equation of motion, we have neglected the electromagnetic Lorentz force and, in the Cauchy stress tensor, we will neglect any
viscous stress. In addition, we will suppose that the stress–strain relation is isotropic elastic. Therefore, the Lagrangian variation of the Cauchy
stress tensor t reads

δt = λ (∇ · s) g + 2µe, (96)

where λ and µ are the Lamé parameters, g is the metric tensor, and e is the strain tensor. The rigidity µ vanishes in a fluid.
The displacement vector s, the Lagrangian variation of the Cauchy stress tensor δt , and the Eulerian variation of the gravitational potential

�φ are subject to continuity conditions at those interfaces where the parameters of the model are discontinuous (Dahlen 1972). If n denotes
the outward unit normal to any interface, the quantities n · s, n · δt , �φ, and n · [ ∇(�φ) + 4π Gρ s] must be continuous across that boundary.
Furthermore, if the boundary is a solid–solid interface, it is welded and s must be continuous across the boundary. Because we neglect viscous
effects, a fluid–fluid or a fluid–solid interface may be sliding. Therefore, only the normal component of the displacement must be continuous
there.

In order to transform the vector partial differential equation (94) and the scalar partial differential equation (95) into a set of scalar
ordinary differential equations, we first use the Helmholtz representation (40) for the displacement vector s and for the traction n · δt . Next,
we write the equation of motion (94) and Poisson’s equation (95) in the curvilinear coordinates (q, χ , ν) and in the frequency domain. Finally,
we expand the unknown scalars on the functional basis of the surface spherical harmonics. Symmetry considerations (Smith 1974) show that
the Coriolis force and the shape of the rotating body couple the spheroidal displacements with the toroidal displacements under the following
rules:

s =
∞∑

�=|m|,|m|+2,...

(
σm

� + τ m
�+1

)
(97)
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or

s =
∞∑

�=|m|,|m|+2,...

(
τ m

� + σm
�+1

)
, (98)

where σm
� denotes a spheroidal displacement of harmonic degree � and harmonic order m, and τ m

� denotes a toroidal displacement of degree
� and order m. Consequently, the set of scalar ordinary differential equations whose solution is the displacement vector is infinite.

We must determine in advance to what order in h the equation of motion and Poisson’s equation have to be written. For the usual seismic
modes whose periods are below one hour, it is well established that a first-order approximation is sufficient (Dahlen 1968; Dahlen & Sailor
1979; Rogister 2003). The same statement also holds for the Slichter modes, whose periods are expected to be of the order of a few hours for
realistic earth models (Smith 1976; Rogister 2003). However, the computation of rotational modes requires that terms of the second order in
h be kept in the deformation equations (Schastok 1997; Rogister 2001). Rogister (2001) computes the hydrostatic figure and the parameters
of the rotating model only to the first order in h = h2 P 2 but takes into account the terms containing the square of h both in the equations of
motion and in the boundary conditions. Schastok (1997) considers a second-order approximation for the equation of the equisurfaces of the
rotating body but he does not include all the terms of order of h2

2 in the equations of motion.
Knowing the analytical expressions for the frequency and for the displacement of the TOM, we can insert them in the equation of motion

(94) and in Poisson’s equation (95). So, we can show how the TOM imposes constraints on the approximations that we can make in these
equations. This is what we do in the next section. The TOM was also used as a test case in the work of Rogister (2001).

6 C O N S T R A I N T S I M P O S E D B Y T H E T I LT - OV E R M O D E O N T H E A P P RO X I M AT I O N S
I N T H E E Q UAT I O N S O F M O T I O N

Described in inertial space, the TOM is the steady rotation of the body about a fixed axis different from the z-axis of the rotating reference
frame, the norms of the two angular velocities being the same. The TOM does not depend on and, therefore, yields no information on the
inner structure or on the shape of the body. Nevertheless, it is of importance in astronomy because its resonant excitation by luni-solar tidal
forces causes precession (Moritz & Mueller 1987). The TOM is a solution of linearized equations (94) and (95) only if the angle β between
the z-axis and the axis of rotation of the planet is small. In the rotating reference frame, the proper displacement is then easily shown to
be the vector β × r, where β is a vector rotating in the equatorial plane at the angular speed 
0 in the retrograde sense. Vector β is the
imaginary part of βe−i
0t (ex − iey), ex and ey being the other two unit vectors of the rotating Cartesian reference frame Oxyz. Consequently,
the eigendisplacement of the TOM is the imaginary part of the vector

sTOM = β

[
eχ − i

cos χ

sin χ
eν − 1

1 + ∂h
∂q

∂h

∂χ
eq

]
ei(ν−
0t). (99)

By comparing this expression with contravariant components (43), (44) and (45) of s, we find that

UTOM = VTOM = 0 (100)

WTOM = iβ (q + h) sin χei(ν−
0t). (101)

Because there is no deformation associated with the TOM, both the tensor δt and the divergence of the displacement vector vanish.
Let us then denote by W the Fourier transform of W TOM:

W (q, χ, ν; ω) =
∫ +∞

−∞
WTOM (q, χ, ν; t) eiωt dt

= 2π iβ (q + h) sin χeiνδ (ω − 
0) , (102)

where we have emphasized the variable-dependences of W and W TOM, and where δ (x) is the delta function. Similarly, we denote by φ the
Fourier transform of (�φ)TOM and we expand φ on the functional basis of the spherical harmonics Dm

� (χ, ν):

φ (q, χ, ν; ω) = 2π

∞∑
�=0

�∑
m=−�

φm
� (q)Dm

� (χ, ν) δ (ω − 
0) . (103)

After having taken the Fourier transform of the equation of motion (94), we insert in it the solution for the TOM angular frequency, 
0,
and the solution for the TOM displacement. We obtain the ν-covariant component of (94) which, after some rearrangement, reads


2
0 (q + h)2 sin2 χ

[(
1 + ∂h

∂q

) (
∂W

∂χ
+ 2i

cos χ

sin χ

∂W

∂ν

)
− ∂h

∂χ

∂W

∂q

]
= − (q + h) sin χ

(
1 + ∂h

∂q

)
∂φ

∂ν
+ ∂h

∂χ

∂2W

∂ν2

dφ̃0

dq
(104)

or


2
0β (q + h)2

(
1 + ∂h

∂q

) √
6

3
D1

2 −
(

1 + ∂h

∂q

) ∞∑
�=0

�∑
m=−�

mφm
� (q)Dm

� (χ, ν) = β
∂h

∂χ
eiν dφ̃0

dq
, (105)
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where

D1
2 (χ, ν) =

√
6

2
cos χ sin χeiν . (106)

In eq. (105), the right-hand side and the first term on the left-hand side being proportional to eiν , the gravitational variation φ must be
propotional to eiν too. Thus, φ simplifies to

φ = 2π

∞∑
�=0

φ1
� (q)D1

� (χ, ν) δ (ω − 
0) . (107)

Gravitational variations of different harmonic orders do not couple with each other, confirming what can be deduced from symmetry consider-
ations. The functions φ1

� (q) can then be determined by identification of the terms having the same harmonic degree � in eq. (105). Expanding
h in spherical harmonics of order 0 (eq. 80) and invoking relations (A.10) and (A.11), as well as a symmetry property of the J-squares given
in Appendix A3, we see that eq. (105) involves only surface spherical harmonics of even degree � ≥ 2 and order 1. Thus, φ becomes

φ = 2π

∞∑
�=1

φ1
2�(q)D1

2� (χ, ν) δ (ω − 
0) . (108)

Before we start making approximations, it must be noted that eq. (105) is exact in h. Now, let us first consider the first-order approximation
h = h2D0

2. Identifying the terms of degree 2 and order 1, we obtain

φ1
2 =

√
6β

(

2

0

3
q2 + h2

dφ̃0

dq

)
, (109)

in agreement with eq. (48) of Rogister (2001). In the same way, the identification of the terms of degree 4 shows that φ1
4 is of the order of

(h2)2 and is therefore negligible in a first-order approach. Coefficients φ1
� with � > 4 are also negligible. The important conclusion that we

can draw is that, in order to obtain relation (109), the right-hand side of eq. (105) is computed to the first order in h whereas the left-hand side
is computed to the zeroth order in h.

Let us next consider the second-order approximation h = h0 + h2D0
2 + h4D0

4. Identifying the terms of degree 2 and order 1, we obtain

φ1
2 =

√
6β

[

2

0

3
q

(
q + 2

7
h2

)
+ h2

(
1 − 1

7

dh2

dq

)
dφ̃0

dq

]
, (110)

and identifying the terms of degree 4 and order 1, we find

φ1
4 =

√
20β

[
6

35

2

0qh2 +
(

h4 − 9

35
h2

dh2

dq

)
dφ̃0

dq

]
. (111)

Coefficients φ1
� with � > 4 are negligible in a second-order approach. We see that it is necessary that h on the right-hand side of eq. (105) be

computed up to the second order, whereas, on the left-hand side, h needs to be computed to the first order only. The reason for this is that the
restoring force stemming from the gravitational attraction of the equatorial bulge contributes as much as the inertia forces and the force arising
from the Eulerian gravitational variation. Indeed, we have seen in Section 4 that h2 = O(−
2

0q/πGρ̄). Moreover, dφ̃0/dq = O(πGρ̄q).
Consequently, |h2s|dφ̃0/dq = O(
2

0|s|q2), which is of the order of the inertia forces divided by ρ 0.
It is only a matter of algebra to check that solutions (109), (110) and (111) also satisfy the q- and χ -covariant components of the equation

of motion (94), under the condition that the approximation to which the terms involving the initial gravity are computed is one order higher
than the approximation to which the inertia terms and the terms containing the gravitational variation are computed. It can also be checked that
those solutions satisfy Poisson’s equation (95) provided that h on the right-hand side is calculated to one order higher than h on the left-hand
side. The rotational motions, i.e. wobbles and nutations, are characterized by a dominant rigid rotation about an equatorial axis and a much
smaller deformation. Indeed, their displacement vector has the form

s = τ m
1 + σm

2 + τ m
3 + σm

4 + τ m
5 + · · · , (112)

where m = ±1. At the beginning of this section, we showed that the toroidal displacement of degree 1 and order ±1, which is dominant
for rotational motions, is a rotation about an equatorial axis. If it is a linear function of r, it describes a rigid rotation of the whole body
about that axis. The other terms, which are elasto-gravitational deformations, are smaller than τ m

1 by a factor of the order of, at most, h2/q.
Moreover, for rotational motions, the restoring force produced by the gravitational attraction of the equatorial bulge plays an essential role.
These similarities between the TOM and the other rotational modes strongly suggest that the conclusions that we have drawn for the TOM
regarding the approximations allowed in the equations of motion also apply to the other rotational motions. When we solve numerically the
equation of motion for a rotational mode, we first make an approximation for h, then we search for the eigenfrequency and the eigenfunction
of the mode. This is different from what we did above for the TOM: we knew the eigenfrequency and the eigendisplacement and we searched
for the allowed approximation for h. The gravitational potential variation associated with the TOM was determined up to the second order in
h2/q provided that h was also computed to the second order in the terms involving the equilibrium gravity and provided that two terms were
kept in series (108). To warrant a relative accuracy of the order of (h2/q)2 for both the eigenfrequency and the eigenfunction of a rotational
mode, it is therefore necessary to include four terms in series (112) and to compute the terms involving the equilibrium gravity up to the
second order.
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Since the TOM is divergence-free and it involves no deformation, it does not impose any constraint on the terms ρ(∇ · s)∇φ̃ and
∇ · δt in eq. (94). Thus, we may question the admissible approximation that can be applied to h in these terms when we consider other
rotational motions. As the term ρ (∇ · s) ∇φ̃ involves the equilibrium gravity, it is consistent to compute it to the second order in h2/q. The
rigid rotation displacement contributes nothing to the elastic term given by ∇ · δt . Since the terms in (112) that contribute to the elastic force
in eq. (94) are smaller than τ m

1 by a factor of the order of, at most, h2/q, it is sufficient to compute the term ∇ · δt to the first order in h2/q.

7 S C A L A R E Q UAT I O N S O F M O T I O N F O R A RO TAT I N G P L A N E T I N H Y D RO S TAT I C
E Q U I L I B R I U M

In three steps, we perform the transformation of the vector equation of motion (94), of Poisson’s equation (95), and of the stress–strain relation
(96) into a set of first-order ordinary differential equations over radius q. First, we take the Fourier time transform of each of these equations,
substituting multiplication by iω for the derivative with respect to time, where ω is the frequency of the motion. Second, we decompose
the vector fields into a spheroidal part and a toroidal part and use the results of Sections 3 and 6 to write the approximate equations in the
coordinate system q, χ , ν. Third, we expand the toroidal and spheroidal scalars on the basis of the surface spherical harmonics. Generally, we
do not write explicitly the second step of the calculations but directly provide the formulae for the ordinary differential equations obeyed by
the harmonic components of the various scalars. These scalars are the spheroidal and the toroidal scalars of the displacement vector and the
traction, the gravitational potential variation and the scalar defined by eq. (120). Because the harmonic components of the displacement vector
couple following the rules (97) or (98), we obtain an infinite set of ordinary differential equations. We give the results for a solid material.
The formulae for a liquid material can be obtained by letting the rigidity vanish.

7.1 Stress–strain relation

In coordinates (q, χ , ν), the covariant components of the stress–strain relation (96) become

δt i j = λ0 (∇ · s) gi j + 2µ0ei j , (113)

where λ0(q) and µ0(q) are the Lamé parameters as functions of q. The Lamé parameters do not depend on χ and ν because we suppose that
the surfaces of constant Lamé parameters coincide with the spherical surfaces of constant initial density. Introducing the scalars P , Q and R,
we define the Helmholtz representation of the vector eq · δt :

eq · δt = P
r

r
+ r

r
× [∇ × (Qr)] + ∇ × (Rr) . (114)

The q, χ and ν covariant components of eq · δt are, respectively, δtqq, δt qχ and δt qν , and can be expressed in terms of P , Q and R using eq.
(114), as well as eqs (47)–(49) where we replace U , V and W by P , Q and R, respectively. The three other independent covariant components
of δt , i.e. δt χχ , δt νν and δt χν , are expressed in terms of U , V and W using eqs (113), (50), (63), (64), and (65).

By equating the q-covariant component of the Helmholtz representation of eq · δt with the qq-covariant component of the right-hand
side of eq. (113), we find(

1 + ∂h

∂q

)
P = λ0 (∇ · s)

(
1 + ∂h

∂q

)2

+ 2µ0eqq . (115)

The exact expressions for ∇ · s and eqq have been given in Section 3. By taking the Fourier transform of eq. (115), expanding the Fourier
transforms of U , V and P in surface spherical harmonics, limiting the development of h to first order, and using formulae provided in Appendix
A5, we obtain

β0
dU m

�

dq
= Pm

� − λ0

q

[
2U m

� − � (� + 1) V m
�

] +
�+2∑

�′=|�−2|

[
� 2 �′
0 0 0
m 0 m

]
λ0

q

[(
dh2

dq
− h2

q

) {
2U m

�′ − �′ (�′ + 1) V m
�′

0

}
+ 6h2

{ dV m
�′

dq

0

}]

−
�+2∑

�′=|�−2|

[
� 2 �′
0 1 −1
m 0 m

]
4
√

3L�′
0

λ0

q
h2

{ dV m
�′

dq

0

}
, (116)

where

β0 = λ0 + 2µ0. (117)

The sums over �′ stem from products of spherical harmonics. Their terms are of first order in h2. In these terms, the first and second derivatives
with respect to q of the harmonic components need to be computed only to zeroth order in h2. This can be done analytically once all the scalar
equations of motion are written. Arrays with two lines in curly brackets, such as{ dV m

�′
dq

0

}
,

mean that the upper line must be chosen if |� − �′| is even or zero and the lower line must be chosen if |� − �′| is odd. Symbols like[
� 2 �′
0 0 0
m 0 m

]
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are numbers called J-squares by Smith (1974). They arise from products of spherical harmonics and involve products of Wigner 3-j symbols
(Edmonds 1960, see Appendix A3).

In order to obtain similar equations for the radial derivatives of V m
� and W m

�, we form the combinations

1

sin χ

{
∂

∂χ

[
sin χδtqχ

q + h

]
+ ∂

∂ν

[
δtqν

(q + h) sin χ

]}
and

1

sin χ

{
∂

∂ν

(
δtqχ

q + h

)
− ∂

∂χ

(
δtqν

q + h

)}
.

To first order in h, they give, respectively,

µ0� (� + 1)
dV m

�

dq
= � (� + 1)

[
Qm

� − µ0

q

(
U m

� − V m
�

)]

+
�+2∑

�′=|�−2|




� 2 �′

0 0 0

m 0 m





6h2

[{ d Qm
�′

dq − Pm
�′
q

0

}
− λ0

q2

{
2U m

�′ + �′ (�′ + 1) V m
�′

0

}
− β0

q

{ dUm
�′

dq

0

}
+ µ0




d2V m
�′

dq2

0







+ µ0

(
dh2

dq
− h2

q

) 
 �′ (�′ + 1)

(
Um

�′
q − V m

�′
q

)
+ 6

dV m
�′

dq

0







+
�+2∑

�′=|�−2|




� 2 �′

0 1 −1

m 0 m


 2

√
3L�′

0


h2







Pm
�′
q − d Qm

�′
dq

−i
d Rm

�′
dq


 − λ0

q2

{
2U m

�′ + �′ (�′ + 1) V m
�′

0

}
−β0

q

{ dUm
�′

dq

0

}
+ µ0




d2V m
�′

dq2

i
d2W m

�′
dq2







− µ0

(
dh2

dq
− h2

q

) 


Um
�′
q − V m

�′
q − dV m

�′
dq

i
(

W m
�′

q − dW m
�′

dq

)






(118)

and

µ0� (� + 1)
dW m

�

dq
= � (� + 1)

(
Rm

� + µ0
W m

�

q

)

+
�+2∑

�′=|�−2|




� 2 �′

0 0 0

m 0 m





6h2


{

− d Rm
�′

dq

0

}
+ µ0




d2W m
�′

dq2

0





 + µ0

(
dh2

dq
− h2

q

) {
6

dW m
�′

dq − �′ (�′ + 1)
W m

�′
q

0

}


+
�+2∑

�′=|�−2|




� 2 �′

0 1 −1

m 0 m


 2

√
3L�′

0


h2







− d Rm
�′

dq

−i
Pm
�′
q


 + λ0

q2

{
0

i
[
2U m

�′ + �′ (�′ + 1) V m
�′

]
}



+ h2
β0

q

{
0

i
dUm

�′
dq

}
+ µ0


h2




d2W m
�′

dq2

−i
d2V m

�′
dq2


 +

(
dh2

dq
− h2

q

) 


W m
�′

q + dW m
�′

dq

i
(
−Um

�′
q + V m

�′
q − dV m

�′
dq

)







 . (119)

7.2 Poisson’s equation

If we define � g by

�g = n · [∇ (�φ) + 4πGρs] , (120)

where n is the unit normal to a surface q= const and is given by eq. (8), we have to the second order

∂

∂q
�φ =

[
1 + ∂h

∂q
− 2

h2

q2
− 1

2q2

(
∂h

∂χ

)2
]

�g + 1

q2

∂h

∂χ

(
1 + ∂h

∂q
− 2h

q

)
∂

∂χ
�φ

+ 4πGρ0

{
−

[
1 + ∂h

∂q
− 1

q2

(
∂h

∂χ

)2
]

U + 1

q

∂h

∂χ

(
1 + ∂h

∂q
− h

q

) (
∂V

∂χ
+ 1

sin χ

∂W

∂ν

)
− 1

q

(
∂h

∂χ

)2
∂V

∂q

}
. (121)
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Taking the Fourier transform of this equation, expanding the Fourier transforms of �g, �φ, and U in surface spherical harmonics, and
denoting their harmonic components by gm

�, φm
�, and Um

�, respectively, we obtain

dφm
�

dq
=

(
1 + dh0

dq
− h2

2

q2

)
gm

� − 4πGρ0

[(
1 + dh0

dq
− 6

5

h2
2

q2

)
U m

� + 6

5

h2
2

q

dV m
�

dq

]

+
�+2∑

�′=|�−2|




� 2 �′

0 0 0

m 0 m




{(
dh2

dq
− 5

7

h2
2

q2

) {
gm

�′

0

}
− 4πGρ0

[(
dh2

dq
− 2

7

h2
2

q2

) {
U m

�′

0

}
+ 2

7

h2
2

q

{ dV m
�′

dq

0

}]}

+
�+4∑

�′=|�−4|




� 4 �′

0 0 0

m 0 m




{
dh4

dq

{
gm

�′

0

}
− 4πGρ0

[(
dh4

dq
+ 72

35

h2
2

q2

) {
U m

�′

0

}
− 72

35

h2
2

q

{ dV m
�′

dq

0

}]}

+
�+2∑

�′=|�−2|




� 2 �′

0 1 −1

m 0 m


 2

√
3L�′

0

h2

q

{
− φm

�′
q − 4πGρ0V m
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(122)

In order to derive eq. (122), we have used formulae provided in Appendices A4 and A5. Poisson’s equation (95) then gives
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=

{
� (� + 1)

[
1 − 2

h0

q
+ dh0

dq
− 2

5

h2

q

(
2

h2

q
+ dh2

dq

)]
+ 3m2 h2

2

q2

}
φm

�

q2

+
[
−2 + 2

h0

q
− 2

dh0

dq
+ 2

5

h2

q

(
h2

q
+ dh2

dq

)]
gm

�

q

+ 4πG

{[
� (� + 1)

(
1 + dh0

dq
− h0

q
− 6

5

h2
2

q2
− 1

5

h2

q

dh2

dq

)
+ 3m2 h2

2

q2

]
ρ0

q
V m

�

+ 2

5

(
dh2

dq

)2 [
d

dq

(
ρ0U m

�

) + ρ0

q
U m

�

]
− 12

5

h2
2

q2

ρ0

q
U m

�

}

+
�+2∑

�′=|�−2|




� 2 �′

0 0 0

m 0 m




{{
�′ (�′ + 1)

q2

[
dh2

dq
− 2

h2

q
+ h2

q

(
h2

q
− 4

7

dh2

dq

)]
+ 6m2 h2

2

q4

} {
φm

�′

0

}

− 2

q

[
dh2

dq
+ 2

h2

q
− 2

7

h2

q

(
h2

q
+ dh2

dq

)] {
gm

�′

0

}

+ 4πG

{
4

7

(
dh2

dq

)2
{

d
dq

(
ρ0U m

�′
)

0

}
+ ρ0

q

{
6

h2

q
+ 2

7

[
2

(
dh2

dq

)2

+ 5
h2

q

dh2

dq
− 12

h2
2

q2

]} {
U m

�′

0

}

+ ρ0
h2

q

(
6 − 10

7

h2

q

) {
d

dq V m
�′

0

}
+ ρ0

q

[
�′ (�′ + 1

) (
dh2

dq
− h2

q
+ 3

7

h2
2

q2
− 2

7

h2

q

dh2

dq

)
+ 6m2 h2

2

q2

] {
V m

�′

0

}}}

C© 2004 RAS, GJI, 159, 874–908



Normal-mode theory of a rotating earth 891

+
�+4∑

�′=|�−4|




� 4 �′

0 0 0

m 0 m




{
�′ (�′ + 1)

q2

[
dh4

dq
− 2

h4

q
+ 18

35

h2

q

(
11

h2

q
− 2

dh2

dq

)] {
φm

�′

0

}

− 2

q

[
dh4

dq
+ 9

h4

q
− 36

35

h2

q

(
h2

q
+ dh2

dq

)] {
gm

�′

0

}

+ 4πG

{
36

35

(
dh2

dq

)2
{

d
dq

(
ρ0U m

�′
)

0

}
+ ρ0

q

{
20

h4

q
+ 36

35

[(
dh2

dq

)2

+ 5
h2

q

dh2

dq
− 6

h2
2

q2

]} {
U m

�′

0

}

+ ρ0

(
20

h4

q
− 180

35

h2
2

q2

) {
d

dq V m
�′

0

}
+ ρ0

q
�′ (�′ + 1

) (
dh4

dq
− h4

q
+ 162

35

h2
2

q2
− 18

35

h2

q

dh2

dq

) {
V m

�′

0

}}}

+
�+2∑

�′=|�−2|




� 2 �′

0 1 −1

m 0 m


 2

√
3L�′

0


h2

q




− gm
�′
q + 4πGρ0

(
Um

�′
q − dV m

�′
dq

)
−4πGρ0i

dW m
�′

dq




+
(

dh2

dq
− 2

h2

q
− 2

h2
2

q2

) 


φm
�′

q2

0


 + 4πG

ρ0

q

(
−dh2

dq
+ h2

2

q2

) {
−V m

�′

iW m
�′

}


+
�+4∑

�′=|�−4|




� 4 �′

0 1 −1

m 0 m


 2

√
10L�′

0


h4

q




− gm
�′
q + 4πGρ0

(
Um

�′
q − dV m

�′
dq

)
−4πGρ0i

dW m
�′

dq




+
(

dh4

dq
− 2

h4

q

) 


φm
�′

q2

0


 + 4πG

ρ0

q

(
−dh4

dq
− h4

q

) {
−V m

�′

iW m
�′

}


+
�+2∑

�′=|�−2|

�′+2∑
�′′=|�′−2|




� 2 �′

0 0 0

m 0 m







�′ 2 �′′

0 1 −1

m 0 m


 2

√
3L�′′

0


12

h2
2

q2


 − φm

�′′
q2

0


 + h2

q

(
1 − 2

h2

q
+ dh2

dq

) {
− gm

�′′
q

0

}

+ 4πG
ρ0

q

h2

q


(

dh2

dq
− 2

h2

q

) {
U m

�′′

0

}
− 2

(
dh2

dq
+ 4

h2

q

) {
−V m

�′′

iW m
�′′

}
+h2




− V m
�′′
q + dV m

�′′
dq

2i
W m

�′′
q + i

dW m
�′′

dq










+
�+2∑

�′=|�−2|

�′+2∑
�′′=|�′−2|




� 2 �′

0 1 −1

m 0 m







�′ 2 �′′

0 1 −1

m 0 m


 12L�′

0 L�′′
0 4πG

ρ0

q

h2
2

q2

{
0

iW m
�′′

}
. (123)

In accordance with the conclusions of Section 6, we have extended the computation of the terms containing 4πGρ 0 to the second order in h.
The derivatives of the harmonic components appearing in the sums over �′ must be computed to the first order in h when they are multiplied
by a coefficient of the first order in h. Otherwise, when they are multiplied by a coefficient of the second order in h, they need to be computed
only to the zeroth order in h.

7.3 Conservation of linear momentum

The Fourier transform of the equation of motion (94) can be written

∇ · δt = ρ (η1 + η2) , (124)

where

η1 = −ω2s + 2iωΩ0 × s (125)

and

η2 = ∇ (�φ) + ∇
(
s · ∇φ̃

) − (∇ · s) ∇φ̃. (126)
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In order to avoid cumbersome notation, we have not underlined the Fourier transforms of δt, s and �φ. The context being clear, no confusion
should arise from using the same notation for two different functions. We showed in Section 6 that, in coordinates (q, χ , ν), ∇ · δt and η1

have to be computed to first order in h and η2 has to be computed to second order in h.
The contravariant components of ∇ · δt can be computed from eqs (73–75), which involve the contravariant components of δt that

are obtained by index-raising twice the covariant components of δt . Components δtqq, δt qχ and δt qν are expressed in terms of P , Q and R,
whereas components δt χχ , δt χν and δt νν are expressed in terms of U , V and W .

Consequently, the q-contravariant component of the equation of motion gives for the radial derivative of Pm
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where
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
 2

√
10L�′

0


h4

q2

{
U m

�′′

0

}
+ 1

q

(
dh4

dq
− h4

q

) {
V m

�′

−iW m
�′

}
− h4

q




3
dV m

�′
dq

−i
dW m

�′
dq







+
�+2∑

�′=|�−2|

�′+2∑
�′′=|�′−2|




� 2 �′

0 0 0

m 0 m







�′ 2 �′′

0 1 −1

m 0 m


 2

√
3L�′′

0

×
{

h2

q2

(
−dh2

dq
− 2h2

q

) {
U m

�′′

0

}
+

[
h2

q

(
−d2h2

dq2
+ 2

q

dh2

dq
+ 5h2

q2

)
− 3

q

(
dh2

dq

)2
] {

V m
�′′

0

}
+ h2

q

(
5

dh2

dq
+ 3

h2

q

) { dV m
�′′

dq

0

}

−h2

q

(
3

dh2

dq
+ h2

q

) {
0

i
dW m

�′′
dq

}
−

[
h2

q

(
−d2h2

dq2
+ 1

q

dh2

dq
+ 2h2

q2

)
− 3

q

(
dh2

dq

)2
] {

0

iW m
�′′

}}

+
�+2∑

�′=|�−2|

�′+2∑
�′′=|�′−2|




� 2 �′

0 1 −1

m 0 m







�′ 2 �′′

0 1 −1

m 0 m


 12L�

0 L�′′
0

h2
2

q3

{
0

−iW m
�′′

}


+ d2φ̃0

dq2




{
1 − 3

dh0

dq
+ 6

5

[
h2

2

q2
+

(
dh2

dq

)2
]}

U m
� + 6h2

2

5q

dV m
�

dq

+
�+2∑

�′=|�−2|




� 2 �′

0 0 0

m 0 m




{[
−3

dh2

dq
+ 2

7

(
h2

2

q2
+ 6

(
dh2

dq

)2
)] {

U m
�′

0

}
+ 2h2

2

7q

{ dV m
�′

dq

0

}}

+
�+4∑

�′=|�−4|




� 4 �′

0 0 0

m 0 m




{[
−3

dh4

dq
+ 36

35

(
−2

h2
2

q2
+ 3

(
dh2

dq

)2
)] {

U m
�′

0

}
− 72h2

2

35q

{ dV m
�′

dq

0

}}

+
�+2∑

�′=|�−2|




� 2 �′

0 1 −1

m 0 m


 2

√
3L�′

0

h2

q

{
V m

�′

−iW m
�′

}

+
�+4∑

�′=|�−4|




� 4 �′

0 1 −1

m 0 m


 2

√
10L�′

0

h4

q

{
V m

�′

−iW m
�′

}

+
�+2∑

�′=|�−2|

�′+2∑
�′′=|�′−2|




� 2 �′

0 0 0

m 0 m







�′ 2 �′′

0 1 −1

m 0 m


 2

√
3L�′′

0

h2

q

(
3

dh2

dq
+ h2

q

) {
−V m

�′′

iW m
�′′

}
 . (129)

In the double sums over both �′ and �′′, which contain terms of the second order in h, symbols like

{
−V m

�′′

iW m
�′′

}
mean that the upper line must

be chosen if both |� − �′| and |�′ − �′′| are even, odd, or zero, and that the lower line must be chosen if |� − �′| is even or zero and |�′ − �′′| is
odd, or if |� − �′| is odd and |�′ − �′′| is even or zero. Moreover, in ηU

2
m
� , the derivatives of the harmonic components appearing in the sums

over �′ must be computed to first order in h when they are multiplied by a coefficient of first order in h.
In order to obtain the radial derivative of Qm

�, we form the combination

1

sin χ

{
∂

∂χ

[
sin χ

(
δtχq

;q + δtχχ
;χ + δtχν

;ν

)] + ∂

∂ν

[
sin χ

(
δtνq

;q + δtνχ
;χ + δtνν

;ν

)]}
.
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It gives

� (� + 1)
1

q

d Qm
�

dq
= −ρ0

(
ηV

1
m

�
+ ηV

2
m

�

) +
(

−3 + 2
h2

q

)
� (� + 1)

Qm
�

q2
− � (� + 1)

{[
2 (λ0 + µ0) + 2

h2

q
µ0

]
U m

�

q3
+ λ0

q2

dU m
�

dq

}

+� (� + 1)

[
� (� + 1)

β0

q
− 2

µ0

q
+ 2

h2

q

(
µ0

q
− dµ0

dq

)]
V m

�

q2
+ [

6m2 − 2� (� + 1)
] h2

q3
µ0

dV m
�

dq

+
�+2∑

�′=|�−2|




� 2 �′

0 0 0

m 0 m




{(
−2

h2

q2
+ 3

q

dh2

dq
+ d2h2

dq2

)
�′ (�′ + 1)

q

{
Qm

�′

0

}

+
[

18
h2

q
+ 6

dh2

dq
+ �′ (�′ + 1

) (
h2

q
+ 2

dh2

dq

)]
1

q

{ d Qm
�′

dq

0

}

+6
h2

q




d2 Qm
�′

dq2

0


 + �′ (�′ + 1

) h2

q4
(6λ0 + 14µ0)

{
U m

�′

0

}

+λ0

q2

[
�′ (�′ + 1

) (
2

h2

q
+ dh2

dq

)
+ 6

dh2

dq

] { dUm
�′

dq

0

}
+ 6λ0

h2

q2




d2Um
�′

dq2

0




−�′ (�′ + 1
) [

3�′ (�′ + 1
) β0

q
+ 2

µ0

q
+

(
6

dλ0

dq
+ 4

dµ0

dq

)]
h2

q3

{
V m

�′

0

}

− [
�′ (�′ + 1

)
(12λ0 + 4µ0) + 6 (6λ0 + 10µ0)

] h2

q3

{ dV m
�′

dq

0

}}

+
�+2∑

�′=|�−2|




� 2 �′

0 1 −1

m 0 m


 2

√
3L�′

0

×
{[

(4 − 2� (� + 1))
h2

q2
+ 3

q

dh2

dq
+ d2h2

dq2

] { Qm
�′

q

0

}
+

(
4

h2

q2
+ 3

q

dh2

dq

) { d Qm
�′

dq

0

}
+ h2

q




d2 Qm
�′

dq2

i
d2 Rm

�′
dq2




+
(

2
h2

q2
− 3

q

dh2

dq
− d2h2

dq2

) {
0

i
Rm

�′
q

}
+

(
2

h2

q2
− 1

q

dh2

dq

) {
0

i
d Rm

�′
dq

}

+ {6λ0 + 2 [� (� + 1) + 4] µ0} h2

q4

{
U m

�′

0

}
+ λ0

h2

q2




d2Um
�′

dq2 + 2
q

dUm
�′

dq

0




+
[

2
dµ0

dq
− 4

µ0

q
− �′ (�′ + 1

) (
3
λ0

q
+ 8

µ0

q
+ dβ0

dq

)]
h2

q3

{
V m

�′

0

}

+
{
�′ (�′ + 1

) dµ0

dq
+ [

2 + 3�′ (�′ + 1
)] µ0

q

}
h2

q3

{
0

iW m
�′

}

− {[
12 + �′ (�′ + 1

)]
λ0 + 14µ0 + 2� (� + 1) β0

} h2

q3

{ dV m
�′

dq

0

}
+ [

6 + �′ (�′ + 1
)]

µ0
h2

q3

{
0

i
dW m

�′
dq

}}

+
�+1∑

�′=|�−1|

�′+1∑
�′′=|�′−1|




�′ 1 �′′

0 1 −1

m 0 m





2L�′

0




� 1 �′

0 1 −1

m 0 m


 −




� 1 �′

0 0 0

m 0 m







×12
h2

q3
L�′′

0


{

Qm
�′′

0

}
− µ0




Um
�′′
q − V m

�′′
q

i
dW m

�′′
dq


 − dµ0

dq

{
V m

�′′

0

}

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+
�+1∑

�′=|�−1|




� 1 �′

0 0 0

m 0 m


 6m

h2

q3

dµ0

dq

{
0

iW m
�′

}

−
�+1∑

�′=|�−1|




� 1 �′

0 1 −1

m 0 m


 12mL�′

0

h2

q3




0

i
[

Rm
�′ +

(
dµ0
dq + µ0

q

)
W m

�′

]

 ,

(130)

where

ηV
1

m
� = ω2

q


� (� + 1) V m

� +
�+2∑

�′=|�−2|




� 2 �′

0 0 0

m 0 m


 h2

{
−6

dV m
�′

dq − �′ (�′ + 1)
V m

�′
q

0

}

+
�+2∑

�′=|�−2|




� 2 �′

0 1 −1

m 0 m


 2

√
3h2 L�′

0




V m
�′
q − dV m

�′
dq

i
(

W m
�′

q + dW m
�′

dq

)






+ 2

q
ω
0




�+1∑
�′=|�−1|




� 1 �′

−1 0 −1

m 0 m


 2L�

0 L�′
0

{ (
U m

�′ + V m
�′

)
−iW m

�′

}

+
�+2∑

�′=|�−2|

�′+1∑
�′′=|�′−1|




� 2 �′

0 0 0

m 0 m







�′ 1 �′′

−1 0 −1

m 0 m


 2

h2

q
L�′

0 L�′′
0

{ (
U m

�′′ + V m
�′′

)
iW m

�′′

}

+
�+1∑

�′=|�−1|




� 1 �′

0 1 −1

m 0 m


 2h2 L�′

0



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�′

dq − V m
�′
q

i
(

W m
�′

q + dW m
�′

dq

)



+
�+2∑

�′=|�−2|

�′+1∑
�′′=|�′−1|




� 2 �′
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m 0 m







�′ 1 �′′

0 1 −1

m 0 m


 4h2 L�′′

0



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�′′

dq − V m
�′′
q

i
(

W m
�′′
q + dW m

�′′
dq

)



+
�+1∑
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


� 1 �′

0 0 0
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
 6

5
h2

{
0

i
dW m

�′
dq

}
+

�+3∑
�′=|�−3|




� 3 �′

0 0 0

m 0 m


 24

5
h2

{
0

i
dW m

�′
dq

}


(131)

and

ηV
2

m

�
=

[
� (� + 1)

(
−1 + 3

5

h2
2

q2

)
− 3m2 h2

2

q2

]
φm

�

q2

+
�+2∑

�′=|�−2|




� 2 �′

0 0 0

m 0 m




{[
�′ (�′ + 1

) h2

q3

(
2 − 4

7

h2

q

)
− 6m2 h2

2

q4

] {
φm

�′

0

}

+h2

q2

(
6 − 20

7

h2

q

) {
gm

�′ − 4πGρ0U m
�′

0

}
+ 4πGρ0

h2
2

q4

[
2

7
�′ (�′ + 1

) − 6m2

] {
V m

�′

0
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+
�+4∑
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
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2

h4
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5

h2
2
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}

C© 2004 RAS, GJI, 159, 874–908



Normal-mode theory of a rotating earth 897

+
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20
h4
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0 1 −1
m 0 m




{
2
√

3L�′
0

{(
2

dh2

dq
− 4

h2

q

) {
Um

�′
q2

0

}
+ 2

h2
2

q3

{ dV m
�′

dq

i
dW m

�′
dq

}
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+h2

q

[
�′ (�′ + 1

) − � (� + 1) − 3

(
dh2

dq
+ h2

q

)] {
V m

�′
q2

0

}
+h2

q

[
−� (� + 1) + 2

(
dh2

dq
− 3

h2

q

)] {
0

i
W m

�′
q2

}}
+h2

2

q3
6m2

{
dV m

�′
dq

0

}}

+
�+4∑

�′=|�−4|


 � 4 �′

0 1 −1
m 0 m


 2

√
10L�′

0

[(
2

dh4

dq
− 4

h4

q

) {
Um

�′
q2

0

}
+ [

�′ (�′ + 1
) − � (� + 1)

] h4

q

{
V m

�′
q2

0

}
+� (� + 1)

h4

q

{
0

i
W m

�′
q2

}]

+
�+2∑

�′=|�−2|

�′+2∑
�′′=|�′−2|


 � 2 �′

0 0 0
m 0 m





 �′ 2 �′′

0 1 −1
m 0 m


 2

√
3L�′′

0

×
{[

−h2
d2h2

dq2
+ 2

h2

q

dh2

dq
− 4

h2
2

q2
+ 4

(
dh2

dq

)2
] {

Um
�′′

q2

0

}
− h2

q2

(
2

h2

q
+ dh2

dq

) {
dUm

�′′
dq

0

}
− 8

h2
2

q3

{
2

dV m
�′′

dq

i
dW m

�′′
dq

}

+h2

q3

[
�′ (�′ + 1

) (
3

h2

q
+ dh2

dq

)
+ 3

(
3

dh2

dq
− h2

q

)] {
V m

�′′

0

}

+
[
−�′ (�′ + 1

) (
3

h2

q
+ dh2

dq

)
+2

(
3

h2

q
− 7

dh2

dq

)]
h2

q3

{
0

iW m
�′′

}}

−
�+2∑

�′=|�−2|

�′+2∑
�′′=|�′−2|


 � 2 �′

0 1 −1
m 0 m





 �′ 2 �′′

0 1 −1
m 0 m


 36L�

0 L�′′
0

h2

q3

(
h2

q
+ dh2

dq

) {
0

iW m
�′′

}}

+d2φ̃0

dq2

{
8

5

h2

q

(
h2

q
+ dh2

dq

)
U m

�

q
− 3

[
m2 − 2

5
� (� + 1)

]
h2

2

q2

V m
�

q

+
�+2∑

�′=|�−2|


 � 2 �′

0 0 0
m 0 m




{
6

h2

q2

[
−1 + 4

7

(
h2

q
+ dh2

dq

)] {
U m

�′

0

}
− 2

h2
2

q3

[
3m2 − 1

7
�′ (�′ + 1

)] {
V m

�′

0

}}

+
�+4∑

�′=|�−4|


 � 4 �′

0 0 0
m 0 m




{
4

[
−5

h4

q
+ 18

35

h2

q

(
h2

q
+ dh2

dq

)] {
Um

�′
q

0

}
− 72

35
�′ (�′ + 1

) h2
2

q2

{
V m

�′
q

0

}}

+
�+2∑

�′=|�−2|


 � 2 �′

0 1 −1
m 0 m


 2

√
3L�′

0

[
−h2

q2

{
U m

�′

0

}
+ 2

h2
2

q3

{
V m

�′

−iW m
�′

}]

−
�+4∑

�′=|�−4|


 � 4 �′

0 1 −1
m 0 m


 2

√
10L�′

0

h4

q2

{
U m

�′

0

}

+
�+2∑

�′=|�−2|

�′+2∑
�′′=|�′−2|


 � 2 �′

0 0 0
m 0 m





 �′ 2 �′′

0 1 −1
m 0 m


 2

√
3L�′′

0

[
2

h2

q2

(
dh2

dq
+ h2

q

) {
U m

�′′

0

}
+ 8

h2
2

q3

{
−V m

�′′

iW m
�′′

}]

+
�+2∑

�′=|�−2|

�′+2∑
�′′=|�′−2|


 � 2 �′

0 1 −1
m 0 m





 �′ 2 �′′

0 1 −1
m 0 m


 12L�′′

0 L�
0

h2
2

q3

{
0

iW m
�′′

}
 (132)

Finally, in order to obtain the radial derivative of Rm
�, we form the combination

1

sin χ

{
∂

∂ν

(
δtχq

;q + δtχχ
;χ + δtχν

;ν

) − ∂

∂χ

[
sin2 χ

(
δtνq

;q + δtνχ
;χ + δtνν

;ν

)]}
.
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It gives

� (� + 1)
1

q

d Rm
�

dq
= −ρ0

(
ηW

1
m

�
+ ηW

2
m

�

) +
(

−3 + 2
h2

q

)
� (� + 1)

Rm
�

q2

+� (� + 1)

{
[� (� + 1) − 2]

µ0

q
− 2

h2

q

dµ0

dq

}
W m

�

q2
+ 3m2 h2

q3
µ0

dW m
�

dq

+
�+2∑

�′=|�−2|


 � 2 �′

0 0 0
m 0 m




{(
−2

h2

q2
+ 3

q

dh2

dq
+ d2h2

dq2

)
�′ (�′ + 1)

q

{
Rm

�′

0

}

+
[

18
h2

q
+ 6

dh2

dq
+ �′ (�′ + 1

) (
h2

q
+ 2

dh2

dq

)]
1

q

{
d Rm

�′
dq

0

}

+�′ (�′ + 1
) {

2
dµ0

dq
− 3

[
�′ (�′ + 1

) + 2
] µ0

q

}
h2

q3

{
W m

�′

0

}

+6
h2

q

{
d2 Rm

�′
dq2

0

}
+ [

�′ (�′ + 1
) − 4

]
6µ0

h2

q3

{
dW m

�′
dq

0

}}

+
�+2∑

�′=|�−2|


 � 2 �′

0 1 −1
m 0 m


 2

√
3L�′

0

×
{[

(4 − � (� + 1))
h2

q2
+ 3

q

dh2

dq
+ d2h2

dq2

] {
Rm

�′
q

0

}
+

(
4

h2

q2
+ 3

q

dh2

dq

) {
d Rm

�′
dq

0

}
+ h2

q




d2 Rm
�′

dq2

i
d2 Qm

�′
dq2




−
[
�′ (�′ + 1

) h2

q2
+ 3

q

dh2

dq
+ d2h2

dq2

] {
0

i
Qm

�′
q

}
+

(
2

h2

q2
− 1

q

dh2

dq

) {
0

i
d Qm

�′
dq

}

+ [
6β0 − �′ (�′ + 1

)
µ0

] h2

q4

{
0

iU m
�′

}
+

(
2
λ0

q
− dλ0

dq

)
h2

q2

{
0

i
dUm

�′
dq

}
− λ0

h2

q2

{
0

i
d2Um

�′
dq2

}

+�′ (�′ + 1
) (

dλ0

dq
− 3

β0

q

)
h2

q3

{
0

i V m
�′

}
+ [

4µ0 + �′ (�′ + 1
)

(λ0 + µ0)
] h2

q3

{
0

i
dV m

�′
dq

}

+
{[

2 − �′ (�′ + 1
)] dµ0

dq
− [

4 + 7�′ (�′ + 1
)] µ0

q

}
h2

q3

{
W m

�′

0

}
+ [

19 + �′ (�′ + 1
) − 3� (� + 1)

]
µ0

h2

q3

{
dW m

�′
dq

0

}}

+
�+1∑

�′=|�−1|


2L�′

0


 � 1 �′

0 1 −1
m 0 m


 −


 � 1 �′

0 0 0
m 0 m





 12mL�′

0

h2

q3

dµ0

dq

{
0

i V m
�′

}

+
�+1∑

�′=|�−1|

�′+1∑
�′′=|�′−1|


�′ 1 �′′

0 1 −1
m 0 m





2L�′

0


 � 1 �′

0 1 −1
m 0 m


 −


 � 1 �′

0 0 0
m 0 m





 6

h2

q3
L�′′

0

{
2Rm

�′′ + µ0
dW m

�′′
dq − 2 dµ0

dq W m
�′′

0

}
,

(133)

where

ηW
1

m

�
= ω2

q


� (� + 1) W m

� +
�+2∑

�′=|�−2|





 � 2 �′

0 0 0
m 0 m


 h2

{
−6

dW m
�′

dq − �′ (�′ + 1)
W m

�′
q

0

}

+


 � 2 �′

0 1 −1
m 0 m


 2

√
3h2 L�′

0




W m
�′

q − dW m
�′

dq

i
(

V m
�′
q + dV m

�′
dq

)









+ 2

q
ω
0




�+1∑
�′=|�−1|





 � 1 �′

−1 0 −1
m 0 m


 2L�

0 L�′
0

{
W m

�′

i V m
�′

}
+


 � 1 �′

−1 −1 0
m 0 m


 L�

0

{
0

−2iU m
�′

}
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+


 � 1 �′

0 0 0
m 0 m


 6

5
h2

{
0

i
(

dV m
�′

dq − Um
�′
q

) }

+


 � 1 �′

0 1 −1
m 0 m


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0




dW m
�′
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�′

q

−i
(
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�′
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�′
dq

)






+
�+3∑

�′=|�−3|
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 � 3 �′
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
 6

5
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0

i
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�′
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+
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 � 2 �′
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



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−1 0 −1
m 0 m


 h2

q
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0

{
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�′′
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�′′

}

+
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 � 2 �′
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
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
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0
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0
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}

+
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�′+1∑
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
 � 2 �′
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
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
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
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q
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− V m

�′′
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



 (134)

and

ηW
2

m
� = 12πGρ0m2 h2

2

q3


W m

� +
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
 � 2 �′
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
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

+
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�′′

) }

+dφ̃0

dq

{
3m2

[
h2

q

(
3

h2

q
− dh2

dq

)
W m

�
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�′′=|�′−2|


 � 2 �′

0 1 −1
m 0 m





 �′ 2 �′′

0 1 −1
m 0 m


 12i L�

0 L�′′
0

h2
2

q3

{
0

i V m
�′′

}
 . (135)

The harmonic components Um
�, V m

�, W m
�, φm

�, gm
�, Pm

�, Qm
�, and Rm

� that satisfy the first-order ordinary differential equations (116),
(118), (119), (122), (123), (128), (130), and (133) couple following the rules (97) or (98). To solve the system of ordinary differential equations
numerically, the series (97) or (98) must be truncated at a finite level. If we denote by y the finite-dimensional vector whose components are
the harmonic components of the spheroidal and toroidal vectors retained in the truncated series, the differential system can be written

dy

dq
= Asy, (136)

where As is a square matrix of the same dimension as y. The differential system (136) is suitable for numerical integration using standard
finite-difference methods.

The numerical solution of the equations of motion of a realistic earth model, including fluid layers, will be reported in a later paper.

7.4 Continuity conditions

At any boundary between two continuous media, the following quantities must be continuous:

s · n (137)

n · δt = δt · n (138)

�φ (139)

�g (140)
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Therefore, the following functions of q must be continuous:

U m
� −

�+2∑
�′=|�−2|


 � 2 �′

0 1 −1
m 0 m


 2

√
3L�′

0

h2

q

{
−V m

�′

iW m
�′

}
(141)

Pm
� −

�+2∑
�′=|�−2|


 � 2 �′

0 1 −1
m 0 m


 2

√
3L�′

0

h2

q

{
−Qm

�′

i Rm
�′

}
(142)

� (� + 1) Qm
� + [

2� (� + 1) − 6m2
] h2

q
µ0

V m
�

q

+
�+2∑

�′=|�−2|


 � 2 �′

0 0 0
m 0 m




[
−dh2

dq

{
�′ (�′ + 1) Qm

�′

0

}

+6
h2

q

{
Pm

�′ − q
d Qm

�′
dq − 2 (λ0 + µ0)

Um
�′
q − λ0

dUm
�′

dq + �′ (�′ + 1)
(
λ0 + 4

3 µ0

) V m
�′
q

0

}]

+
�+2∑

�′=|�−2|


 � 2 �′

0 1 −1
m 0 m


 2

√
3L�′

0

[
dh2

dq

{
−Qm

�′

i Rm
�′

}
− h2

q

{
−Pm

�′ + q
d Qm

�′
dq + 2 (λ0 + µ0)

Um
�′
q + λ0

dUm
�′

dq

0

}

−h2

q

{
[−�′ (�′ + 1) λ0 + (8 − 2� (� + 1)) µ0]

V m
�′
q

i [−�′ (�′ + 1) − 8 + 2� (� + 1)] µ0
W m

�′
q

}]

−
�+2∑

�′=|�−2|

�′+1∑
�′′=|�′−1|


 � 2 �′

0 0 0
m 0 m





 �′ 1 �′′

0 1 −1
m 0 m


 12L�′′

0 m
h2

q
µ0

{
0

i
W m

�′′
q

}
(143)

� (� + 1) Rm
� +

�+2∑
�′=|�−2|


 � 2 �′

0 0 0
m 0 m




[
−dh2

dq

{
�′ (�′ + 1) Qm

�′

0

}
− 6

h2

q

{
q

d Qm
�′

dq − �′ (�′ + 1) µ0
W m

�′
q

0

}]

+
�+2∑

�′=|�−2|


 � 2 �′

0 1 −1
m 0 m


 2

√
3L�′

0


dh2

dq

{
−Rm

�′

−i Qm
�′

}
− h2

q


 q

d Rm
�′

dq

i
(

Pm
�′ − q

d Qm
�′

dq

)



+h2

q


 [�′ (�′ + 1) − 6] µ0

W m
�′

q

i
[
2 (λ0 + µ0)

Um
�′
q + λ0

dUm
�′

dq + [−�′ (�′ + 1) λ0 + 2µ0]
V m

�′
q

]






−
�+2∑

�′=|�−2|

�′+1∑
�′′=|�′−1|


 � 2 �′

0 0 0
m 0 m





 �′ 1 �′′

0 1 −1
m 0 m


 12L�′′

0 m
h2

q
µ0

{
0

i
V m

�′′
q

}
(144)

φm
� (145)

gm
� (146)

If the boundary is welded, s is continuous. Therefore, instead of quantity (141), the quantities

U m
� +

�+2∑
�′=|�−2|


 � 2 �′

0 0 0
m 0 m


 dh2

dq

{
U m

�′

0

}
(147)

� (� + 1) V m
� +

�+2∑
�′=|�−2|


 � 2 �′

0 0 0
m 0 m


 6h2

{
Um

�′
q − dV m

�′
dq

0

}
−

�+2∑
�′=|�−2|




� 2 �′

0 1 −1

m 0 m


 h2




−
(

Um
�′
q − dV m

�′
dq

)
i

dW m
�′

dq


 (148)
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� (� + 1) W m
� +

�+2∑
�′=|�−2|




� 2 �′

0 0 0

m 0 m


 6h2

{ dW m
�′

dq

0

}
−

�+2∑
�′=|�−2|




� 2 �′

0 1 −1

m 0 m


 h2




dW m
�′

dq

i
(

Um
�′
q − dV m

�′
dq

)

 (149)

are continuous at a welded boundary.

8 C O N C L U S I O N S

We have introduced a normal-mode theory of a rotating hydrostatic earth model based both on a Lagrangian perturbation of a spherical
reference model by rotation and on a Lagrangian perturbation of the rotating model. Denoting by h the small discrepancy between the rotating
earth model and the spherical model of reference, we have determined what terms in the equations of motion of the rotating model must
be computed to the second order in h in order to describe properly the nutational motions. h is given as a function of the radius q and the
colatitude χ by the theory of hydrostatic equilibrium figures. To describe the seismic normal modes, a first-order approximation is sufficient.
We have expanded the equations of motion in surface spherical harmonics to obtain ordinary differential equations over radius q.

We have limited our theory throughout to hydrostatic earth models. Nevertheless, if we neglect the unknown initial deviatoric stress,
the theory can be applied to non-hydrostatic earth models by including the non-hydrostatic structure in h. Part of the theory should then be
extended to take into account aspherical structure of harmonic degrees different from 2 and 4.
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A P P E N D I X A : S P H E R I C A L H A R M O N I C S

We give here the definition and, without proof, some properties of the surface spherical harmonics.

A1 Definition

In order to exploit properties enunciated by Smith (1974), the surface spherical harmonics Dm
� (χ, ν) that we use throughout this paper are a

particular case of the generalized surface spherical harmonics used by Smith:
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Dm
� (χ, ν) =

√
(� − m)!

(� + m)!
Pm

� (cos χ ) eimν, (A.1)

where

Pm
� (x) = 1

2��!

√
(1 − x2)m d�+m

dx�+m

(
x2 − 1

)�
(A.2)

is the associated Legendre function of degree � and order m. In particular, we have

D0
� (χ ) = P� (cos χ ) = P0

� (cos χ ) , (A.3)

where P �(x) is the Legendre polynomial of degree �. The function P−m
�(x) is defined by

P−m
� (x) = (� − m)!

(� + m)!
Pm

� (x). (A.4)

The spherical harmonics are orthogonal but they are not normalized. Indeed, we have∫ 2π

0

∫ π

0
Dm

� (χ, ν)Dm′∗
�′ (χ, ν) sin χdχdν = 4π

2� + 1
δ��′δmm′ , (A.5)

where δ��′ is the Kronecker delta symbol. The spherical harmonics satisfy the second-order partial differential equation

∂2Dm
�

∂χ2
+ cos χ

sin χ

∂Dm
�

∂χ
+ 1

sin2 χ

∂2Dm
�

∂ν2
= −� (� + 1)Dm

� . (A.6)

A2 Recurrence relations

The following recurrence relations can be derived easily from formulae whose proofs can be found, for example, in Robin 1957 (Vol. I, pp.
98–103):

sin χ
∂Dm

�

∂χ
= �

2� + 1

√
(� + m + 1) (� − m + 1)Dm

�+1 − � + 1

2� + 1

√
(� + m) (� − m)Dm

�−1, (A.7)

cos χDm
� = 1

2� + 1

√
(� + m + 1) (� − m + 1)Dm

�+1 + 1

2� + 1

√
(� + m) (� − m)Dm

�−1, (A.8)

sin2 χ
∂2Dm

�

∂χ2
= �2

(2� + 1)(2� + 3)

√
(� + m + 1) (� − m + 1) (� + m + 2) (� − m + 2)Dm

�+2

+2m2
(
�2 + � − 3

) − � (� + 1)
(
2�2 + 2� − 3

)
(2� + 3)(2� − 1)

Dm
�

+ (� + 1)2

(2� + 1)(2� − 1)

√
(� + m − 1) (� − m − 1) (� + m) (� − m)Dm

�−2.
(A.9)

In particular, we have

d

dχ
P0

2�(cos χ ) = −P1
2�(cos χ ). (A.10)

A3 Product of spherical harmonics

The product of two spherical harmonics is given by

Dm1
�1
Dm2

�2
=

|�2+�1|∑
�=|�2−�1|


 � �1 �2

0 0 0
m m1 m2


Dm

� , (A.11)

where m = m 1 + m 2. Adopting the notation of Smith (1974), we use the J-square symbol
 � �1 �2

0 0 0
m m1 m2




that involves the product of the Wigner 3-j symbols

(
� �1 �2

0 0 0

)
and

(
� �1 �2

−m m1 m2

)
(Edmonds 1960):
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
 � �1 �2

0 0 0
m m1 m2


 = (−1)m(2� + 1)

(
� �1 �2

0 0 0

) (
� �1 �2

−m m1 m2

)
. (A.12)

More generally, we have
 � �1 �2

n n1 n2

m m1 m2


 = (−1)m+n(2� + 1)

(
� �1 �2

−n n1 n2

) (
� �1 �2

−m m1 m2

)
, (A.13)

where m = m 1 + m 2 and n = n1 + n2. An important property of the J-square
 � �1 �2

0 0 0
m m1 m2




is that it is zero if � + �1 + �2 is odd.

A4 Derivatives and powers of h (q, χ)

We assume that h (q, χ ) is given by

h(q, χ ) = h0(q) + h2(q)P2(cos χ ) + h4(q)P4(cos χ ), (A.14)

where h2/q is about 2 × 10−3 for realistic earth models, both h0/q and h4/q are of the order of (h2/q)2,

P2(cos χ ) = D0
2(χ ) = 1

2

(
3 cos2 χ − 1

)
(A.15)

and

P4(cos χ ) = D0
4(χ ) = 1

8

(
35 cos4 χ − 30 cos2 χ + 3

)
. (A.16)

We need the following derivatives of h:

∂h

∂χ
= −h2 P1

2 − h4 P1
4

= −h23 sin χD0
1 − h4 sin χ

(
7D0

3 + 3D0
1

)
, (A.17)

cos χ

sin χ

∂h

∂χ
= −h2

(
2D0

2 + 1
) − h4

(
4D0

4 + 5D0
2 + 1

)
, (A.18)

∂2h

∂χ2
= −h2

(
4D0

2 − 1
) − h4

(
16D0

4 − 5D0
2 − 1

)
, (A.19)

∂2h

∂χ2
+ cos χ

sin χ

∂h

∂χ
= −6h2D0

2 − 20h4D0
4, (A.20)

∂3h

∂χ3
= h24P1

2 + h4

(
16P1

4 − 5P1
2

)
= h212 sin χD0

1 + h4 sin χ
(
112D0

3 + 33D0
1

)
,

(A.21)

∂4h

∂χ4
= h2

(
16D0

2 − 4
) + h4

(
256D0

4 − 100D0
2 − 11

)
. (A.22)

In a second-order theory, we also meet expressions involving the square of h, the square of its derivatives, or the product of h and its derivatives.
Here is a list of formulae that are useful in Sections 4 and 7:

h2 = h2
2

(
18

35
D0

4 + 2

7
D0

2 + 1

5

)
, (A.23)

(
∂h

∂χ

)2

= h2
2

(
−72

35
D0

4 + 2

7
D0

2 + 6

5

)
, (A.24)

h
∂2h

∂χ2
= h2

2

(
−72

35
D0

4 − 1

7
D0

2 − 4

5

)
, (A.25)

(
∂2h

∂χ2

)2

= h2
2

(
288

35
D0

4 − 24

7
D0

2 + 21

5

)
, (A.26)
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∂h

∂χ

∂3h

∂χ3
= h2

2

(
288

35
D0

4 − 8

7
D0

2 − 24

5

)
, (A.27)

h
cos χ

sin χ

∂h

∂χ
= h2

2

(
−36

35
D0

4 − 11

7
D0

2 − 2

5

)
, (A.28)

cos χ

sin χ

∂h

∂χ

∂2h

∂χ2
= h2

2

(
144

35
D0

4 + 30

7
D0

2 + 3

5

)
, (A.29)

1

sin2 χ

(
∂h

∂χ

)2

= h2
2

(
6D0

2 + 3
)
. (A.30)

A5 Useful formulae

We now collect formulae that are used repeatedly in deriving the scalar equations of motion (Section 7). In the following, f denotes a function
of q, χ , and ν that is expanded on the basis of the spherical harmonics:

f (q, χ, ν) =
∞∑

�=0

�∑
m=−�

f m
� (q)Dm

� (χ, ν). (A.31)

Also, f 1 and f 2 designate two functions of q, χ , and ν expandable on the basis of the spherical harmonics. Using the product of two spherical
harmonics and the formulae provided in A4, and knowing that f m

� and Dm
� vanish if |m| > �, it can be shown that

h f =
∞∑

�=0

�∑
m=−�

h f m
� Dm

�

=
∞∑

�=0

�∑
m=−�


h0 f m

� + h2

�+2∑
�′=|�−2|




� 2 �′

0 0 0

m 0 m




{
f m
�′

0

}
+ h4

�+4∑
�′=|�−4|




� 4 �′

0 0 0

m 0 m




{
f m
�′

0

}
Dm

� , (A.32)

∂h

∂χ

∂ f1

∂χ
+ 1

sin χ

∂h

∂χ

∂ f2

∂ν
=

∞∑
�=0

�∑
m=−�


h22

√
3

�+2∑
�′=|�−2|

L�′
0




� 2 �′

0 1 −1

m 0 m




{
− f1

m
�′

i f2
m
�′

}

+ h42
√

10
�+4∑

�′=|�−4|
L�′

0




� 4 �′

0 1 −1

m 0 m




{
− f1

m
�′

i f2
m
�′

}
Dm

� ,
(A.33)

where

L�
0 =

√
�(� + 1)

2
. (A.34)

In the sums over �′, arrays with two lines in curly brackets such as{
f m
�′

0

}

mean that the upper line must be chosen if |� − �′| is even or zero and the lower line must be chosen if |� − �′| is odd.
We also have

∂Dm
�

∂ν
= −i2L�

0


 � 1 �

0 1 −1
m 0 m


Dm

� = i2L�
0


 � 1 �

−1 −1 0
m 0 m


Dm

� = −i� (� + 1)


 � 1 �

−1 0 −1
m 0 m


Dm

� , (A.35)

sin χ
∂ f

∂χ
=

∞∑
�=0

�∑
m=−�




�+1∑
�′=|�−1|


 � 1 �′

0 1 −1
m 0 m


 2L�′

0

{
0
f m
�′

}
Dm

� , (A.36)

C© 2004 RAS, GJI, 159, 874–908



Normal-mode theory of a rotating earth 907

h
∂ f1

∂ν
+ h sin χ

∂ f2

∂χ
=

∞∑
�=0

�∑
m=−�


h2

�+2∑
�′=|�−2|

�′+1∑
�′′=|�′−1|


 � 2 �′

0 0 0
m 0 m





 �′ 1 �′′

0 1 −1
m 0 m


 2L�′′

0

{
−i f1

m
�′′

f2
m
�′′

}

+h4

�+4∑
�′=|�−4|

�′+1∑
�′′=|�′−1|


 � 4 �′

0 0 0
m 0 m





 �′ 1 �′′

0 1 −1
m 0 m


 2L�′′

0

{
−i f1

m
�′′

f2
m
�′′

}
Dm

� , (A.37)

cos χ

sin χ

∂h

∂χ

∂ f1

∂ν
+ cos χ

∂h

∂χ

∂ f2

∂χ

=
∞∑

�=0

�∑
m=−�


(h2 + h4)

�+1∑
�′=|�−1|


 � 1 �′

0 1 −1
m 0 m


 2L�′

0

{
i f1

m
�′

− f2
m
�′

}

+ (2h2 + 5h4)
�+2∑

�′=|�−2|

�′+1∑
�′′=|�′−1|


 � 2 �′

0 0 0
m 0 m





 �′ 1 �′′

0 1 −1
m 0 m


 2L�′′

0

{
i f1

m
�′′

− f2
m
�′′

}

+4h4

�+4∑
�′=|�−4|

�′+1∑
�′′=|�′−1|


 � 4 �′

0 0 0
m 0 m





 �′ 1 �′′

0 1 −1
m 0 m


 2L�′′

0

{
i f1

m
�′′

− f2
m
�′′

}
Dm

� .
(A.38)

In the double sums over both �′ and �′′, arrays with two lines in curly brackets such as{
f m
�′′

0

}

mean that the upper line must be chosen if both |� − �′| and |�′ − �′′| are even, odd, or zero, and the lower line must be chosen if |� − �′| is
even or zero and |�′ − �′′| is odd, or if |� − �′| is odd and |�′ − �′′| is even or zero.

Other useful formulae are

sin χ
∂h

∂χ
f =

∞∑
�=0

�∑
m=−�




(
−6

5
h2

) �+1∑
�′=|�−1|




� 1 �′

0 0 0

m 0 m




{
0

f m
�′

}
+

(
6

5
h2 − 20

9
h4

) �+3∑
�′=|�−3|




� 3 �′

0 0 0

m 0 m




{
0

f m
�′

}

+20

9
h4

�+5∑
�′=|�−5|




� 5 �′

0 0 0

m 0 m




{
0

f m
�′

}
Dm

� , (A.39)

−2 f cos χ − sin χ
∂ f

∂χ
= −

∞∑
�=0

�∑
m=−�

L�
0




�+1∑
�′=|�−1|




� 1 �′

−1 −1 0

m 0 m




{
0

2 f m
�′

}
Dm

� , (A.40)

h

[
−2 f cos χ − sin χ

∂ f

∂χ

]
=

∞∑
�=0

�∑
m=−�





−h2

�+2∑
�′=|�−2|

�′+1∑
�′′=|�′−1|

L�′
0




� 2 �′

0 0 0

m 0 m







�′ 1 �′′

−1 −1 0

m 0 m




−h4

�+4∑
�′=|�−4|

�′+1∑
�′′=|�′−1|

L�′
0




� 4 �′

0 0 0

m 0 m







�′ 1 �′′

−1 −1 0

m 0 m







{
0

2 f m
�′

}
Dm

� , (A.41)
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∞∑
�=0

�∑
m=−�

[
− cos χ

∂2Dm
�

∂χ2
+

(
sin χ − cos2 χ

sin χ

)
∂Dm

�

∂χ
− cos χ

sin2 χ

∂2Dm
�

∂ν2

]
f1

m
� + ∂Dm

�

∂ν
f2

m
�

=
∞∑

�=0

�∑
m=−�

L�
0




�+1∑
�′=|�−1|




� 1 �′

−1 0 −1

m 0 m


 √

2�′ (�′ + 1)

{
−i f2

m
�′

f1
m
�′

}
Dm

� , (A.42)

∞∑
�=0

�∑
m=−�

h

{[
− cos χ

∂2Dm
�

∂χ2
+

(
sin χ − cos2 χ

sin χ

)
∂Dm

�

∂χ
− cos χ

sin2 χ

∂2Dm
�

∂ν2

]
f1

m
� + ∂Dm

�

∂ν
f2

m
�

}

=
∞∑

�=0

�∑
m=−�




�+2∑
�′=|�−2|

�′+1∑
�′′=|�′−1|




� 2 �′

0 0 0

m 0 m







�′ 1 �′′

−1 0 −1

m 0 m


 h2 L�′

0

√
2�′′ (�′′ + 1)

{
−i f2

m
�′′

f1
m
�′′

}
Dm

� , (A.43)

cos χ

sin χ

(
∂h

∂χ

)2
∂ f

∂χ
=

∞∑
�=0

�∑
m=−�

h2
22

√
3




�+2∑
�′=|�−2|

L�′
0




� 2 �′

0 1 −1

m 0 m




{
f m
�′

0

}

+
�+2∑

�′=|�−2|

�′+2∑
�′′=|�′−2|

L�′′
0




� 2 �′

0 0 0

m 0 m







�′ 2 �′′

0 1 −1

m 0 m




{
f m
�′′

0

}
Dm

� ,

(A.44)
1

sin2 χ

(
∂h

∂χ

)2
∂2 f

∂ν2
=

∞∑
�=0

�∑
m=−�

h2
2


−3m2 f m

� −
�+2∑

�′=|�−2|
6m2




� 2 �′

0 0 0

m 0 m




{
f m
�′

0

}
Dm

� ,

(A.45)

and

1

sin χ

(
∂h

∂χ

)2
∂2 f

∂χ∂ν
=

∞∑
�=0

�∑
m=−�

�+2∑
�′=|�−2|

�′+2∑
�′′=|�′−2|


12L�

0 L�′′
0 h2

2




� 2 �′

0 1 −1

m 0 m







�′ 2 �′′

0 1 −1

m 0 m




{
0

−i f m
�′′

}
Dm

� . (A.46)
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