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[1] A new approach for inverse thermal history modeling is presented. The method uses
Bayesian transdimensional Markov Chain Monte Carlo and allows us to specify a wide
range of possible thermal history models to be considered as general prior information on
time, temperature (and temperature offset for multiple samples in a vertical profile). We can
also incorporate more focused geological constraints in terms of more specific priors. The
Bayesian approach naturally prefers simpler thermal history models (which provide an
adequate fit to the observations), and so reduces the problems associated with over
interpretation of inferred thermal histories. The output of the method is a collection or
ensemble of thermal histories, which quantifies the range of accepted models in terms
a (posterior) probability distribution. Individual models, such as the best data fitting
(maximum likelihood) model or the expected model (effectively the weighted mean from
the posterior distribution) can be examined. Different data types (e.g., fission track,
U-Th/He, 40Ar/39Ar) can be combined, requiring just a data-specific predictive forward
model and data fit (likelihood) function. To demonstrate the main features and implementation
of the approach, examples are presented using both synthetic and real data.

Citation: Gallagher, K. (2012), Transdimensional inverse thermal history modeling for quantitative thermochronology,
J. Geophys. Res., 117, B02408, doi:10.1029/2011JB008825.

1. Introduction

[2] Since the seminal publication of Dodson [1973]
quantifying the relationship between geochronogical ages
and closure temperatures, an ongoing concern in thermo-
chronology is reconstruction of thermal histories in various
contexts, including tectonics, landscape evolution and
resource exploration. Effort has focused on lower tempera-
ture systems such as noble gases (argon in feldspar, helium
in apatite/zircon) and fission track analysis (apatite/zircon).
Comprehensive sources for these techniques include Reiners
and Ehlers [2005] and Braun et al. [2006]. In terms of
thermal history information, advances have been made as a
consequence of understanding the significance of fission
track length distributions [e.g., Gleadow et al., 1986; Green
et al., 1986] and multiple diffusion domains, either within
single crystals (40Ar/39Ar method) [McDougall and Harrison,
1999] or multiple grains (Helium method) as the grain is
generally considered to be the diffusion domain for apatite
[Farley, 2000, Reiners and Farley, 2001] and also probably
for zircon [Reiners et al., 2004].
[3] Extracting thermal history information is best treated as

an inverse problem, given the complex relationship between
the observations and the thermal history. The relationship
is simulated through a mathematical (forward) model rep-
resenting the time-temperature dependence of annealing or

diffusion, which is a simplification of complex physical
processes operating over geological time. Furthermore, data
are never perfect, being subject to human and technical
vagaries and the complexity of the geological environment.
This we refer to as noise and we follow the philosophy of
Scales and Snieder [1998] in considering noise as that part of
the data that we do not expect the model to explain. Also,
there will be trade-off between noise and how well we expect
to fit the data. Consequently, it is important to consider the
resolution of the inferred thermal history, i.e., which features
are over interpretation or even artifacts of the modeling
process.
[4] As in many inverse problems, a continuous function

(i.e., thermal history) is represented by a finite number of
parameters, such as coefficients of Legendre polynomials
[Corrigan, 1991], or more commonly discrete time temper-
ature points [Lutz and Omar, 1991; Gallagher, 1995;Willett,
1997; Ketcham, 2005; Harrison et al., 2005]. It is possible to
place constraints on the range of thermal histories, typically
defined as regions of time-temperature space through which
acceptable models must pass. These constraints may include
a range on the present-day temperature of a sample in a bore-
hole or at the surface, requiring a sedimentary sample to be at
near surface temperatures at the time of deposition, or during
a period of erosion, or that a sample should be at elevated
temperatures at a time of intrusion. If required, additional
geological information can be incorporated into the modeling
to further reduce the range of acceptable models.
[5] When solving the inverse problem (i.e., finding

acceptable thermal histories), stochastic sampling methods
have often been used, including basic Monte Carlo [Lutz and
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Omar, 1991], genetic algorithms [Gallagher, 1995], and
constrained random search [Willett, 1997]. These approaches
make the implementation of the constraints as described
above straightforward and are also relatively global when
searching the model space. The issue then is how best to
estimate those parts of the thermal history unconstrained by
independent information, i.e., what is required to fit the
thermochronological observations?
[6] We present a new transdimensional approach for

finding thermal histories for multiple samples (in a vertical
profile as in the work of Gallagher et al. [2005]). We do
not specify the number of model parameters explicitly, but
let the data determine the complexity of the thermal history,
subject to user-defined constraints. The approach is formu-
lated in a Bayesian framework, so thermal history constraints
and additional information (e.g., kinetics of annealing or
diffusion) are treated as information (prior probability).
Model parameters are sampled, the appropriate forward
problems are solved for a given thermal history and some
measure of fit is calculated for each data type. This is
repeated many times and the outcome is a collection of
acceptable thermal history models, where acceptable can be
quantified in terms of (posterior) probability. The solutions
can be presented in terms of the probability of a thermal
history passing through a particular region of the time-
temperature space. It is also possible to select particular
individual models from the probability distribution The
posterior probability distribution is produced by Markov

chain Monte Carlo sampling or MCMC, which although
relatively straightforward to implement, does require tuning
for specific problems [e.g., Gallagher et al., 2009]. In the
next section, we outline the basic methodology, although
most of the mathematical details are in the appendix. In
the subsequent section, we show some examples using both
synthetic and real data, considering two of the common low
temperature thermochronometers, apatite fission track and
(U-Th)/He analysis, showing how various parameters can
be tuned for a given problem. The methodology presented
is readily applicable to other systems such as 40Ar/39Ar,
making method-specific modifications as required. Finally,
we review the current and future possibilities of this approach.

2. Methodology

[7] The general problem is illustrated in Figure 1. We
consider a series of samples from a vertical profile, in which
the lower elevation samples are always at or above the tem-
perature of the higher elevation samples. The thermal history
model can be written as K discrete time (t) - temperature (T )
points, with a temperature offset (O) between the uppermost
and lowermost samples in the profile, i.e. ti, Ti, Oi, i = 1, K
where the time-temperature-offset values are unknown, as
is K. The uppermost sample is used to define a reference
thermal history. The thermal histories for lower samples are
then determined by linear interpolation using the elevation/
depth of each sample relative to the upper sample and the

Figure 1. (a) Representation of a thermal history model. ti-Ti is the i-th time temperature point (indicated
by the open circle) and Oi is the temperature offset between the uppermost and lowermost sample in a ver-
tical profile or borehole. By default the uppermost sample is used as the reference thermal history (thicker
black line) and the thermal histories for all other samples are calculated using linear interpolation of the
offset temperature to the appropriate elevation/depth for each sample. The arrows indicate the three moves
possible for the three parameters. (b) Death of a time-temperature point. A point is selected at random and
deleted. The two adjacent points are connected. (c) Birth of a time-temperature point. A point is selected at
random and a new point is inserted (shaded circle) between it and the adjacent (younger) time point. The
temperature value is interpolated and then a small random perturbation is made (shown by the arrow) to
produce the new temperature (black circle). The same interpolation-perturbation procedure is used for
the offset parameter.
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temperature offset (which can vary over time). Given obser-
vations, such as apatite fission track (AFT) data, or helium
(AHe) ages, we want to identify thermal history models
consistent with these data.
[8] To search the range of possible solutions for the

unknown model parameters we use Bayesian Markov chain
Monte Carlo [e.g., Gilks et al., 1996; Denison et al., 2002]
which is a probabilistic sampling procedure. We implement
the transdimensional form proposed by Green [1995, 2003]
and recent descriptions of this methodology have been
given by Sambridge et al. [2006] andGallagher et al. [2009].
Examples of applications in Earth Sciences can be found in
the work of Malinverno [2002], Stephenson et al. [2006b],
Charvin et al. [2009], Hopcroft et al. [2007, 2009], Bodin
and Sambridge [2009], and Piana Agostinetti and
Malinverno [2010].
[9] The aim in the Bayesian approach is to construct the

(posterior) probability distribution of the model parameter
values, given the data. This relies on Bayes’ rule [e.g.,
Bernardo and Smith, 1994] which, up to a constant of pro-
portionality, can be written as

p mjdð Þ / p mð Þp djmð Þ ð1Þ

where p(m|d) is the posterior probability density function
(PDF) of the model parameters, m, given the data vector, d;
p(m) is the prior PDF on the model, which represents what
we consider reasonable for the values of the model para-
meters (e.g., a uniform distribution for temperature between
0 and 150°C, and for time between 300 and 0 Ma); p(d |m) is
the likelihood function which quantifies the probability of
obtaining the data, d, given the model, m. This is a measure
of the data fit and increases as the model fits the data better.
Effectively the likelihood updates the prior information,
transforming it to the posterior. If the prior and posterior
distributions are the same, then we have learnt nothing new
from the data.
[10] We choose a likelihood function for each data type

and for computational reasons use the log of the likelihood.
For AFT length and count data, we use the combined log
likelihood function given by Gallagher [1995, equation A8],
while for He age data we adopt a standard sums of squares
measure as the log likelihood:

L ¼ � 1

2

XN
i¼1

ageobsi � agepredi

si

 !2

ð2Þ

where the superscripts obs and pred refer to observed and
predicted and s is the error on the observed age. Here the
predicted age is a function of the model parameters, m.
[11] In general there is uncertainty in the observed ther-

mochronometric data and also in the predictive models (for
annealing or diffusion) as a result of measurement errors and
simplifying assumptions, contributing to the noise referred
to earlier. In the case of the observed data, it can be argued
that we should not use the observed data directly (as these
incorporate the measurement error which may be poorly
known). Rather, we would like to model the unobserved true
data (i.e., the data we would have recorded if there was no
measurement error). This approach was adopted by Jasra

et al. [2006] for mixture modeling of geochronological
data. In the case of the predictive models, these are calibrated
from laboratory experimental data and extrapolated to geo-
logical timescales [e.g., Laslett et al., 1987; Green et al.,
1989]. Both the fitting process and extrapolation can lead to
uncertainty and the relative importance of physical mechan-
isms or controls may differ on different timescales.
[12] This uncertainty can be allowed for by sampling from

a distribution of parameter or data values. For example,
for AFT data we can resample the observed data (counts
and lengths), using a bootstrap type of approach [Efron and
Tibshirani, 1993]. To allow for uncertainty in the annealing
models we could sample directly from uncertainties on the
annealing model parameters [e.g., Jones and Dokka, 1990;
Stephenson et al., 2006a] or, in the absence of these
uncertainties, we could sample the compositional or kinetic
parameter (as implemented in the annealing models of, for
example, Carlson et al. [1999], Donelick et al. [1999], and
Ketcham et al. [1999, 2007]). For AHe data, we could sample
using uncertainties (if available) on the diffusion parameters
(Do, E) or resample from the data from a distribution based
on the observed age and error. We can then use these sampled
ages instead of the observed value in the likelihood function.
We will consider two of these possibilities - resampling the
AFT kinetic parameter and He age data to demonstrate these
approaches. While these are not the same uncertainties as
directly sampling the diffusion kinetics for example, this is
one approach to deal with the general noise. Allowing for
data/model uncertainties will then lead to greater uncertain-
ties in the inferred thermal histories. We consider this a more
conservative approach than not allowing at all for such
uncertainties.
[13] MCMC is an iterative sampling approach in which the

first part of the series (burn-in) represent an initial explora-
tion of the model space (which is subsequently discarded).
The second part of the series (post-burn-in) is used to
approximate the posterior distribution for the model param-
eters. In MCMC we work with two models in a given itera-
tion, the current (mc) and the proposed model (mp). The latter
is generated by randomly perturbing the former and we
repeat this many times, the first model being drawn randomly
from the prior. At each iteration, we either replace the current
model with the proposed model, or reject the proposed
model. We collect the current model at each iteration and use
them as an approximation of the posterior distribution. For
this to be valid, the way we decide to accept the proposed
model is critical. The acceptance criterion is

a mp;mc

� � ¼ min 1;
p mp

� �
p djmp

� �
q mcjmp

� �
p mcð Þp djmcð Þq mpjmc

� � Jj j
 !

ð3Þ

The first two terms in the ratio represent the prior and like-
lihood functions, q(mp|mc) is the proposal function which
determines how we produce the proposed model given the
current model and |J | is the Jacobian, which allows for the
fact that we are transforming probability distributions. We
define these terms in the appendix.
[14] To produce the proposed model, we define a series

of possible transformations on the current model: (1) move
a time point, (2) move a temperature point, (3) move a offset
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value, (4) remove a time-temperature-offset point (death),
(5) add a time-temperature-offset point (birth), (6) move
(sample) the kinetic parameter for an individual sample,
(7) move (sample) an observed data value for an individual
sample.
[15] The first five transformations directly influence the

form of the thermal history as shown in Figure 1. For a given
iteration we need to choose which transformation to make.
Each is assigned a probability, pi, such that ∑pi = 1 and we
randomly select one, based on these probabilities. The five
move transformations involve simply a perturbation to a
model parameter or data value, while the death and birth
transformations involve a change in the model dimension.
For the moves, we randomly select a time-temperature-offset
point or individual sample, and modify the appropriate value
in the current model. For a normal distribution proposal
function, we have

q mpjmc

� � ¼ 1

si
p

ffiffiffiffiffiffi
2p

p e
�1

2
mc�mp

sip

� �2

ð4Þ

where sp
i is the standard deviation of the proposal function

for the i-th transformation. To produce a proposed value, we
generate a random number, u, drawn from a standard normal
distribution (mean = 0, standard deviation = 1), and use the
transform

mp ¼ mc þ usi
p

Here we only change the one parameter selected from the
current model, although it is possible to change several
parameters at the same time (block update). The Jacobian
term in equation (4) is always 1 for these moves.
[16] As discussed by Gallagher et al. [2009], sp

i controls
the efficiency of sampling. If sp

i is too small (relative to the
width of the posterior distribution) then the model perturba-
tions are also small, the proposed model is very similar to the
current model, the datafit is similar and we accept almost
every proposed model. However, we tend to move around the
model space slowly. Conversely if sp

i is large (relative to the
posterior width), then many proposed models will be rejec-
ted. Again we move around the model space slowly. We need
to choose an appropriate value of sp

i without knowing the
width of the posterior distribution (which we are trying to
estimate). This can be achieved by monitoring the acceptance
rate of proposed models (i.e., the number of accepted models
relative to the total number proposed). Typically we tune the
proposal function scale (sp

i ) to obtain an acceptance rate of
around 20–50%. As a general guide, if the acceptance rate is
too low, sp

i is too large and vice versa.
[17] For the birth or death transformations, we select a

time-temperature point at random, and either add a new time-
temperature-offset point either before or after it or delete that
time-temperature-offset point (see Figure 1). The death step
is trivial while the birth transformation we adopt is similar
to that of Hopcroft et al. [2007] and Charvin et al. [2009]
and is described in Appendix A, as is the derivation of the
Jacobian term in equation (4). The acceptance rate for these
two transdimensional transformations tends to be much
lower than the values discussed above for moves. This is

because the change in dimension can propose a model with a
likelihood value significantly different from the current
model. Typical acceptance rates in this problem can be 0.1–
10% and from experience better sampling occurs when
the acceptance rates for birth and death are similar.

3. Application of Method to Synthetic
and Real Data

[18] To demonstrate various features and applications
of this methodology, we now consider some examples. The
first two involve synthetic AFT and AHe data from a single
sample, while the next two involve real data from multiple
samples for a rotated fault block and a borehole.

3.1. Example 1

[19] The first example is shown in Figure 2a. This heating-
cooling scenario was used to generate high quality synthetic
apatite fission track data (300 track lengths and 50 track
count ratios) and apatite He (AHe) ages for three different
grain sizes. We used the annealing model of Ketcham et al.
[2007] with a kinetic parameter, Dpar = 2.5 mm. For the
helium ages we used a spherical grain model with the diffu-
sion parameters of Farley [2000]. The fission track data were
sampled from predicted distributions so have some inherent
noise and the kinetic parameter was fixed to the true value.
The He ages are used as predicted (no resampling), with an
error drawn from a normal distribution with a standard
deviation equal to 2.5% of the predicted ages. The priors on
the time-temperature parameters were set to 60� 60 m.y. and
70� 70°C and the proposal scale parameters were 5 m.y. and
5°C. The sampler was run for 100,000 iterations and the first
50,000 were discarded as burn-in.
[20] Figure 2a shows the best data-fitting solution in which

the sampling algorithm was modified not to penalise more
complex models (model 1). Figure 2a also shows the best
data-fitting solution found using the transdimensional algo-
rithm (model 2). Clearly the former is somewhat extreme in
that much unwarranted structure is introduced. The penalised
best fit model is much less complex, but also has structure not
present in the true thermal history. The predictions are not
significantly different and the data fit, as measured by the log
likelihood, is almost the same (�1552.30 v �1552.62, while
the true solution gives a value of �1553.41, as the fission
track data are not perfect). On the basis of the difference in
the likelihoods, the less complex model would be selected
using, for example, the Bayesian Information Criterion (BIC)
[Schwarz, 1978].
[21] We want to construct the probability distribution on

the thermal history so we divide the time axis into 1 m.y.
intervals and the temperature axis into 1°C intervals. By
summing the number of time-temperature paths that pass
through each time-temperature square (1 m.y. by 1°C), we
can plot a contour map of the probability distribution over
time and temperature. We also calculate the 95% credible
intervals (the Bayesian form of confidence intervals) by
identifying the values defining upper and lower 2.5% of the
temperature distribution at each 1 m.y. time interval.
[22] We often want to examine an individual model. This

may be the often too complex best fit model or, following
the Bayesian philosophy, the expected model which is a
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weighted average, where the weighting is the posterior
probability. The expected model is defined as

E mð Þ ¼
Z

m p mjdð Þdm ð5Þ

where p(m|d) is the model posterior probability. As our
sampled models are from the posterior, the integral is
replaced by the average of the post-burn-in accepted models:

E mð Þ ≈
XN
i¼1

mi ð6Þ

The expected model shown in Figure 2c and clearly we
do not fit the data (log likelihood �1560.01) as well as the

maximum likelihood model (model 2). This is normal as the
expected model reflects the range of models, both good and
poor data fitting ones. However, the maximum likelihood
model has added complexity (more time-temperature points)
and so is penalised in the Bayesian approach which favors
simpler models which fit the data reasonably well. Overall,
the expected model is representative of the true solution (like
the maximum likelihood model), where it is well resolved
(i.e., the cooling episode), as shown by the credible intervals.
[23] To assess the performance of the MCMC sampler,

it is useful to examine the acceptance rates and also the
likelihood/posterior probabilities and the dimension of the
thermal history models as a function of iteration. The accep-
tance rates were 51% and 37% for the time and temperature
moves, and 6% for birth and death. The post-burn-in sampling

Figure 2. (a) Best data fitting (maximum likelihood) thermal histories for example 1 inferred using an
approach which ignores the complexity of the thermal history (model 1) and transdimensional MCMC
which penalises more complex models (model 2). The original thermal history used to generate the syn-
thetic data is shown by the black line. (b) The observations (synthetic data) and model predictions for the
two thermal histories in Figure 2a. The gray lines on length distribution are the 95% credible intervals
for the predicted values. FTA is the fission track age (O: observed, P: predicted - model 1, model 2),
MTL is the mean track length and He are the three helium ages (for grain radii of 50,150, 300 mm)
(c) The expected (weighted mean) thermal history (thick black line) and the probability distribution for
the sampled thermal histories. The thinner black lines are the 95% credible intervals for the thermal history.
The scale on the right indicates the probability. The true answer is shown as the white line. (d) As Figure 2b
but for the expected thermal history model in Figure 2c. SP is the mean of the sampled predicted values
(+ the standard deviation) for all sampled thermal histories. Note that this mean is not necessarily the same
as the predicted value from the expected (mean) thermal history.
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chain (Figure 3) shows the dimension of the model varies
regularly (up to a maximum of eight time-temperature
points), but generally rests around 3–4. The likelihood tends
to be higher for models with more time-temperature points,
but the posterior tends to be, relatively, much lower than for
models with fewer points (as seen around 94,000 iterations).
As the acceptance criterion is based on the posterior ratio, this
demonstrates how the Bayesian approach naturally prefers
simpler models. Note that models with low posterior proba-
bilities can be accepted, but at a rate proportional to the
posterior probability. During the early iterations, the burn-in
period, the likelihood tends to be low (poor data fitting
models as a result of a random initial model), and generally
we increase dimension to improve the data fit. We return to
this in example 3.

3.2. Example 2

[24] The second example illustrates having the fission
track composition (kinetic parameter) as a variable and
resampling of the AHe ages. In both cases, we sample from
a normal probability distribution centered on the input value,
with standard deviation equal to the input error. Having
drawn a proposed value, we use it in the thermal history
modeling stage. Thus for the AFT kinetic parameter, we
might use a slightly different annealing model (based on
Ketcham et al. [2007]) between iterations. For the AHe ages,
it is the observed value that changes in the likelihood func-
tion estimates for the current and proposed models.
[25] Here we use effectively the same data and priors as

example 1, except the input kinetic parameter is Dpar = 2.0�
0.3 (original value = 2.5 mm), while noise was added to the
AHe ages, drawn from a normal distribution with standard

deviation equal to 2.5% of the input age. The input error
was set to 5% of the age. Otherwise the inverse modeling was
run as in example 1. The inferred thermal histories and the
sampled values for the kinetic parameter, the predicted AFT
age, mean track length (MTL) and three AHe ages (for
three different grain sizes) are shown in Figure 4. Again, the
maximum likelihood thermal history is more complex than
the true solution. The maximum posterior solution (the model
with the maximum posterior probability) is perhaps the most
representative in this example. The expected model is also
representative where the thermal history is well resolved,
although the maximum temperature is a little underestimated.
Relative to the previous example, the spread in the thermal
history posterior distribution is greater. This is expected
given the additional uncertainty associated with the kinetic
parameter and the AHe ages.
[26] Considering the kinetic parameter (Figure 4b), the

sampling produces a distribution with a peak around 2.4 mm,
clearly an improvement from the (incorrect) input value of
2.0 mm. The predicted AFT data (Figures 4c and 4d) reflect
the sampled range in the kinetic parameter, combined with
the sampling range of thermal histories. Fixing the kinetic
parameter to 2 mm leads to a similar form for the thermal
history, except the maximum temperature is about 8°C lower
than the true value. We anticipate a trade-off between the
kinetic parameter and the maximum temperature, with lower
Dpar (F-rich apatite) leading to lower inferred maximum
temperatures. This is reflected in the asymmetry seen in the
posterior distribution around the maximum temperature as
a result of the nonlinear temperature dependence of both
annealing and diffusion.

Figure 3. The log of the likelihood (data fit) function, log of the posterior probability and the number of
time-temperature points as a function of post-burn-in iteration for the results shown in Figure 2.
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[27] The spread in the distribution of predicted values is
about twice as large as that for example 1, when the observed
AHe ages were fixed at their input values. This is because, as
can be seen in Figure 4e, the sampling approach produces a
distribution of “observed” ages, and then this spread in the
data influences the distribution of the acceptable predicted
ages.

3.3. Example 3

[28] For the next example we consider a series of AFT
and AHe data from Colgan et al. [2006]. The data are from
16 granite outcrop samples (intrusion age of 108–115 Ma),
currently at about the same elevation (�1500 m) from the
footwall of a tilted fault block, the Pine Forest Range in
northwest Nevada, USA. This is part of the Basin and Range
province and the interpretation is that faulting has been active
since 11–12 Ma and implies about 12% extension. Based on
structural arguments, Colgan et al. [2006] estimate 7 to 9 km
of slip on the range-front fault and 5 to 6.5 km of horizontal
extension, with palaeodepths (below the pre-faulting land
surface) of 1330 to 5370 m, with the samples closest to
the fault plane having the largest palaeodepths. Given the

palaeopdepth estimates and the fact that the samples are more
or less at the same elevation today, this suite can be treated as
a vertical profile in which the temperature difference between
the deepest and shallowest (palaeodepth) has decreased over
time. This is what we expect during exhumation of the
footwall on a fault whose dip shallows with time (due to
rotation) accompanied by erosion of the fault block crest.
[29] For the thermal history models, we follow the

approach outlined by Gallagher et al. [2005] in which we
assume the samples are at a fixed depth (=palaoedepth). We
estimate a thermal history for the shallowest sample, and also
the temperature offset between the shallowest and deepest
samples, with linear interpolation to estimate thermal history
for the samples in between. We assume a uniform prior on
the temperature history (for the shallowest sample) of 80 �
80 m.y. and 70 � 70°C, with a fixed surface temperature of
20°C (for all samples). This range of time is broadly equiv-
alent to twice the maximum age of all the samples, and the
temperature range spans the sensitivity of the two thermo-
chronometric systems used. Given the known intrusion age,
we impose a constraint on the structurally shallowest sample
to be at a temperature of 160 � 10°C between 110 � 10 Ma.

Figure 4. (a) Thermal history solutions (maximum likelihood, maximum posterior, and expected models)
for example 2 together with the probability distribution. The original model solution is shown white line.
(b) The post-burn-in sampling distribution of the kinetic parameter (Dpar). The input value is shown by
the vertical black line at 2 mm, with the 1s range as dashed lines, and the original value by the arrow
(2.5 mm). The sampling is restricted to �3s. (c) The distribution on the predicted AFT age, with the input
value shown as the vertical black line. (d) The distribution on the predicted mean track length (MTL), with
the input value shown as the vertical black line. (e) The histograms are the distributions of the values sam-
pled for observed AHe ages, the input value is shown by the vertical black line at 2 mm, with the 1s range as
dashed lines, and the original value by the arrow. The thinner black lines in each panel are the distributions
of the predicted values.
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After a series of trial runs, the temperature offset prior was set
to 400 � 400°C. Using a smaller range for this parameter
lead to values converging to the maximum limit of the prior.
We return to the significance of this later. We use the
observed AHe age errors in the resampling distribution as
described earlier. For the AFT kinetic parameter (Dpar), we
use the mean of the measured values with an error equal to
the standard deviation. The basic fission track data were the
spontaneous and induced track counts, and measured
(unprojected) lengths.
[30] Figure 5 shows the likelihood and the number of t-T

points for various stages of a sampling run. The initial model
is drawn from the prior and has just one time temperature
point (in addition to the high temperature constraint and the
present-day temperature). We do not expect such a simple
model to fit the data well (log likelihood of�187728), so the
number of model parameters increases rapidly as the sam-
pling tries to identify parts of the time-temperature space
that produce better data fits. In this case after about 2000
iterations the likelihood appears to flatten off on the scale
of Figure 5a. Considering the same run for 5000 to 10000
iterations (Figure 5b), the likelihood function still increases
but the sampling for the dimension of the thermal history is
more stable. The tendency for the likelihood function to
increase shows that the algorithm is still well in the burn-in
stage of the sampling, that is we should discard these sam-
ples before making any inference. After 100000 iterations
(Figure 5c), the likelihood function is also more stable as the

sampling has reached better regions of the model space (in
terms of the data fit).
[31] In practice, we can use the samples from such

exploratory runs as starting models for subsequent runs. For
example, we could select either the maximum likelihood
model or the last model sampled from a previous run and
rerun a longer sampling chain for the final inference. In
this way we can reduce the burn-in for the later runs, as the
theory behind Bayesian MCMC states that once we start to
sample from the target posterior distribution, all subsequently
accepted models will be drawn from the same distribution
[e.g., Gilks et al., 1996]. In Figure 5d we show the sampling
after running an exploratory chain for 500,000 iterations,
then using the last model as a starting model for another chain
of 600,000 models. We see that the sampling is fairly stable
with the likelihood function showing no obvious trends with
iteration and the dimension of the thermal history models
varying regularly generally between 12 and 14, and some-
times reaching up to 16.
[32] To find reasonable values for the proposal scale

parameters, it is typical to run several short chains and
monitor the acceptance rate for all the variable parameters to
identify reasonable scale parameter values. As mentioned
earlier, there are no fixed values for these acceptance rates
but it is typical to consider 20–50% as reasonable for most
parameters, except the birth and death moves can be much
lower than this. Increasing or decreasing the scale parameter
for a proposal function tends to reduce or increase the

Figure 5. The log of the likelihood function and the number of time-temperature points at different stages
of the sampling process. Note the different ranges on the Y scale for each plot. See the text for discussion.
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acceptance rate, respectively. For the chain shown in
Figure 5d, the proposal scale parameters were: stime = 1 Ma,
stemperature = 5°C, soffset = 20°C, skinetic = 2, sHeAge = 2 (the
latter two have no units) and the acceptance rates for each
move type were 39%, 34%, 48%, 45% and 41% respectively.
The acceptance rates for birth and death moves were both
0.86%.
[33] Figure 6 shows the thermal histories and predictions

for the maximum likelihood and expected models, together
with the summary interpretation of Colgan et al. [2006].
This latter interpretation was based on modeling AFT data
from individual samples (using the earlier annealing models
described by Ketcham et al. [2000]) and also incorporating

regional geological information (for the lower temperature
part of the thermal history). Overall, the trends in the AFT
and AHe ages are well explained, but the mean track length
tends to be about 1–1.5 mm too short for the deepest samples.
However, the general trend of increasing mean length with
depth is consistent with the observations. The fission track
kinetic parameter sampling are constrained to be within the
error bars shown on Figure 6e. The values generally stay
close to the input values, except for the values between 2000
and 3800 m, which tend to be higher than the input values.
[34] Figure 7 illustrates the sampling of the kinetic

parameter for the sample at �2800 m. The sampling is rea-
sonably stable, the distribution is skewed toward the upper

Figure 6. (a) The expected thermal history for the Pine Forest Range samples [see Colgan et al., 2006].
The upper (reference) and lower themal histories are shown as heavier lines, together with their 95%
credible intervals. The credible intervals for the lower thermal history includes the uncertainty inferred for
the temperature offset. The two dashed horizontal lines approximate the partial annealing zone (120 and
60°C) and the box at 100–120 Ma, and 160 � 10°C indicates a constraint on the thermal history. The
maximum likelihood thermal history is also indicated (just the upper and lowermost thermal histories as
black lines), along with the calculated log likelihoods for the expected and maximum likelihood thermal
histories. (b) As Figure 6a but with a smaller range on the temperature axis. The shaded bands indicates the
general thermal histories inferred for shallow and deep samples, respectively, by Colgan et al. [2006]. The
two boxes at 0°C on the time axis indicate the timing of intrusions (100–120 Ma) and Tertiary magmatism
and burial (35–15 Ma) described by Colgan et al. [2006]. (c) Observed and predicted AFT (circles) and
AHe ages (triangles). The predicted values for the maximum likelihood and expected models are shown as
thick and thin lines (and individual AHe predicted ages are shown as x). Error bars (2s) are shown on the
observed values and the lighter horizontal bars indicate the�1s range on the predicted ages for all accepted
models. (d) As Figure 6c but for the observed and predicted MTL values. The predicted values for the
maximum likelihood and expected models are shown as thick and thin lines. Error bars (2s) are shown
on the observed values and the lighter horizontal bars indicate the�1s range on the predicted MTL values.
(e) As Figure 6c but for the observed and predicted kinetic parameter (Dpar) values. The error bars rep-
resent �3s of the observed values (and define the sampling range for these parameters).
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limit (about 2.4 mm) and does not really want to stay at the
input value of 1.94 mm. Running the same thermal history
with the kinetic parameters fixed to the input values leads to
a worse fit to the data, as we expect with fewer free param-
eters. Relative to the variable kinetics model, this model
underpredicts the FT age for the samples between 2000 and
3800 m, with slightly older ages around 4000 m and gener-
ally has lower predicted mean track lengths for all samples,
by up to a micron. Comparing the maximum likelihood
models using the BIC implies the model with the variable
kinetic parameters is preferred. However, the thermal histo-
ries do not differ significantly, implying it is the overall
thermal history that dominates the data fitting process. Thus,
we consider this process of allowing the kinetic parameter to
vary as more of a fine tuning process which allows for some
uncertainty (or flexibility) in the annealing model param-
eters, rather than necessarily being a better estimation of the
kinetic parameters.
[35] Figure 8 shows the result of sampling the AHe ages for

the same sample at�2800 m. One of the sample distributions
have a peak slightly higher than the input value, but within

more or less 1s. The predicted distribution is similar to
sample distribution, but the peaks are slightly closer to the
observed value. The spread in the predictions reflects the
sampling of both the observed ages and the thermal histories.
Fixing the AHe ages to the observed values does not lead to
any significant differences in the inferred thermal histories
(slightly less spread) as the final part of the thermal history
(<5 Ma) is well constrained by these data.
[36] The thermal history implies rapid cooling around 85–

80 Ma followed by reheating, then a second period of rapid
cooling around 40–35 Ma, with the deepest samples just
about entering the typically defined fission track partial
annealing zone (below 120–130°C), a third period of cooling
starting around 10 Ma, then a final period of rapid cooling at
5 Ma to surface temperatures. The features of the thermal
history that are well constrained from the data agree well with
the form of the general thermal history inferred by Colgan
et al. [2006]. As shown by Gallagher et al. [2005], model-
ing even synthetic data from individual samples can lead to
overly complex thermal histories, compared to those inferred
from multiple samples in a vertical profile. With real data,

Figure 7. An example of the sampling of the kinetic parameter (Dpar) for the Pine Forest Range sample at
�2800 m palaeodepth. (a) The sampled (accepted) values as a function of post-burn-in iteration (b) the dis-
tribution (histogram) of accepted values, together with the input values (the thicker vertical line in the mean
measured value and the dashed lines represent �1s).

Figure 8. An example of the sampling distribution of accepted values (histogram), together with the input
values (the thicker vertical line and the dashed lines represent �1s) for the two AHe samples for the Pine
Forest Range sample at �2800 m palaeodepth. The continuous lines represent the distribution on the pre-
dicted values for each sample.
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there will always be a compromise fit as the data are not
perfect and so we suggest that the combined approach is
preferable to avoid this problem.
[37] The inferred temperature offset is shown in Figure 9.

The range in the temperature difference before rapid cooling
around 30 Ma spans the prior range, showing that the data
provide little information on this part of the thermal history.
As only the four uppermost samples stay below 120°C during
this time, we infer that the role of the offset parameter here is
to ensure that the lower samples are hot enough to be com-
pletely degassed/annealed while allowing enough variation
in the temperature to account for the top four samples. The
large inferred offset value is a consequence of using linear
interpolation between the upper and lower samples. For
example if the deeper samples were affected by a thermal
anomaly associated with the Oligocene-Miocene magma-
tism, they could all have been at 200°C, which cannot be
modeled with the linear gradient assumption. In fact, setting
all temperatures above 200°C to exactly 200°C leads to
exactly the same values for the predicted ages and track
lengths. After the rapid cooling, the offset is inferred to be
just under 100°C (with a 95% credible range of�60–120°C),
implying a temperature gradient of about 25°C/km. This
stays more or less constant until the start of extension around
10–12 Ma, and as all samples are constrained to be at surface
temperatures at the present-day, then the offset necessarily
decreases, as we expect during rotational exhumation of the
footwall.

3.4. Example 4

[38] This example also involves a vertical profile, but from
an exploration well. These data are proprietary, but the

details are not important here. The 13 samples are from
poorly dated sediments (known only to be lower/upper Cre-
taceous or Tertiary in age). We have only fission track data
(but no compositional/kinetic parameter measurements) for
these samples, and use projected track lengths for the mod-
eling (following Ketcham et al. [2007]). It is clear that some
of them have inherited fission tracks (indicated by ages older
than the stratigraphic age). We have present-day tempera-
tures for each sample which are incorporated as constraints.
[39] To allow for the lack of precise knowledge on the

stratigraphic age, we include an additional prior on the tem-
perature history for a range in stratigraphic age. We assign
each sample one of three possible stratigraphic age ranges
140–100, 95–65 or 65–35 Ma and a temperature of 10 �
20°C and the thermal history for each sample is required to
pass through the specified prior range. We allow for inherited
fission tracks by including an additional independent time-
temperature point before the time of deposition. This point is
drawn from the general prior for the thermal history (defined
as a 2D uniform distribution with the mean � half widths
given as 350 � 350 Ma and 70 � 70°C), subject to the
condition that it is prior to deposition. We allow the tem-
perature offset to vary over time, with a prior of 30 � 30°C
and present temperatures are required to be within �5°C of
the measured values. These imply a present-day temperature
offset of 46°C (temperature gradient of 23°C/km). Finally we
allowed the fission kinetic parameter (Dpar) to vary with a
normal prior (mean of 2 mm, standard deviation of 0.2).
[40] Exploratory runs were made to tune the proposal scale

parameters and the final run was made with 60000 post
burn-in iterations. The values adopted were: stime = 10 Ma,
stemperature = 5°C, soffset = 5°C, skinetic = 1.5 (no units) and

Figure 9. The inferred temperature offset (the temperature difference between the shallowest and deepest
samples) for the Pine Forest Range samples. The thicker line is the expected value and inner lines mark the
�1s range while the outer thinner lines are the 95% credible ranges (which need not be symmetrical).
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the acceptance rates for each move type were 37%, 45%,
45%, and 27% respectively, and 3% for both birth and death.
[41] The maximum likelihood and expected thermal

history models (Figure 10) imply that all samples have an
inherited track component as the oldest preserved fission
track is inferred to be older than the stratigraphic age. The
most extreme case of inherited tracks is the sample at 850 m,
with a stratigraphic age of <100 Ma, but an AFT age of
350 Ma. While some of the deeper samples have AFT ages
that are slightly younger than the stratigraphic age, the fact
that the mean track lengths are often <13 mm implies that the
thermal history information is relevant to longer timescales
than the post-depositional duration. Thus all samples require
some pre-depositional thermal history component. It is clear
from Figure 10 that the observed data are well explained with
a period of cooling between 120 and 90 Ma (obviously only
experienced by the samples that were deposited by that time),
moderate reheating to a secondary temperature maximum

around 20 Ma, followed by 20°C cooling to the present-day
temperatures, equivalent to about 500 m of erosion with the
inferred temperature gradient of about 20°C/km at 20 Ma.
The kinetic parameters generally change from the input
values, implying a range of Dpar values from 2.4 down to
1.7 mm. Fixing the kinetic parameter to 2 mm leads to a
poorer data fit. However, the form of the thermal history is
similar (in terms of the timing of thermal events), although
the absolute values of the temperature can differ. For exam-
ple, at 120 Ma, the maximum temperature of the deepest
sample for the fixed model is about 97°C compared to 105°C
for the variable kinetics model. After the reheating to 20 Ma,
the deepest sample in the fixed model has a temperature of
4°C lower than the variable model. In contrast the shallowest
sample is �10°C hotter. As we expect, this is manifested
in the inferred temperature offset at this time for the two
models (fixed =26°C versus variable =40°C, the latter being
closer to the present-day value). These differences reflect

Figure 10. (a) The inferred maximum likelihood thermal history for a suite of borehole data. The three
time-temperature boxes at 0–20°C are the input constraints on the stratigraphic age (and deposition temper-
ature). The oldest point in each thermal history reflects a pre-depositional component to the thermal history
(required as a consequence of the samples not being totally annealed post-deposition). (b) As Figure 10a but
showing the expected thermal history (with the 95% credible intervals on the upper and lower thermal his-
tories). (c) Observed and predicted AFT (filled circles) and the ages of the oldest preserved fission track for
each sample predicted from the expected model are shown as open circles. The predicted values for the
maximum likelihood and expected models are shown as thick and thin lines (and individual AHe predicted
ages are shown as x). Error bars (2s) are shown on the observed values and the lighter horizontal bars indi-
cate the�1s range on the predicted ages for all accepted models. (d) As Figure 10c but for the observed and
predictedMTL values. The predicted values for the maximum likelihood and expected models are shown as
thick and thin lines. Error bars are shown on the observed values and the lighter horizontal bars indicate the
�1s range on the predicted ages. (e) As Figure 10c but for the input and predicted kinetic parameter (Dpar)
values. Here there were no observed values so the input value was fixed at 2� 0.2 mm for all samples. The
error bar at the bottom shows the �3s range used for sampling this parameter.
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the compositional annealing properties inferred for the vari-
able models. The deeper samples tend to have Dpar greater
than the fixed values (so require higher temperatures to pro-
duce the same level of annealing) while it is the opposite
for the shallower samples. Again, we suggest that variable
kinetics gives us some additional freedom in fitting obser-
vations, and provides a way of allowing for unaccounted
noise in the data and the predictive models.

4. Discussion/Concluding Comments

[42] We have presented a new approach to inverse thermal
history modeling for multiple samples (in a vertical profile),
with multiple data types, based on transdimensional Bayesian
MCMC. The main features of this approach have been
demonstrated with examples and these are as follows:
[43] 1. We do not need to specify the complexity of the

thermal history. Rather, the data determine this and the
Bayesian approach naturally avoids over complex models.
[44] 2. Thermal histories are characterized by a probability

distribution which allows a visualization/quantification of
the thermal history resolution and the uncertainty on model
predictions.
[45] 3. We can select various individual models such as the

maximum likelihood thermal history or the expected thermal
history.
[46] 4. We can allow for uncertainty in annealing/diffusion

model parameters. Here we sample the kinetic parameter for
fission track data and the helium age for this type of data
(although we could sample uncertainties on the annealing/
diffusion model parameters if available).
[47] In the examples, we have only considered apatite

fission track and (U-Th)/He data. However, the approach
is generally applicable, and could be implemented for
40Ar/39Ar, zircon fission track or U-Th/He, and vitrinite
reflectance data. It requires requires the appropriate data-
specific forward problem (e.g., annealing, diffusion, organic
reactions) and likelihood function (how well we fit the data).
Other often poorly constrained parameters, including those
relevant to data directly (e.g., apatite composition), or the
predictive model (diffusion or annealing model parameters)
can be incorporated into the analysis and treated as unknowns
characterized by a prior distribution. Here we use a single
value for the fission track kinetic parameter for a given
sample, but it is possible to split a sample in to sub-groups
if the composition of grains varies significantly and treat
these as a suite of samples. Finally, this transdimensional
approach is readily extended to incorporate the transdimen-
sional spatial modeling approach described by Stephenson
et al. [2006a], allowing us to identify consistent thermal
histories for regional data and to recognize spatial discon-
tinuities in the thermal histories.

Appendix A: Transdimensional Markov Chain
Monte Carlo (MCMC) Formulation for Thermal
History Modeling

[48] The general theory has been described by Green
[1995, 2003] and here we follow reasonably closely the
approach developed by Hopcroft et al. [2007] and Charvin
et al. [2009]. We define a series of time-temperature-offset
points, ti, Ti, Oi, i = 1, k and for each data set we allow the

possibility of treating the kinetic parameters (c) as unknowns
and/or resample the data values (d). The general acceptance
function defined in the main text is

a mp;mc

� � ¼ min 1;
p mp

� �
p djmp

� �
q mcjmp

� �
p mcð Þp djmcð Þq mpjmc

� � Jj j
 !

ðA1Þ

where mc, mp are the current and proposed models, respec-
tively, p(m) and p(d|m) are the prior and likelihood functions
for model m (their product being proportional to the poste-
rior, p(m|d), through Bayes’ rule). The proposal function is
q(mc|mp) and a requirement in MCMC is that the proposals
are reversible, so we have the ratio of the reverse to forward
proposals in the acceptance function.

A1. Priors

[49] We write the joint prior probability as

p mð Þ ¼ p k; t; T ;O; c; dð Þ
¼ p kð Þp tjkð Þp T jkð Þp Ojkð Þp cð Þp dð Þ ðA2Þ

We choose a uniform prior on k, the number of variable time-
temperature points, up to a maximum of kmax, so we have

p kð Þ ¼ 1

kmax
ðA3Þ

We follow Green [1995] and Denison et al. [2002] and
adopt a discrete uniform distribution on the time parameters,
which weights each possible model over each dimension (k)
equally. Dropping the conditional dependence on k for clar-
ity, the prior on time is then given as

p tð Þ ¼ k!

tmax � tminð Þk
Yk
j¼1

t j � t jþ1
� � ðA4Þ

where tmax and tmin are the maximum and minimum values
assigned to the time parameters and typically tmin = t k+1 = 0.
This prior tends to avoid proposing points too close to each
other.
[50] We assume uniform priors on the temperature and

offset parameters parameters, and also that the time, tem-
perature and offsets are independent. These uniform priors
are written as

p xð Þ ¼ 1

xmax � xmin
ðA5Þ

where xmax and xmin are the specified upper and lower limits
of the prior for a parameter x.
[51] For the kinetic parameters and age data resampling we

assume normal prior distributions. For example, in the case
of a kinetic parameter, c, is written as

p cð Þ ¼ 1

sc

ffiffiffiffiffiffi
2p

p e�
1
2

c��c
scð Þ2 ðA6Þ

where �c and sc are the observed (or user specified) mean and
standard deviation of the parameter. We use a similar form
for the prior on the age data resampling prior.
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A2. Moves/Proposals

[52] We define seven possible model transformations
or moves: (1) move time, (2) move temperature, (3) move
offset, (4) add a time-temperature point (birth), (5) remove a
time-temperature point (death), (6) move kinetic parameter,
and (7) move age data value. Each of these moves is selected
with a probability pi, such that ∑pi = 1.
[53] For the first three moves, we randomly select a point

with probability 1/k, where k is the current number of vari-
able time-temperature points and apply a random perturba-
tion to the current value of that parameter. For example, the
transform for the i-th time parameter can be written as

tip ¼ tic þ sm;tuN ðA7Þ

where tp
i , tc

i are the proposed and current values for time
parameter i, sm,t is the user defined proposal scale for moving
time parameters and uN is a random number drawn from a
standard normal distribution, N(0,1). Similar expressions are
used for the temperature and offset parameter moves with
their own specific proposal scales.
[54] For the kinetic parameter/age data resampling moves,

we randomly select a value with probability 1/N, where N is
the number of data sets with a kinetic parameter, or the
number of data available to resample (a single data set may
have several AHe ages for example). The transform for the
j-th kinetic parameter is then written as

c j
p ¼ c j

c þ sm;cuN ðA8Þ

where sc,t is the proposal scale for move a kinetic parameter.
A similar transform is made for the age data resampling.
[55] In these moves the proposal functions are symmetrical

(q(mc|mp) = q(mp|mc)), so the ratios cancel out in the accep-
tance function (equation (A1)). For uniform priors, the ratios
also cancel out, while for normal priors, we just use the
appropriate ratio of the normal distributions. Finally, the
Jacobian is always 1 for these moves.
[56] For the birth and death transformations, the accep-

tance criterion (equation (A1)) is a little more complex. Here
we consider the birth move in detail, noting that for death the
approach is effectively the same, and we end up using the
inverse of the acceptance ratio for birth.
[57] The acceptance function can also be written as [e.g.,

Green, 2003]

a mp;mc

� � ¼ Min
p mp

� �
p djmp

� �
g u′ð Þjmp

p mcð Þp djmcð Þg uð Þjmc

∂ mp; u′
� �
∂ mc; uð Þ
����

����
 !

ðA9Þ

where the first three terms in both the denominator and
numerator are the prior, likelihood, and proposal distribu-
tions used to transform between models (as described above)
for the current and proposed models respectively and u are
vectors of random numbers used in the transformations. The
dimensions, � or �′, of these random number vectors are such
that � + k = �′ + k′, where k and k′ are the dimensions the
model before and after the transformation. The last term is the
Jacobian written in terms of the models and the random
numbers.
[58] As the random numbers u are all drawn from a uni-

form distribution, the ratio of the g terms would be 1 except

we also need to allow for how we decide to add or delete
a point. For a birth, we select the new point for the time
parameter according to the spacing between the existing
points to encourage birth between the more widely spaced
points, i.e., the probability of selecting time point, ti, is
given as

p ti
� � ¼ ti � tiþ1ð Þ

tmax � tminð Þ ðA10Þ

while for the reverse death move we select a point to remove
with probability 1/(k + 1).
[59] The j terms in equation (A9) are the probability

involved in selecting a particular move type (m). We define
the probability of choosing birth as bk and choosing death
(which is required to reverse the birth move) as dk+1. Thus
for birth move, we have the ratio

jmp

jmc

¼ dkþ1

bk

tmax � tminð Þ
ti � tiþ1ð Þ

1

k þ 1
ðA11Þ

where d and b refer to the probability of choosing a death or
birth move, with the subscript being the number of time-
temperature points. For a death move, we invert this ratio,
and adjust the subscripts according, so we have

jmp

jmc

¼ bk�1

dk

ti � tiþ1ð Þ
tmax � tminð Þ k ðA12Þ

Note that the move proposal probabilities bk and dk tend to be
equal, except in the special cases when k = 1 (so we cannot
have a death, so we set d1 = 0, and b1 = 2bk) and k = kmax (so
we cannot have a birth, so we set bkmax = 0 and dkmax = 2dk).
[60] Having chosen an existing time point, say the i-th

point, we then generate a new point at random between this
point and the i + 1-th point (which is younger than point i).
The proposed time is given as

t* ¼ ti � stu1 ti � tiþ1
� � ðA13Þ

where u1 = U(0,1), (where U(a,b) indicates a uniform dis-
tribution with lower and upper limits of a and b). The new
temperature and offset parameters are generated by linear
interpolation between the existing values and then adding a
small perturbation to that value (see Figure 1 in the paper).
Then the proposed temperature and offset values are given as

T � ¼ Ti � Ti � Tiþ1ð Þ
ti � tiþ1ð Þ ti � t*

� �� sTu2

¼ Ti � Ti � Tiþ1ð Þstu1 � sTu2

ðA14Þ

O* ¼ Oi � Oi � Oiþ1
� �

stu1 � sOu3 ðA15Þ

where u2, u3 = U(�0.5, 0.5) and the s terms in
equations (A13)–(A15) are the birth proposal scales (which
do not need to be equal to the move proposal scales) for each
parameter.
[61] With a uniform prior on k (=1/kmax), we have the prior

ratio for birth given as

p k þ 1ð Þ
p kð Þ ¼ 1 ðA16Þ
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The prior ratio given the proposed new time point, t*, is
given as

p tp
� �
p tcð Þ ¼

k

ðtmax � tmin

� 	
⋅

ti � t*ð Þ t* � tiþ1ð Þ
ti � tiþ1ð Þ ðA17Þ

For a uniform prior on the temperature and offset parameters
we can write

p xp
� �
p xcð Þ ¼ xmax � xminð Þk

xmax � xminð Þkþ1 ¼
1

xmax � xminð Þ ðA18Þ

so we obtain the overall prior ratio as

p mp

� �
p mcð Þ ¼

k

ðtmax � tmin

� 	
⋅

ti � t*ð Þ t* � tiþ1ð Þ
ti � tiþ1ð Þ

� 1

Tmax � Tminð Þ Omax � Ominð Þ ðA19Þ

Note that we do not modify any kinetic parameters or data
during a birth move, so these terms cancel out in the accep-
tance ratio and do not appear.
[62] The last term we need is the Jacobian, defined as (with

t, T, O the vectors of the current model, and u the random
numbers used to produce the proposed model with an extra
dimension, t*, T*, O*)

∂ mp; u′
� �
∂ mc; uð Þ
����

���� ¼ ∂ t; T ;O; t∗; T∗;O∗
� �
∂ t; T ;O; u1; u2; u3ð Þ

������
������

¼ ti � tiþ1ð ÞstsTsO ðA20Þ

Collecting all the terms together (priors – (A11), proposals –
(A19), Jacobian = (A20)) and incorporating the likelihood
ratio, we have the acceptance function for birth (adding a new
point to k existing points) defined as

a mp;mc

� � ¼ p djmp

� �
p djmcð Þ

ti � t*ð Þ t* � tiþ1ð Þ
ti � tiþ1ð Þ Tmax � Tminð Þ Omax � Ominð Þ

� dkþ1

bk
stsTsO ðA21Þ

For a death move (removing the i-th point from k points)
we invert this function, and adjust the indices to obtain

a mp;mc

� � ¼ p djmp

� �
p djmcð Þ

ti�1 � tiþ1ð Þ Tmax � Tminð Þ Omax � Ominð Þ
ti�1 � tið Þ ti � tiþ1ð Þ

� bk�1

dk

1

stsTsO
ðA22Þ

[63] Acknowledgments. I would like to thank Karl Charvin, Peter
Hopcroft, John Stephenson, Malcolm Sambridge, and Thomas Bodin for
many rambling but generally enlightening discussions on Bayesian trans-
dimensional MCMC and Andy Carter, Nathan Cogné, Yuntao Tian, and
Boris Avdeev for persevering with early versions of the software implement-
ing the approach presented here (available by contacting the author). Thanks
to Trevor Dumitru and an anonymous reviewer for useful comments on an
earlier version of this manuscript and Joe Colgan for his data. Congratula-
tions to Richie and the rest of the team…it was a long wait.

References
Bernardo, J., and A. F. M. Smith (1994), Bayesian Theory, John Wiley,
Chichester, U. K.

Bodin, T., and M. Sambridge (2009), Seismic tomography with the revers-
ible jump algorithm, Geophys. J. Int., 178, 1411–1436, doi:10.1111/
j.1365-246X.2009.04226.x.

Braun, J., P. van der Beek, and G. Batt (2006), Quantitative Thermo-
chronology, Cambridge Univ. Press, New York, doi:10.1017/
CBO9780511616433.

Carlson, W. D., R. A. Donelick, and R. A. Ketcham (1999), Variability
of apatite fission-track annealing kinetics I: Experimental results,
Am. Mineral., 84, 1213–1223.

Charvin, K., K. Gallagher, G. Hampson, and R. Labourdette (2009), A
Bayesian approach to infer environmental parameters from stratigraphic
data 1: Methodology, Basin Res., 21, 5–25, doi:10.1111/j.1365-2117.
2008.00369.x.

Colgan, J. P., T. A. Dumitru, P. W. Reiners, J. L. Wooden, and E. L. Miller
(2006), Cenozoic tectonic evolution of the basin and range province in
northwestern Nevada, Am. J. Sci., 306, 616–654, doi:10.2475/08.2006.02.

Corrigan, J. (1991), Inversion of fission track data for thermal history infor-
mation, J. Geophys. Res., 96, 10,347–10,360, doi:10.1029/91JB00514.

Denison, D. G. T., C. C. Holmes, B. K. Mallick, and A. F. M. Smith (2002),
Bayesian Methods for Nonlinear Classification and Regression, Wiley,
Chichester, U. K.

Dodson, M. H. (1973), Closure temperature in cooling geochronological and
petrological systems, Contrib. Mineral. Petrol., 40, 259–274, doi:10.1007/
BF00373790.

Donelick, R. A., R. A. Ketcham, and W. D. Carlson (1999), Variability
of apatite fission-track annealing kinetics II: Crystallographic orientation
effects, Am. Mineral., 84, 1224–1234.

Efron, B., and R. Tibshirani (1993), An Introduction to the Bootstrap,
Chapman and Hall, New York.

Farley, K. A. (2000), Helium diffusion from apatite: General behaviour as
illustrated by Durango fluorapatite, J. Geophys. Res., 105, 2903–2914,
doi:10.1029/1999JB900348.

Gallagher, K. (1995), Evolving temperature histories from apatite fission-
track data, Earth Planet. Sci. Lett., 136, 421–435, doi:10.1016/0012-
821X(95)00197-K.

Gallagher, K., J. A. Stephenson, R. W. Brown, C. C. Holmes, and
P. Fitzgerald (2005), Low temperature thermochronology and strategies
for multiple samples 1: Vertical profiles, Earth Planet. Sci. Lett., 237,
193–208, doi:10.1016/j.epsl.2005.06.025.

Gallagher, K., K. Charvin, S. Nielsen, M. Sambridge, and J. Stephenson
(2009), Markov chain Monte Carlo (MCMC) sampling methods to
determine optimal models, model resolution and model choice for
Earth Science problems, Mar. Pet. Geol., 26, 525–535, doi:10.1016/j.
marpetgeo.2009.01.003.

Gilks, W. R., S. Richardson, and D. J. Spiegelhalter (1996), Markov Chain
Monte Carlo in Practice, Chapman and Hall, London.

Gleadow, A. J. W., I. R. Duddy, P. F. Green, and J. F. Lovering
(1986), Confined track lengths in apatite: A diagnostic tool for thermal
history analysis, Contrib. Mineral. Petrol., 94, 405–415, doi:10.1007/
BF00376334.

Green, P. F., I. R. Duddy, A. J. W. Gleadow, P. R. Tingate, and G. M.
Laslett (1986), Thermal annealing of fission tracks in apatite: 1. A
qualitative description, Chem. Geol. Isot. Geosci. Sect., 59, 237–253,
doi:10.1016/0168-9622(86)90074-6.

Green, P. F., I. R. Duddy, G. M. Laslett, K. A. Hegarty, A. J. W. Gleadow,
and J. F. Lovering (1989), Thermal annealing of fission tracks in apatite:
4. Quantitative modelling techniques and extension to geological
timescales, Chem. Geol. Isot. Geosci. Sect., 79, 155–182, doi:10.1016/
0168-9622(89)90018-3.

Green, P. J. (1995), Reversible jump Markov chain Monte Carlo com-
putation and Bayesian model determination, Biometrika, 82, 711–732,
doi:10.1093/biomet/82.4.711.

Green, P. J. (2003), Transdimensional MCMC, in Highly Structured
Stochastic Systems, Oxford Stat. Sci. Ser., vol. 27, edited by P. J. Green,
N. Hjort, and S. Richardson, chap. 6, pp. 179–196, Oxford Univ. Press,
Oxford, U. K.

Harrison, T. M., M. Grove, O. M. Lobvera, and P. K. Zeitler (2005), Con-
tinuous thermal histories from inversion of closure profiles, Rev. Mineral.
Geochem., 58, 389–409, doi:10.2138/rmg.2005.58.15.

Hopcroft, P., K. Gallagher, and C. C. Pain (2007), Inference of past climate
from borehole temperature data using Bayesian Reversible Jump Markov
chain Monte Carlo, Geophys. J. Int., 171, 1430–1439, doi:10.1111/
j.1365-246X.2007.03596.x.

Hopcroft, P., K. Gallagher, and C. C. Pain (2009), A Bayesian partition
modelling approach to resolve spatial variability in climate records from

GALLAGHER: TRANSDIMENSIONAL INVERSE THERMAL HISTORY B02408B02408

15 of 16



borehole temperature inversion, Geophys. J. Int., 178, 651–666,
doi:10.1111/j.1365-246X.2009.04192.x.

Jasra, A., D. A. Stephens, K. Gallagher, and C. C. Holmes (2006), Anal-
ysis of geochronological data with measurement error using Bayesian
mixtures, Math. Geol., 38, 269–300, doi:10.1007/s11004-005-9019-3.

Jones, S. M., and R. K. Dokka (1990), Modelling fission-track annealing
in apatite—An assessment of uncertainties, Nucl. Tracks Radiat. Meas.,
17(3), 255–260, doi:10.1016/1359-0189(90)90043-W.

Ketcham, R. A. (2005), Forward and inverse modelling of low-temperature
thermochronometry data, Rev. Mineral. Geochem., 58, 275–314,
doi:10.2138/rmg.2005.58.11.

Ketcham, R. A., R. A. Donelick, and W. D. Carlson (1999), Variability of
apatite fission-track annealing kinetics: III. Extrapolation to geological
timescales, Am. Mineral., 84, 1235–1255.

Ketcham, R. A., R. A. Donelick, and M. B. Donelick (2000), AFTSolve: A
program for multi-kinetic modeling of apatite fission-track data, Geol.
Mater. Res., 2, 1–32.

Ketcham, R. A., A. Carter, R. A. Donelick, J. Barbarand, and A. J. Hurford
(2007), Improved modelling of fission-track annealing in apatite, Am.
Mineral., 92, 799–810, doi:10.2138/am.2007.2281.

Laslett, G. M., P. F. Green, I. R. Duddy, and A. J. W. Gleadow (1987),
Thermal annealing of fission tracks in apatite: 2. A quantitative analysis,
Chem. Geol. Isot. Geosci. Sect., 65, 1–13, doi:10.1016/0168-9622(87)
90057-1.

Lutz, T. M., and G. I. Omar (1991), An inverse method of modelling ther-
mal histories from apatite fission-track data, Earth Planet. Sci. Lett., 104,
181–195, doi:10.1016/0012-821X(91)90203-T.

Malinverno, A. (2002), Parsimonious Bayesian Markov chain Monte Carlo
inversion in a nonlinear geophysical problem, Geophys. J. Int., 151(3),
675–688, doi:10.1046/j.1365-246X.2002.01847.x.

McDougall, I., and T. M. Harrison (1999), Geochronology and Thermo-
chronology by the 40Ar/39Ar Method, 2nd ed., Oxford Univ. Press,
New York.

Piana Agostinetti, N., and A. Malinverno (2010), Receiver function inver-
sion by transdimensional Monte Carlo sampling, Geophys. J. Int., 181,
858–872.

Reiners, P. W., and T. A. Ehlers (Eds.) (2005), Low-Temperature Thermo-
chronology: Techniques, Interpretations and Applications, Rev. Mineral.
Geochem., 58, 622 pp.

Reiners, P. W., and K. A. Farley (2001), Influence of crystal size on (U-Th)/
He thermochronology: Re 1 an example from the Bighorn Mountains,
Wyoming, Earth Planet. Sci. Lett., 188, 413–420, doi:10.1016/S0012-
821X(01)00341-7.

Reiners, P. W., T. L. Spell, S. Nicolescu, and K. A. Zanetti (2004), He dif-
fusion and (U-Th)/He thermochronometry: He diffusion and comparison
with 40Ar/39Ar dating, Geochim. Cosmochim. Acta, 68, 1857–1887,
doi:10.1016/j.gca.2003.10.021.

Sambridge, M., K. Gallagher, A. Jackson, and P. Rickwood (2006),
Transdimensional inverse problems, model comparison and the evidence,
Geophys. J. Int., 167, 528–542, doi:10.1111/j.1365-246X.2006.03155.x.

Scales, J., and R. Snieder (1998), What is noise?, Geophysics, 63,
1122–1124, doi:10.1190/1.1444411.

Schwarz, G. (1978), Estimating the dimension of a model, Ann. Stat., 6,
461–464, doi:10.1214/aos/1176344136.

Stephenson, J., K. Gallagher, and C. Holmes (2006a), Low temperature
thermochronology and modelling strategies for multiple samples 2: Parti-
tion modelling for 2D and 3D distributions with discontinuities, Earth
Planet. Sci. Lett., 241, 557–570, doi:10.1016/j.epsl.2005.11.027.

Stephenson, J., K. Gallagher, and C. Holmes (2006b), A Bayesian approach
to calibrating apatite fission track annealing models for laboratory
and geological timescales, Geochim. Cosmochim. Acta, 70, 5183–5200,
doi:10.1016/j.gca.2006.07.027.

Willett, S. D. (1997), Inverse modelling of annealing of fission tracks
in apatite 1: A controlled random search method, Am. J. Sci., 297,
939–969, doi:10.2475/ajs.297.10.939.

K. Gallagher, Géosciences, Université de Rennes 1, Campus de Beaulieu,
F-35042 Rennes CEDEX, France. (kerry.gallagher@univ-rennes1.fr)

GALLAGHER: TRANSDIMENSIONAL INVERSE THERMAL HISTORY B02408B02408

16 of 16



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /All
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (ECI-RGB.icc)
  /CalCMYKProfile (Photoshop 5 Default CMYK)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.6
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness false
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Preserve
  /UCRandBGInfo /Remove
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
    /Courier
    /Courier-Bold
    /Courier-BoldOblique
    /Courier-Oblique
    /Helvetica
    /Helvetica-Bold
    /Helvetica-BoldOblique
    /Helvetica-Oblique
    /Symbol
    /Times-Bold
    /Times-BoldItalic
    /Times-Italic
    /Times-Roman
    /ZapfDingbats
  ]
  /AntiAliasColorImages false
  /CropColorImages false
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.00000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages false
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.00000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages false
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 400
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.00000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects true
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /ENU ()
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AllowImageBreaks true
      /AllowTableBreaks true
      /ExpandPage false
      /HonorBaseURL true
      /HonorRolloverEffect false
      /IgnoreHTMLPageBreaks false
      /IncludeHeaderFooter false
      /MarginOffset [
        0
        0
        0
        0
      ]
      /MetadataAuthor ()
      /MetadataKeywords ()
      /MetadataSubject ()
      /MetadataTitle ()
      /MetricPageSize [
        0
        0
      ]
      /MetricUnit /inch
      /MobileCompatible 0
      /Namespace [
        (Adobe)
        (GoLive)
        (8.0)
      ]
      /OpenZoomToHTMLFontSize false
      /PageOrientation /Portrait
      /RemoveBackground false
      /ShrinkContent true
      /TreatColorsAs /MainMonitorColors
      /UseEmbeddedProfiles false
      /UseHTMLTitleAsMetadata true
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /BleedOffset [
        0
        0
        0
        0
      ]
      /ConvertColors /ConvertToRGB
      /DestinationProfileName (sRGB IEC61966-2.1)
      /DestinationProfileSelector /UseName
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements true
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles true
      /MarksOffset 6
      /MarksWeight 0.250000
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PageMarksFile /RomanDefault
      /PreserveEditing true
      /UntaggedCMYKHandling /UseDocumentProfile
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


