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Effect of Surface Morphology on the Dissipation During Shear and Slip Along a Rock–Rock

Interface that Contains a Visco-elastic Core

LUIZA ANGHELUTA,1 THIBAULT CANDELA,2 JOACHIM MATHIESEN,1,3 and FRANÇOIS RENARD
1,2

Abstract—High resolution topography measurements of the

Vuache–Sillingy fault (Alps, France) reveal a characteristic

roughness of the fault zone. We investigate the effect of roughness

on the rheology of a planar shear configuration by using a model

system consisting of a visco-elastic layer embedded into a rigid

solid. The model is discussed in the context of several geological

cases: a damage fault zone, a fault smeared with a clay layer, and a

shear zone with strain weakening. Using both analytical approaches

and finite element simulations, we calculate to linear order the

relation between wall roughness and the viscous dissipation in the

fault zone as well as the average shear rate.

1. Introduction

In the Earth’s crust, many systems involve

deformation along pre-existing interfaces. The fact

that these interfaces, loaded by normal or shear stress

or a combination of both, locally alter the stress

transmission may lead to several important geologi-

cal phenomena that occur on all scales. At the grain

scale, stress is concentrated along grain boundaries

where localized deformation may occur either by

dissolution-precipitation processes or by surface dif-

fusion (ANGHELUTA et al., 2008; RUTTER, 1976). At

the outcrop scale, localized dissolution along existing

planes leads to the formation of pressure solution

seams or stylolites (ARTHAUD and MATTAUER, 1969;

RAILSBACK and ANDREWS, 1995). At the lithospheric

scale, shear displacement is also widely observed,

along faults in the upper-crust, or in shear zones at

greater depth – for a review, see for example

(CHESTER et al., 2004). In a recent work, we have

shown that such mechanical interfaces can become

morphologically unstable and roughen with time

(ANGHELUTA et al., 2010). All these observations

involve deformation past a mechanical discontinuity.

In the present study, we characterize the interac-

tion between the morphology of the interface and the

corresponding shear or sliding resistance in a set-up

where a visco-elastic layer is embedded between two

rigid bodies. For this, we use analytical approaches

and finite element simulations in two dimensions to

estimate how surface roughness affects the effective

shear flow properties. We consider here two elastic

solids, separated by a fluid layer of finite thickness

H. The contact layer is approximated by a Maxwell

visco-elastic rheology representing a core of a fault

zone where dissipative processes occur (CHERY et al.,

2004.). The model could be applied to various geo-

logical cases: faults that contain a damage zone,

faults smeared with a clay layer, shear zones with

strain weakening, or stylolites with a clay interface.

Note also that a similar approach has been applied in

studies of basal flow of glaciers along rough surfaces

(KAMB, 1970) and the formation of residual stresses

due to slip on wavy faults (CHESTER and CHESTER,

2000; SAUCIER et al., 1992). Here we consider a full

visco-elastic rheology and extend on previous anal-

yses by performing a numerical modelling in

geometries sampled in the field.

The paper is divided into three sections. In

Sect. 2, we present geological observations of rough

fault surfaces and how high resolution topography

measurements can help characterizing the self-affine

property of the slip surface. In Sect. 3, we consider
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relations between this roughness and the rheology of

the fault by introducing a simple model of a fault

gouge. The effect of small perturbations of the fault

surface on the fault dissipation is studied within the

linear analysis. The analysis can be extended into the

finite amplitude regime using numerical simulations.

We compute numerically the stress distribution near a

rough surface and the average flow rate in the New-

tonian limit and compare it with the linear theoretical

analysis. Finally, Sect. 4 offers concluding remarks.

2. Rough Geological Interfaces

2.1. Observations of Rough Faults

In the upper crust, many processes happen at

interfaces which generally have mechanical proper-

ties different than the bulk. Often these interfaces are

not flat and have developed complex rough morphol-

ogies. Active fault surfaces are known to show

corrugation at all scales (POWER et al., 1987), see

Fig. 1. Their complex geometry results from the

interplay of abrasion processes, crack multi-branch-

ing and damage during rupture propagation (POWER

et al., 1988; SAGY et al., 2007), and healing processes

during the interseismic periods (RENARD et al., 2000).

With the recent development of accurate Light

Detection and Ranging (LiDAR) laser devices, it is

possible to measure accurately the topography of

such surfaces at all scales (Fig. 2). These measure-

ments show a non-flat topography from the

micrometer scale to the scale of several tens of

meters (CANDELA et al., 2009). Moreover, detailed

surface rupture mapping on the kilometer scale also

reveals non planar geometry (KLINGER., 2010). In

several cases, the geometry of slip surfaces has been

observed to scale with different power-law exponents

in the direction of slip and perpendicular to it (POWER

et al., 1987; RENARD et al., 2006).

In such faults, a weaker layer or damage zone [from

meters to tens of meters wide (SHIPTON et al., 2006)] is

sandwiched between less damaged rock bodies (CAINE

et al., 1996; CHESTER and LOGAN, 1986). This zone may

creep slowly, either permanently (i.e. the creeping

segment of the San Andreas Fault, north of Parkfield,

CA, USA) or for a short period after a major

earthquake, where afterslip is often measured [for a

review on afterslip processes see, for example,

(PRITCHARD and SIMONS, 2006)]. These observations

indicate that the motion along the fault is able to

overcome the morphological roughness asperities,

usually without any emission of seismic waves.

Therefore, some time-dependent dissipative deforma-

tion mechanisms are at work during aseismic slip.

At the outcrop scale, it is also common to observe,

in faulted sedimentary basins, that clay layers smear a

fault interface (EGHOLM and CLAUSEN, 2008) and

lubricate it (see Fig. 1d). In this case, the clay layer,

with a visco-plastic behavior, is often strongly

dragged, sheared and internally deformed during slip,

as shown experimentally by CUISIAT and SKURVEIT

(2010). In general, the clay layer must deform along

the interface such to overcome the possible roughness

of fault interfaces.

2.2. Roughness of the Vuache–Sillingy Strike-Slip

Fault

The roughness of a slip surface of the Vuache–

Sillingy has been measured for spatial wavelengths

covering more than 6 decades. This fault is consid-

ered as a model system and the results could be

extrapolated to other faults which show similar

scaling properties (POWER et al., 1987; SAGY et al.,

2007). This strike-slip fault, with a small normal

component, is located near Annecy in the French

Alps (RENARD et al., 2006) and exposes well-pre-

served slip surfaces in carbonate rocks (Fig. 2a). The

fault surface has been measured at different scales

using three high resolution devices. At the outcrop

scale, the morphology of the slip surface was

measured using a LiDAR device [see (RENARD et al.,

2006) for more details]. In the present study, we

complement these outcrop data with laboratory scale

measurements. We have measured the topography of

several hand samples using a laser profilometer, with

a height resolution down to 1 lm and spatial

increments of 30 lm; and a white light interferom-

eter, with a height resolution down to 1 nanometer

and spatial increments of 0.5 lm. The results of each

topography measurement is a Digital Elevation

Model (DEM) of the slip surface (Fig. 2b).

The slip surface shows corrugations at all scales

and a slight anisotropy is observed, due to slip along a
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well-defined direction. We have extracted several

hundred profiles in this direction of slip to analyze the

statistical properties of the fault roughness (Fig. 2c).

A Fourier power spectrum method was used, which

has been shown to be robust and reliable, to

characterize scaling properties of surfaces (CANDELA

et al., 2009). For all 2D DEM data, the topography of

the slip surfaces shows a self-affine geometry,

demonstrated by a linear relationship when plotting

on log–log axes the Fourier power spectrum versus

the spatial wavenumber (Fig. 2d). The different slip

surfaces analyzed cover approximately 6 decades of

length scales and show a scaling relationship with a

Hurst exponent H0 close to 0.6 for profiles along the

slip direction. These data confirm and extend

previous studies of scaling properties of fault surfaces

(POWER et al., 1987; RENARD et al., 2006).

3. Visco-Elastic Shear Flow Between Rough Walls

3.1. Setup

We now consider a simple model of a fault

consisting of two undeformable plates separated by a

fault gouge or fluid layer of thickness H as sketched

in Fig. 3. Either one or both of the plates are assumed

to have a rough surface and the middle layer is

assumed to satisfy a Maxwell visco-elastic rheology.

Using this system, we analyze how the rough walls

Figure 1
Several fault zones in various geological environments show morphological corrugations at all scales. a Strike-slip plane in silt rocks of the

Corona Heights Fault (San Francisco, CA, USA) showing corrugations at the meter scale. b Zoom on the slip surface, showing striations and

asperities at the centimeter scale (pencil for scale). c Strike-slip plane of the La Cléry Fault (Vercors, France), in limestones, show large

wavelengths topographical variations (hammer for scale). d Red clay layer drag along the Taxarchion Fault (Corinth, Greece) smear this

normal fault plane
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change the mean shear stress when the top plate

moves with a fixed velocity. In other words, we study

an effective rheology of a system where the rough-

ness of the outer plates couple to the flow properties

of the full system. In general, assuming that the

average separation distance H is fixed, we find that,

for a small amplitude roughness of the outer surfaces,

the viscous dissipation increases while the flow rate

decreases with the amplitude.

The governing equations are given by the mass

and momentum conservation laws supplemented by

the rheological equation of state. Moreover, the

visco-elastic layer is assumed to be incompressible

with constant density, which implies that

oivi ¼ 0; ð1Þ

and the momentum conservation in the limit where

fluid inertia can be neglected is satisfied by the

relation

oiTij ¼ 0; ð2Þ

where Tij is the fluid stress tensor. The stress com-

ponents can be decomposed into a homogeneous

isotropic part and deviatoric components Tij ¼
�pdij þ sij, where the deviatoric components sij can

be related to the strain rate by the Oldroyd-type

equations of state (OLDROYD, 1950; SHANKAR and

KUMAR, 2004) for a Maxwell visco-elastic fluid

l
G

otsij þ vkoksij � okviskj � okvjski

� �
þ sij

¼ l oivj þ ojvi

� �
; ð3Þ

where G is the elastic shear modulus and l is the

Newtonian viscosity. These equations are brought in

a non-dimensional form by rescaling the spacial

coordinates in units of the layer thickness H, the

velocity in units of the upper boundary velocity V,

time and stresses are given in units of H/V, lV/H,

respectively. The rough bottom surface is positioned

in dimensionless units at zb(x). With these rescalings,

Eq. 3 is equivalent to

W otsij þ vkoksij � okviskj � okvjski

� �
þ sij

¼ oivj þ ojvi; ð4Þ

where the variables now are dimensionless and the

W ¼ lV
HG is the Weissenberg number representing the

ratio between the stress relaxation time and convec-

tive timescale. Newtonian rheology is obtained in the

limit of instant stress relaxation, i.e. W = 0. To

model the relative slip between plates, we assume

that the top plate moves at a constant velocity, while

the bottom plate is fixed, namely

vxðx; 1Þ ¼ 1; vzðx; 1Þ ¼ 0 ð5Þ

vxðx; zbÞ ¼ 0; vzðx; zbÞ ¼ 0: ð6Þ

In the case where the confining surfaces are flat,

i.e. zb = 0, the steady state solution of the flow is

obtained by matching the boundary conditions, and

thus v
ð0Þ
x ¼ z; vð0Þz ¼ 0. Here we have introduced an

Figure 3
Model system of a visco-elastic layer trapped between two rigid

planes. The lower plane is assumed to have a rough surface and a

simple shear is applied to the system by moving the upper plane at

a constant velocity. This system is utilized in an analysis of the

effective rheology of a fault system

Figure 2
Surface roughness results of the Vuache–Sillingy strike-slip fault

(French Alps). a The fault surface consists of many discrete slip

surfaces at all scales separating lenses of variably deformed fault

rock. The back rectangle corresponds to the surface shown on b.

b Examples of Digital Elevation Model (DEM) at the outcrop scale

(LiDAR) and at the laboratory scale (laser profilometer, white light

interferometer). c Representative 1D self-affine profiles of the slip

surface extracted and detrended from the DEM (b) along the

direction of slip. Magnified portion of the profiles at the LiDAR

scale (up) has a statistically similar appearance to the entire profile

when using a self-affine transformation with a Hurst exponent

equal to 0.6. d Fourier power spectrum calculated for the fault

surface along slip, covering six orders of magnitude of spatial

wavelengths. Power-law fit (thick gray line) with a prescribed

roughness exponent (H = 0.6), connecting the field and laboratory

data, is shown on plot for eye guidance. The inset displays an

example of the height elevation Z (y-axis) versus wavelength (x-

axis) of a rough profile. Contours (black dotted line) representing

constant elevation Z to wavelength ratio, reflecting a self-similar

behavior, are provided to allow easier interpretation of the spectra.

Black arrows (at the bending of spectra) indicate the level of noise

of the LiDAR and the lower limit for the fit performed at the WLI

scale

b
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upper index which refers to the solutions around a flat

interface. If we now insert the fluid velocity into the

equations of state, Eq. 4, we determine the stress

components, i.e. sð0Þxz ¼ 1; sð0Þxx ¼ 2W and szz
(0) = 0.

Notice the jump in the normal stress components

sð0Þxx � sð0Þzz , which vanishes in the Newtonian limit.

3.2. Small Perturbations to a Flat Fault Interface

While the flow field readily follows when the

interfaces are flat, the calculation for a system with

rough interfaces becomes more involved. We now

derive expressions for the steady state dynamics and

the corresponding stress state in the limit where the

interfaces are roughened by small amplitude perturba-

tions. We restrict ourselves to consider perturbations of

the lower interface only, which is assumed to have a

height profile in the z-direction given by the expression

zb ¼
P

n Aneinqx þ c:c:, where An is the amplitude (in

units of H), n is the Fourier mode and q = 2p/k is the

characteristic dimensionless wavenumber. The linear

regime is set by the condition nqAn � 1 for all n. In

particular, we consider a sinusoidal perturbation, for

which A1 = const and An = 0 for n [ 1.

For small morphological amplitudes |An| � 1, all

the relevant fields (velocity and stress) are expanded

around the unperturbed state as:

Fðx; zÞ ¼ Fð0Þðx; zÞ þ
X1

n¼1

FðnÞðzÞeinqx þ c:c:
� �

; ð7Þ

where the function F(x, z) is introduced as a generic

expression for the variable under consideration. The

disturbance field is decomposed into Fourier modes

denoted by F(n)(z), which are determined from the

linearized governing equations. After substituting the

Fourier modes for stress and velocity into Eqs. 1, 2

and 4, the subsequent equations can be reduced to a

single equation in vz
(n)(z) which has a general solution

given by (GORODTSOV and LEONOV, 1967; SHANKAR

and KUMAR, 2004)

vðnÞz ðzÞ ¼ B1zenqz þ B2ze�nqz þ B3enqð�iWþ
ffiffiffiffiffiffiffiffiffi
1þW2
p

Þz

þ B4e�nqðiWþ
ffiffiffiffiffiffiffiffiffi
1þW2
p

Þz:

ð8Þ

The other component vx
(n)(z) follows directly from

Eq. 1, namely

vðnÞx ðzÞ ¼
i

qn

dvðnÞz ðzÞ
dz

: ð9Þ

The coefficients Bk, with k ¼ 1; . . .; 4, are

obtained by inserting the expressions for vx
(n)(z) and

vz
(n)(z) into the boundary conditions from Eqs. 5–6.

To the first order in the surface amplitude, the

velocity modes satisfy the following boundary

conditions

vðnÞx ð0Þ þ An ¼ 0; vðnÞz ð0Þ ¼ 0 ð10Þ

vðnÞx ð1Þ ¼ 0; vðnÞz ð1Þ ¼ 0; ð11Þ

where the nontrivial equation for vx
(n) follows from an

expansion at the perturbed interface,

vxðx;zbÞ¼vð0Þx ðx;0Þ
þ
X

n

ozv
ð0Þ
x ðx;0ÞAnþvðnÞx ð0ÞþOðA2

nÞ
h i

einqx

þc:c:;

ð12Þ

and using the planar Couette solution,ozv
ð0Þ
x ðx; zÞ ¼ 1.

Solving the system from Eqs. 10–11, we determine

the coefficients Bk as a function of amplitudes An,

Weissenberg number W and characteristic wave-

number q.

3.3. Effective Flow and Energy Dissipation

In this section, we study the relation between wall

roughness, mean flow rate and bulk energy dissipa-

tion. It is determined by the strain rate field given as

the gradient of the velocity field, eij ¼ ojvi þ oivj;

where {i, j} := {x, y}. The shear rate, for instance, is

reconstructed from the velocity Fourier modes and

assumes the form

exzðx; zÞ ¼ 1þ 2
X

n

< ½ozv
ðnÞ
x ðzÞ þ inqvðnÞz ðzÞ�einqx

n o
:

ð13Þ

Similar expressions apply for the other strain rate

components ezz and exx. In general, the above

expression depends on the detailed shape of the

rough surface; however, we shall here consider an

interface described by a single-mode profile

zb ¼ 2A1 cosðqxÞ. Then, the mean flow rate is

2340 L. Angheluta et al. Pure Appl. Geophys.



obtained by the area average of the shear strain rate

and given by

hexzi ¼ 1þ q

2p

Z2p=q

0

dx

Z1

zb

dzexzðx; zÞ

� 1þ f ðq;WÞA2
1; ð14Þ

where f(q, W) appears from the lowest order Taylor

expansion in the roughness amplitude A1. Similarly

the mean energy dissipation rate in the bulk, j _Ej, is

computed as the area integral of j
P

i;j oivjj2, thus

j _Ej ¼ 1

2
1þ q

2p

Z2p=q

0

dx

Z1

0

dzð2e2
xz þ e2

xx þ e2
zzÞ

2

64

3

75;

ð15Þ

which to the lowest order in A1 becomes

j _Ej � 1

2
1þ gðq;WÞA2

1

� �
: ð16Þ

The bulk energy dissipation depends both on the fluid

rheology and the surface roughness. Although the

function g(q, W) follows directly from the linear

expansion, it cannot be represented in a simple and

short form.

3.4. Newtonian Limit

Relatively simple expressions can be obtained in

the Newtonian limit, i.e. when W = 0. From Eq. 4,

we observe that, in this case, the strain rate is the

same as the deviatoric stress sij. In particular, the

shear strain rate equals to

exzðx; zÞ ¼ 1� 4qA1 cosðqxÞ
coshð2qÞ � 1� 2q2

½qð2� zÞ coshðqzÞ

þ ð2q2z� 2q2 � 1Þ sinhðqzÞ
þ qz coshðqz� 2qÞ þ sinhðqz� 2qÞ�:

ð17Þ

Straightforwardly, we can determine the shear

drag by evaluating the above expression on top and

bottom surfaces, with the final result given by

sxzðx; 1Þ ¼ 1� 8qA1

q coshðqÞ � sinhðqÞ
coshð2qÞ � 1� 2q2

cosðqxÞ

ð18Þ

sxzðx; zbÞ ¼ 1þ 4qA1

sinhðqÞ � 2q

coshð2qÞ � 1� 2q2
cosðqxÞ:

ð19Þ

The wall drag varies linearly with the roughness

amplitude and frequency and, in a one mode

approximation, alternates between regions of maxi-

mum and minimum resistance. These regions are

located oppositely on the two plates. Namely, the

maximum drag is set at protrusion of the rough

bottom surface, while the same point on the top flat

surface corresponds to a minimum drag.

Figure 4
Viscous shear flow along a lower rough surface. Left panel shows

the flow profile in the case of a single harmonic perturbation. Right

panel corresponds to a shear flow past a random surface with a

Hurst exponent H = 0.6. The color scale represents the magnitude

of the dimensionless shear sxz and the velocity field is shown in the

vicinity of the rough surface

Figure 5
Mean shear stress as a function of the roughness amplitude in the

viscous limit W = 0 and for a harmonic perturbation with q = 1.

Data from numerical simulations are shown by red dots and the

black curve correspond to the theoretical value obtained from the

linear analysis, Eq. 20. It is observed that the linear analysis breaks

down for a ratio between roughness amplitudes and layer thickness

around 0.1
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Also, inserting Eq. 17 into Eq. 14, we find that the

effective shear flow depends on the amplitude to the

lowest order,

hexzi ¼ 1� 4q
sinhð2qÞ � 2q

coshð2qÞ � 1� 2q2
A2

1: ð20Þ

We notice that in Eq. 20, the mean flow rate

decreases monotonically with amplitude A1 and

wavenumber q and at some point will start having

negative values corresponding to a change in the flow

direction. This means that the linear prediction will

break down at finite amplitudes and one would expect

that the mean shear will reach a minimum saturation

value. To verify this, we resort to numerical simu-

lations to study the steady state flow properties

around a surface with a larger roughness amplitude.

A decrease in the mean flow rate is associated

with an increase of the mean viscous dissipation,

when g(q, 0) [ 0 as seen in Fig. 6.

3.5. Numerical Approach

In order to simplify the analysis, we shall here

assume that the embedded layer in our model

configuration effectively behaves like a viscous fluid.

That is, we consider the case where W = 0 for which

the constitutive equations, Eqs. 1–4, reduce to those

of an incompressible Stokes flow. We discretized the

equations using a Galerkin finite element scheme on

an unstructured triangular mesh. In general, the

incompressibility condition is difficult to tackle

numerically, since it leads to a singular matrix in

the pressure equation. One way to resolve this

problem is to use a mixed finite element formulation

with quadratic velocity shape functions and a

discontinuous linear interpolation for the pressure

degrees of freedom. Our numerical implementation

follows the algorithm proposed in (DABROWSKI et al.,

2008).

A snapshot of the shear stress field for a finite

amplitude roughness is illustrated in Fig. 4. We

observe that the presence of a rough interface locally

disturbs the flow profile of the viscous layer. This in

turn, will lead to changes in the overall shear

resistance of the system and thereby increase the

energy dissipation in the fault.

A comparison between the theoretical prediction

given in Eq. 20 and the numerically computed mean

shear stress is shown in Fig. 5. In general, the

increase in shear resistance becomes less pronounced

as the roughness amplitude is increased. It might be

speculated that in a real system the resistance might

even start to decrease for large roughness amplitudes,

since vortices may form and remain trapped in

valleys of the surface morphology, e.g. (SKJETNE

et al., 1999).

3.6. Effect of Fluid Elasticity

For a finite W number, we notice that, compared

to the Newtonian limit, there is an extra contribution

to the strain rate due to stress relaxation, as shown in

Figure 6
Left panel g(q,0) showing the increase in the mean viscous dissipation with the amplitude and wavenumber. Right panel The coefficient

f(W, q) from Eq. 14 as a function of wavenumber W and q

2342 L. Angheluta et al. Pure Appl. Geophys.



Eq. 4. Thus, measuring the shear stress is not the

same as measuring the strain rate. That being said, the

mean flow rate also decreases with the amplitude for

W [ 0, as shown in Fig. 6, albeit at a slower rate

compared to the Newtonian limit. The fact that the

shear flow rate at a given roughness is larger for a

visco-elastic fluid than for a purely viscous one can

be related to a positive contribution of the stress

relaxation as suggested by Fig. 6.

4. Concluding Remarks

Recent measurements of fault slip surfaces have

revealed a morphological roughness that spans a wide

range of scales. For most active faults, it is likely that the

roughness may develop on a time scale different than

that introduced by the shear rate. The exact mechanisms

leading to rough interfaces are largely unknown and

may be related to both damage accumulation and

recovery. On short time scales, rapid rupture can dam-

age wall rocks and produce abrasive wear, while on a

longer time scale, the branching of fractures or healing

processes may corrugate the slip surface.

Here, we have considered the implications of this

roughness on the dynamics of a fault by introducing a

simple model consisting of a visco-elastic layer sand-

wiched between two rigid plates. The main result of our

analysis is that the mean shear flow rate decreases with

increasing roughness amplitude, while at the same time

there is an increase in the mean bulk viscous dissipa-

tion. In the Newtonian limit, the maximum shear flow

rate is attained when the interface is flat and gradually

decreases as the roughness amplitude is increased.

Numerical simulations at finite amplitude suggest that

the mean flow may approach a minimum value which

is independent of the amplitude. At a finite stress

relaxation, mean flow rate is relatively higher than in

the viscous limit, suggesting that the elastic modes

enhance the total deformation rate.
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