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Abstract 

Investigation of the sedimentary record of pre-Alpine Lake Mondsee (Upper Austria) focused on the 

environmental reaction to rapid Lateglacial climatic changes. Results of this study reveal complex 

proxy responses that are variable in time and influenced by the long-term evolution of the lake and 

its catchment. A new field sampling approach facilitated continuous and precisely controlled parallel 

sampling at decadal to sub-annual resolution for µ-XRF element scanning, carbon geochemistry, 

stable isotope measurements on ostracods, pollen analyses and large-scale thin sections for 

microfacies analysis. The Holocene chronology is established through microscopic varve counting and 

supported by accelerator mass spectrometry 14C dating of terrestrial plant macrofossils, whereas the 

Lateglacial age model is based on δ18O wiggle matching with the Greenland NGRIP record, using the 

GICC05 chronology. Microfacies analysis enables the detection of subtle sedimentological changes, 

proving that depositional processes even in rather large lake systems are highly sensitive to climate 

forcing. Comparing periods of major warming at the onset of the Lateglacial and Holocene and of 

major cooling at the onset of the Younger Dryas reveals differences in proxy responses, reflecting 

threshold effects and ecosystem inertia. Temperature increase, vegetation recovery, decrease of 

detrital flux and intensification of biochemical calcite precipitation at the onset of the Holocene took 

place with only decadal leads and lags over a ca. 100 a period, whereas the spread of woodlands and 

the reduction of detrital flux lagged the warming at the onset of the Lateglacial Interstadial by ca. 

500–750 a. Cooling at the onset of the Younger Dryas is reflected by the simultaneous reaction of 

δ18O and vegetation, but sedimentological changes (reduction of endogenic calcite content, increase 

in detrital flux) were delayed by about 150–300 a. Three short-term Lateglacial cold intervals, 

corresponding to Greenland isotope substages GI-1d, GI-1c2 and GI-1b, also show complex proxy 

responses that vary in time. 

 



Introduction 

Rapid climatic changes across the Last Glacial/Holocene transition are documented in the 

Greenland ice cores (e.g. Johnsen et al., 1992; Rasmussen et al., 2006) and various lacustrine 

(e.g. von Grafenstein et al., 1999a; Birks and Ammann, 2000; Brauer et al., 2000; Litt et al., 

2001; Marshall et al., 2002; Magny et al., 2006; Yu, 2007; Brauer et al., 2008a) and marine 

(e.g. Haflidason et al., 1995; Hughen et al., 2000) palaeoclimate archives in the North 

Atlantic realm. Improved understanding of the regional environmental impact of these 

climatic changes is a prerequisite for assessing the effects of future climate variability on 

ecosystems and the dynamics of these processes. Within this context, continental archives are 

ideal to associate climatic changes directly with the environmental response in the human 

habitat. Previous studies on lacustrine records from the climate-sensitive region of the 

European Alps added a wealth of information on Lateglacial climate fluctuations (e.g. von 

Grafenstein et al., 1999a; Schwander et al., 2000) and their impact on terrestrial and aquatic 

ecosystems (e.g. Eicher and Siegenthaler, 1976; Eicher et al., 1981; Ammann and Lotter, 

1989; Schmidt et al., 1998; Lotter, 1999; Lotter et al., 2000; Heiri and Millet, 2005; Finsinger 

et al., 2008) and depositional processes (e.g. Moscariello et al., 1998; Brauer and Casanova, 

2001). While high-resolution studies have shown that particularly small lake systems record 

even low-amplitude climatic changes and related environmental responses (e.g. Lotter et al., 

1992; Litt and Stebich, 1999; Ammann et al., 2000; Brauer et al., 2000), less is known about 

the climate sensitivity of lakes with a comparatively large catchment area. Hence, detailed 

investigation of the sedimentary record of pre-Alpine Lake Mondsee (Upper Austria) can aid 

our understanding of the impact of rapid Lateglacial climate fluctuations on the local 

ecosystem and the climate sensitivity of sedimentological processes in a rather large lake 

system. It furthermore provides new information on the regional climate development in the 

northeastern Alps and thus on the climatic differentiation in Europe during the Late- and 

Postglacial. 

This study, associated with the European Science Foundation EuroCLIMATE project 

DecLakes (Decadal Holocene and Lateglacial variability of the oxygen isotopic composition 

in precipitation over Europe reconstructed from deep-lake sediments), presents detailed 

sediment microfacies data combined with high-resolution multi-proxy analyses obtained on a 

new Lateglacial to Holocene sediment core from Lake Mondsee, northeastern Alps, Austria. 

Particular care was taken on the parallel sampling for all analyses, enabling direct comparison 

of various proxy data and detailed microscopic inspection of each individual sample interval. 

The main purpose of this paper is the detailed investigation of the variable proxy responses to 

rapid Lateglacial climatic fluctuations. Forthcoming publications will address in detail the 

ostracod assemblage succession and the interpretation of the stable isotope record in order to 



shed light on the complex relationships between air temperature, δ18O in precipitation, δ18O in 

lake water, water temperature and resulting δ18O in ostracod valves. 

Study Site 

Pre-Alpine Lake Mondsee is situated at the northern margin of the European Alps (47 ° 49' N, 13 ° 

24'E, 481 m above sea level (a.s.l.)) in the Salzkammergut lake district of Upper Austria, about 40 km 

east of Salzburg (Fig. 1). The oligo-mesotrophic hardwater lake (maximum water depth ∼68 m, 

surface area ∼14.2 km2, volume ∼5.1 km2) can be subdivided into a shallow northern and a deeper 

southern basin (Jagsch and Megay, 1982). Three major tributaries (Fuschler Ache, Zeller Ache and 

Wangauer Ache) and several minor streams discharge into the lake, which drains via the small river 

Seeache into Lake Attersee. 

The catchment area of Lake Mondsee has a size of ∼247 km2, of which about 50% is covered 

by forests (Beiwl, 2008). Two major geological units, separated by a thrust zone that follows 

the southern shoreline of Lake Mondsee, characterise the area (Fig. 1). The steep-sloped 

mountains of the Northern Calcareous Alps along the southern lakefront, which are composed 

of the Triassic Main Dolomite and Mesozoic limestones and reach elevations of up to 1782 m 

a.s.l., constitute about 25% of the catchment area. Cretaceous marls, shales and sandstones of 

the Rhenodanubic Flysch and local Quaternary deposits, which dominate the remaining 

∼75% of the catchment, characterise the gently sloped hills in the eastern, western and 

northern part of the catchment, generally not exceeding elevations of ∼1000 m a.s.l. (van 

Husen, 1989). During the Pleistocene, the lake basin, originally formed by tectonic processes, 

has been repeatedly overridden and substantially altered by glacier activity, finally by the 

Traun Glacier during the Würmian glaciation (van Husen, 1979; Kohl, 1998). Eemian 

palaeolake deposits on the northern shore, which are covered by Würmian tills (Klaus, 1975; 

Drescher-Schneider and Papesch, 1998), indicate the complex evolution and larger-than-

present extent of the lake basin during earlier times. Direct glacier influence on the catchment 

rapidly ceased after the Last Glacial Maximum as indicated by kame deposits of the Ischler 

Stand (Bühl Stadial) about 15 km southeast of Lake Mondsee (van Husen, 1977, 1997). The 

corresponding early phase of the Lateglacial ice decay (Reitner, 2007) in the lower eastern 

Alpine valleys dates to ca. 18 000–19 000 cal. a BP (van Husen, 1977, 2004; Schmidt et al., 

1998; Klasen et al., 2007). After the ice retreat, the glacial basin was subsequently filled by 

meltwater, forming the present lake. 

Today, the study area is characterised by an Alpine-influenced temperate climate with warm 

summers and frequent precipitation. The mean annual air temperature for the weather station 

Mondsee is + 8.7 °C with January and July means of −0.5 °C and + 17.8 °C, respectively. The 

average annual precipitation amounts to about 1550 mm, with highest rainfall during summer 



(climate data for the period 1971–2000, Central Institute for Meteorology and Geodynamics 

(ZAMG), Vienna, Austria). 

Past work on Lake Mondsee sediments mainly focused on recent and late Holocene 

limnological and sedimentological aspects (e.g. Löffler, 1983; Behbehani et al., 1985; 

Danielopol et al., 1985; Irlweck and Danielopol, 1985; Horsthemke, 1986; Klee and Schmidt, 

1987; Herrmann, 1990), but also included a low-resolution study on the Lateglacial to 

Holocene vegetation development (Schultze and Niederreiter, 1990). 

Fieldwork and Methods 

Fieldwork 

Two parallel sediment cores (1389 and 1172 cm long), each consisting of 2-m-long segments 

(Fig. 2, were recovered from the coring site (47 ° 48' 41' N, 13 ° 24' 09' E, 62 m water depth) 

in the southern lake basin (Fig. 1) in June 2005 by using a 90 mm diameter UWITEC piston 

corer. Additionally, the undisturbed sediment–water interface was obtained in three short 

gravity cores recovered from the same site. A field lab was installed to facilitate on-site core 

opening, photographing and preliminary lithostratigraphical description. The overlapping 

segments of both cores were visually correlated by using more than 90 macroscopic 

lithological marker layers, resulting in a continuous composite profile of about 1500 cm 

length (Fig. 2). The subsequent continuous and precisely parallel sampling of the core 

segments for all proxy analyses was also carried out in the field lab. 

Sediment Microfacies Analysis and Varve Counting 

Detailed sediment microfacies investigation, also confirming the preliminary macroscopic 

core correlation, was carried out on large-scale petrographic thin sections prepared from a 

continuous series of overlapping sediment blocks (100 × 20 × 10 mm) according to the method 

described by Brauer et al. (1999b). Thin sections were examined under a Zeiss Axiophot 

polarisation microscope at 25–400× magnification. Additionally, microscopic counting of 

biochemical calcite varves, including thickness measurements, was carried out within the 

uppermost 1129.0 cm of the profile. For a detailed account on the establishment of the varve 

chronology for the Holocene part of the profile and the supplementary accelerator mass 

spectrometry (AMS) radiocarbon dating of terrestrial plant macrofossils, we refer to the 

online Supporting information (Fig. S1 and Table S1). 

Geochemical Analyses 

http://onlinelibrary.wiley.com/doi/10.1002/jqs.1448/full#fig2
http://onlinelibrary.wiley.com/doi/10.1002/jqs.1448/full#fig2


Bulk sediment samples for quantitative carbon geochemistry (0.5-cm-thick slices) from the 

interval 1112.0–1279.0 cm were analysed continuously across climatic transitions, defined 

according to microfacies and stable isotope data, and with sample increments of 1–2 cm in the 

remaining sections. Total inorganic carbon (TIC) was measured coulometrically on freeze-

dried and homogenised samples (∼50 mg) using a Ströhlein Coulomat 702 elemental 

analyser. Total carbon (TC) was determined by combustion of sample material (100–200 mg) 

at 1350 °C in a LECO CNS-2000 analyser. Total organic carbon (TOC) was calculated as the 

difference between TC and TIC with an estimated analytical error of ∼0.3%. All results are 

expressed as per cent dry weight. 

Semi-quantitative major element scanning was carried out at 200 µm resolution on 

impregnated sediment slabs from thin-section preparation between 1064.0 and 1302.0 cm, 

using a vacuum-operating Eagle III XL micro X-ray fluorescence (µ-XRF) spectrometer with 

a low-power Rh X-ray tube at 40 kV and 300 µA (250 µm spot size, 60 s counting time, single 

scan line). The fluorescent radiation emitted from the sample was recorded by an energy-

dispersive Si (Li) detector and transformed into element information for each measuring 

point. Element intensities for Mg, Al and Ca are expressed as counts s−1 (cps), representing 

relative changes in element composition. Combined interpretation of high-resolution µ-XRF 

and microfacies data is enabled as the scanned sediment surfaces are identical to those 

prepared for thin sections (Brauer et al., 2009). 

Stable isotopes 

For high-resolution stable isotope measurements on ostracods, 0.5-cm-thick sediment slices 

were taken continuously between 1060.0 and 1273.5 cm. Samples were disaggregated in 10% 

H2O2, wet sieved through a 125-µm mesh and rinsed in ethanol before drying. Subsequently, 

valves of juvenile (5th–8th stage) Candona neglecta and Fabaeformiscandona harmsworthi 

(Namiotko et al., 2009) were separated and mechanically cleaned at the Institute for 

Limnology in Mondsee. Subsets of up to 20 valves (15–110 µg) of Candona neglecta (above 

1212.0 cm) and Fabaeformiscandona harmsworthi (below 1212.0 cm) were analysed for δ13C 

and δ18O at the Leibniz Laboratory in Kiel on a CARBO Kiel I / Finnigan MAT 251 CO2 

preparation and mass spectrometer system. Isotopic compositions are reported in the 

conventional δ-notation relative to the Vienna PeeDee Belemnite (VPDB) standard. The 

analytical precision is <0.04‰ and <0.07‰ for δ13C and δ18O, respectively. The change of the 

measured species at 1212.0 cm has no influence on the oxygen isotope record as δ18O derived 

from different Candonidae is comparable because of the identical vital offset of about + 2.2‰ 

compared to equilibrium calcite (von Grafenstein et al., 1999b). 

Pollen 



For pollen analyses, carried out at the Adam Mickiewicz University in Poznań, 0.5-cm-thick 

sediment slices from the interval 1112.0–1279.0 cm were analysed continuously across 

climatic transitions and with increments of up to 2.5 cm in the remaining sections. Two 

Lycopodium tablets were added to each sample for the calculation of pollen concentrations 

(Stockmarr, 1971). Sample preparation followed the standard method described by Berglund 

and Ralska-Jasiewiczowa (1986), including treatment with cool HF and HCl, acetolysis, 

embedding in pure glycerine and staining with safranin. A minimum of 500 terrestrial pollen 

grains were counted and determined under a light microscope (400× magnification) for 

samples above 1200.0 cm, while less than 100 pollen grains per sample were counted below 

this depth due to the low pollen concentrations. The TILIA/TILIA GRAPH  

Results 

Sediment Microfacies and Geochemistry 

The Lake Mondsee sediment record is subdivided into five major lithostratigraphical units 

(Lithozones I–V), distinguished by (i) the amount of minerogenic detrital material, (ii) the 

quantity of endogenic calcite and (iii) the presence and structure of lamination (Figs 2 and 3). 

Ca/Mg ratios (Fig. 4) allow differentiation between intervals with predominantly detrital input 

(low ratios, high content of Mg-rich dolomitic material) and such with mainly autochthonous 

sedimentation (high ratios, dominant biochemical calcite precipitation). Polarisation and 

scanning electron microscopy corroborate a close correspondence between high-Ca/Mg ratio 

intervals and the abundant occurrence of idiomorphic, biochemically precipitated calcite. We 

thus consider fluctuations in the broadly similar µ-XRF Ca and TIC records to mainly reflect 

changes in endogenic calcite contents. In contrast, the µ-XRF Mg record is regarded as a 

proxy for the input of detrital dolomite from the Northern Calcareous Alps. It largely 

coincides with the µ-XRF Al record, which is considered to reflect the second component of 

detrital input, the supply of siliciclastic detrital material from the Flysch Zone. 

Lithozone I (1493.0–1274.0 cm) is composed of yellowish/brownish-grey, distinctly 

laminated sediments. Regular light–dark couplets (average thickness ∼1.0–1.5 mm; Fig. 3A) 

contain a darker (greyish) basal silt layer, which is composed of detrital carbonates and 

subordinated siliciclastics and reveals a sharp lower boundary. Towards the top, the silt layer 

grades into a lighter (yellowish) clay layer with decreasing carbonate content. The gradation 

of these silt–clay laminae reflects the temporally differentiated deposition of silt and clay by 

over- and interflows after spring meltwater discharge (Sturm and Matter, 1978). Sporadic 

dropstones in the silt layer (Fig. 3A) indicate drift-ice transport and thus seasonal ice cover. 

About 160, silt- to fine sand-sized turbidites are intercalated within the regular silt–clay 

laminae. Although having an identical mineralogical composition, the distinctly graded 

http://onlinelibrary.wiley.com/doi/10.1002/jqs.1448/full#fig3


turbidites are usually thicker (up to several centimetres) and frequently show erosional basal 

contacts (Fig. 3A), thus suggesting deposition by underflows (Sturm and Matter, 1978). The 

predominantly dolomitic and siliciclastic composition of Lithozone I sediments is reflected by 

elevated Mg and Al counts, respectively (Fig. 4). As confirmed by microscopic analyses, the 

low Ca counts and TIC contents (<5.0%) exclusively reflect detrital carbonates. 

The deposition of silt–clay laminae with intercalated turbidites continues throughout 

Lithozone II (1274.0–1195.0 cm). However, as observed in thin sections, the transitional 

boundary between Lithozones I and II can be defined by the first appearance of biochemically 

precipitated calcite and the decrease in average laminae thickness from ∼1.0–1.5 mm to less 

than 1.0 mm. Sediment colour gradually changes from yellowish/brownish grey to light grey 

towards the top of Lithozone II. This is the result of the increasing amount of endogenic 

calcite, allowing the definition of two lithostratigraphical subzones. Microscopic inspection 

reveals that idiomorphic, microcrystalline calcite (<5 µm) is still rare below 1224.0 cm 

(Lithozone IIa), but becomes more abundant above (Lithozone IIb). This is reflected by a rise 

in Ca counts and TIC contents (from about 6.0% to 8.5%) throughout Lithozone IIb (Fig. 4) 

and most probably related to intensified biological productivity (Brauer and Casanova, 2001). 

The parallel reduction of detrital flux, indicated by decreasing Al and Mg counts, results in a 

more faint lamination. A slight increase in TOC from about 0.3% to 0.5–0.8% around 

1201.0 cm marks the onset of the gradual transition between Lithozones II and III. 

Light-grey, homogeneous lake marl, which predominantly consists of endogenic calcite, 

dominates throughout Lithozone III (1195.0–1169.0 cm). Only a few silt-sized detrital 

carbonates and siliciclastics are finely dispersed within the clay-sized matrix (Fig. 3B). The 

absence of a lamination is owed to the lack of episodic detrital input, which is indicated by 

low Al and Mg counts (Fig. 4). High amounts of endogenic calcite are reflected by maximum 

Ca counts and TIC contents of 8.5–10.0% (∼70–80% CaCO3), only interrupted by distinct 

reductions at 1195.5–1190.5 cm and 1181.0–1175.5 cm (Fig. 4). Within these two intervals, 

up to 4-mm-thick clay layers occur, corresponding to elevated Al counts (Figs 3B and 4). The 

gradual transition towards Lithozone IV in the uppermost 5 cm of Lithozone III is 

characterised by the reappearance of regular episodic clay layers, resulting in a faint 

carbonate–clay lamination. 

Lithozone IV (1169.0–1129.0 cm) is characterised by laminated light-grey lake marl. Faint 

laminae couplets of about 1 mm thickness comprise, as observed in Lithozone II, a silty basal 

sub-layer with detrital carbonates and an overlying clayey sub-layer (Fig. 3C). Numerous 

yellowish-brownish, 0.3–8.0-mm-thick detrital layers with frequent erosional basal contacts 

are intercalated within the regular silt–clay laminae. These turbidites contain silt-sized detrital 

carbonates and siliciclastics and in most cases also fine-grained organic material. Higher 



detrital flux in Lithozone IV is reflected by an overall increase in Al and Mg counts, with 

distinct spikes in the Mg record reflecting the frequent occurrence of turbidites (Figs 3C and 

4). In contrast, endogenic calcite contents are reduced as indicated by decreasing Ca counts 

and TIC contents (Fig. 4), reaching lowest values between about 1168.0 and 1157.0 cm. 

The sediments of Lithozone V (above 1129.0 cm) are composed of millimetre- to sub-

millimetre-scale laminated lake marl that contains abundant ostracod valves and plant macro 

remains (leaves, needles, seeds and wood fragments). Sediment colour gradually changes 

from light to yellowish/brownish-grey upcore, which is mainly related to the increasing 

abundance of organic matter. Intensified biochemical calcite precipitation is reflected by 

increased Ca counts and TIC contents of up to 10.0% (∼70–85% CaCO3) at the base of 

Lithozone V, whereas reduced Al and Mg counts prove the low minerogenic input (Fig. 4). 

Light–dark laminae couplets (supporting Fig. S1) exhibit a light basal layer of 

microcrystalline (<5 µm) endogenic calcite. Occasionally, a sub-lamination with larger calcite 

crystals at the base and smaller ones on top indicates two pulses of calcite precipitation (Kelts 

and Hsü, 1978; Lotter, 1989; Brauer et al., 2008b). The calcite layer is overlain by a dark 

layer that contains clay minerals, amorphous organic material, partly dissolved diatom 

frustules and only a few endogenic calcite crystals. In summary, these light–dark couplets, 

which are best preserved in the upper ∼610 cm of the profile, represent typical biochemical 

calcite varves (e.g. Lotter, 1989; Lotter et al., 1997; Brauer and Casanova, 2001). Average 

varve thickness gradually increases from ∼0.5 mm at the base of Lithozone V to ∼2.0 mm in 

the uppermost 150 cm (supporting Fig. S1), but shows only minor short-term fluctuations. 

Two types of detrital layers are intercalated within the regular varve succession: (i) 

macroscopic brownish detrital layers of up to several millimetres thickness, which are 

composed of detrital carbonates, subordinated siliciclastics and coarse organic debris; and (ii) 

microscopic detrital layers, which usually do not exceed 100 µm in thickness and contain 

higher amounts of siliciclastics but only a few organic material (Swierczynski et al., 2009). 

Stable Isotope Ratios 

The stable oxygen isotope record derived from the valves of juvenile Candonidae (Fig. 5) 

reveals the characteristic pattern of Lateglacial climatic changes, which is also seen in other 

Alpine oxygen isotope records (e.g. Eicher, 1987; Lotter et al., 1992; von Grafenstein et al., 

1999a; Schwalb, 2003) and the Greenland ice cores (e.g. Johnsen et al., 1992; NGRIP 

members, 2004). The close correspondence to the δ18O records from adjacent Lake Ammersee 

and Greenland (Fig. 7), which are mainly controlled by temperature variability (Johnsen et al., 

1992; Stuiver et al., 1995; von Grafenstein et al., 1996, 1999a), but also the agreement with 

regional temperature reconstructions based on biotic proxy data (Heiri and Millet, 2005), 

implies that the Lake Mondsee δ18O record also reflects mainly a temperature signal. 



However, it might be additionally influenced by other factors, e.g. hydrological or 

atmospheric circulation changes. Oxygen isotope ratios rapidly increase by ∼2.0‰ at the base 

of Lithozone II (Pleniglacial/Lateglacial transition), while δ13C values gradually decrease from 

about −5.5‰ to −9.0‰ in Lithozone II. Throughout Lithozones II and III, δ18O ratios 

fluctuate around −6.0‰, superimposed by three minor negative excursions of about 0.8–1.5‰ 

at 1215.0–1201.5 cm, 1195.0–1191.5 cm and 1182.5–1175.0 cm, which are termed Mo-LG1, 

Mo-LG2 and Mo-LG3, respectively. δ13C values decrease from about −9.0‰ to −10.0‰ 

within Lithozone III. Across the transition between Lithozone III and IV (1173.0–1168.0 cm), 

δ18O decreases by about 2.5‰, reflecting the onset of the Younger Dryas. Throughout 

Lithozone IV, oxygen isotope ratios gradually rise by about 1.0‰, but remain below −7.5‰. 

Shortly before the base of Lithozone V at about 1131.5 cm, δ18O ratios rapidly rise within 

1.5 cm from about −8.0 to −6.0‰. δ13C gradually increases from about −10.0‰ to −9.0‰ 

during the first half of Lithozone IV (1169.0–1159.0 cm) and then again decreases above 

∼1141.0 cm to about −9.5‰ in Lithozone V. 

Pollen 

The pollen diagram exhibits a succession of seven local pollen assemblage zones (LPAZ, Fig. 

6), in agreement with the regional Lateglacial vegetation development (Draxler, 1977; 

Schmidt, 1981; Draxler and van Husen, 1987) and allowing the definition of biostratigraphic 

boundaries. Open plant communities (shrubs and herbs) dominate the interval below 

1250.0 cm (Lithozone I and basal Lithozone II), but low pollen concentrations prevent 

detailed vegetation reconstruction. The lowermost pollen zone LPAZ 1 (1250.0–1216.0 cm) is 

characterised by dwarf shrub communities of Juniperus, Salix and Betula nana interspersed 

with herbs. LPAZ 2 (1216.0–1210.0 cm) reflects the rapid expansion of Pinus (up to 80%) 

and the decline of Juniperus. LPAZ 3 (1210.0–1201.0 cm) and LPAZ 4 (1201.0–1191.0 cm) 

reveal the further spread of Pinus, but heliophytic plants (Poaceae, Chenopodiaceae, 

Artemisia, Juniperus) still frequently occur. Declining values for Juniperus (below 2%) and 

NAP characterise LPAZ 5 (1191.0–1169.5 cm), which corresponds to the Allerød pollen 

zone. The presence of Dryopteris filix-mas, nowadays restricted to temperate climates 

(Zarzycki et al., 2002), indicates warmer climate conditions. The increase of Artemisia (up to 

2%) and NAP (2–6%) marks the base of LPAZ 6 (1169.5–1130.0 cm), which corresponds to 

the Younger Dryas pollen zone and shows a clear bipartition with NAP prevailing in the 

lower part (below 1157.0 cm) and Juniperus dominating (up to 7%) above this depth. 

Opening of forest cover within this zone is indicated by fluctuations in the Pinus curve and 

decreased tree pollen concentrations. The onset of the Holocene at the base of LPAZ 7 (above 

1130.0 cm) is reflected by the decline of Lateglacial shrubs and herbs. 

Chronology 



The age–depth model for the Holocene part of the Lake Mondsee sediment record, which is 

largely equivalent to Lithozone V, was established through microscopic varve counting and is 

supported by AMS radiocarbon dating of terrestrial macrofossils. The base of Lithozone V at 

1129.0 cm is dated to ca. 11 510 varve a BP (for more details see the online supporting 

Appendix S1). For the Lateglacial interval, AMS 14C dating and varve counting were not 

possible due to the lack of datable terrestrial macro remains and the failure to prove the 

annual origin of the fine lamination in Lithozones I, II and IV. Layer counting within the 

Lateglacial Interstadial interval (Lithozones II–IV) revealed a total of ∼800 laminae couplets, 

which is significantly less than reported from proven annually laminated lake sediment 

records (e.g. Brauer et al., 1999b) and the Greenland ice cores (Rasmussen et al., 2006). 

However, a hiatus as a possible explanation for this difference is excluded because of the 

close agreement of the δ18O record even for small-scale fluctuations with other Alpine isotope 

records (e.g. Eicher, 1987; Lotter et al., 1992; von Grafenstein et al., 1999a). 

Therefore, the Lateglacial age model was compiled by wiggle matching the Lake Mondsee 

ostracod-derived δ18O record to the NGRIP record from Greenland, using the recent GICC05 

chronology (Rasmussen et al., 2006), which was corrected by an offset of −65 a (Muscheler et 

al., 2008) and transferred to the BP time scale. Six distinct isotopic marker points were 

identified in both the Lake Mondsee and the NGRIP δ18O record (Fig. 7A) with the 

corresponding ages in the NGRIP record being used as tie points for the Lake Mondsee 

Lateglacial chronology (Table 1). Sample ages were linearly interpolated between the varve-

dated base of Lithozone V and these tie points with thick turbidites being excluded as 

instantaneous (time-neutral) depositional events. Owing to the lack of isotopic markers in 

Lithozone I, no age model was established for the interval prior to 14 625 cal. a BP. 

The Younger Dryas/Holocene boundary in the Lake Mondsee sediment record is defined by 

both biostratigraphy, namely the top of LPAZ 6 at 1130.0 cm, and the pronounced δ18O rise 

between 1131.5 and 1130.0 cm. The assigned age of 11 580–11 540 cal. a BP is similar to the 

Lake Meerfelder Maar varve chronology (11 590 varve a BP; Brauer et al., 1999a), the 

German pine chronology (11 570 cal. a BP; Friedrich et al., 1999) and the corrected NGRIP 

GICC05 chronology (11 605–11 545 cal. a BP; Rasmussen et al., 2006; Muscheler et al., 

2008). 

Temporal resolution for pollen, stable isotope and carbon geochemistry data is in the order of 

ca. 5–60 a throughout the investigated interval, with highest resolutions across climatic 

transitions. µ-XRF measurements are continuously sub-annually resolved. 

Discussion 

http://onlinelibrary.wiley.com/doi/10.1002/jqs.1448/full#tbl1


Proxy Response to Warming at the Onset of the Lateglacial and 

Holocene 

The Pleniglacial period was characterised by predominantly clastic–detrital sedimentation, 

which reflects extensive catchment erosion favoured by the sparse, shrub- and herb-

dominated vegetation. Subsequent rapid warming at the onset of the Lateglacial Interstadial is 

clearly reflected by the marked δ18O rise at the base of Lithozone IIa (Figs 4 and 8), which 

according to the correlation with the NGRIP chronology occurred between 14 625 and 14 

565 cal. a BP. Detrital input slightly decreased but prevailed for another ca. 500 a until 14 

100 cal. a BP (base of Lithozone IIb), indicating a rather slow initial catchment stabilisation. 

During the following ca. 250 a (14 100–13 850 cal. a BP), the decrease of allochthonous 

matter flux accelerated (Fig. 4), likely as a result of the establishment of dense Pinus forests 

and related catchment stabilisation. Gradual soil development during the first ca. 750 a of the 

Lateglacial is also indicated by decreasing δ13C values, reflecting the increased supply of 13C-

depleted CO2 from soil respiration (Hammarlund et al., 1997). The timing of the Pinus 

expansion in the Lake Mondsee record around 14 000 cal. a BP is consistent with results from 

other Alpine sites (Draxler, 1977; Ammann and Lotter, 1989; Lotter, 1999; Schmidt et al., 

2002). As temperatures at the northern Alpine margin were sufficient for forest establishment 

already several hundred years earlier (Ammann, 1989), which is also indicated by the Lake 

Mondsee δ18O record, the delay in the spread of Pinus forests rather reflects not a climatic 

signal but migrational lags (Gaillard, 1985; Ammann et al., 1994) and slow soil development. 

Delayed forest establishment might have been amplified by discontinuous permafrost (Hoek, 

2001), which was preserved in the catchment area during the early Lateglacial Interstadial 

(van Husen, 1997). Permafrost persistence could also explain the high detrital matter flux 

until ca. 14 100 cal. a BP, as reduced seepage would have caused enhanced surface runoff and 

erosion (Stebich et al., 2009). Although microscopic evidence for the first occurrence of 

endogenic calcite at the base of Lithozone IIa clearly indicates a synchronous productivity 

increase in response to the warming at about 14 600 cal. a BP, the major rise in Ca counts and 

TIC contents occurred only after 14 100 cal. a BP. This might be related to dilution effects 

through the dominant detrital matter flux (Loizeau et al., 2001) during the first ca. 500 a of the 

Lateglacial Interstadial. 

In contrast to the gradual environmental changes at the onset of the Lateglacial Interstadial, 

environmental response to the Holocene warming was more rapid and reveals less 

pronounced leads and lags between proxy data (Fig. 9). Both the reduction of surface runoff 

and the increase in calcite precipitation started synchronously with the rapid 2‰ δ18O rise, but 

continued for further ca. 60 a after δ18O had already reached Holocene levels. Also the decline 

of shrub vegetation and the recovery of Pinus forests occurred parallel to the pronounced δ18O 

rise between ca. 11 580 and 11 540 cal. a BP. In particular, the biostratigraphically defined 



end of the Younger Dryas (LPAZ 6) coincides with the end of the δ18O rise. Immediate forest 

recovery in response to the temperature rise was possible because Pinus forests had survived 

locally during the Younger Dryas, proving the importance of ecological preconditions for the 

reflection of climatic changes in the pollen record (cf. Jones et al., 2002). 

Proxy Response to Cooling at the Onset of the Younger Dryas 

Climatic deterioration at the beginning of the Younger Dryas is well reflected by a 2.5‰ drop 

in δ18O between ca. 12 760 and 12 590 cal. a BP. The slight Pinus decrease, which started 

already parallel to the δ18O drop, was followed by the increase of NAP (used for the 

biostratigraphic definition of the Younger Dryas onset at the base of LPAZ 6) within the 

second half of the oxygen isotope decrease at about 12 640 cal. a BP. This indicates a short 

response time of local vegetation to climatic forcing. Simultaneous changes in vegetation and 

oxygen isotopes at the onset of Younger Dryas have also been described from Switzerland 

(Ammann et al., 2000) and Poland (Goslar et al., 1993). In the Lake Mondsee record, the 

expansion of shrub, grassland and herb communities at the base of LPAZ 6 was accompanied 

by a reduction in tree pollen concentrations, indicating opening of forest cover and reduced 

flowering in response to cooler climate conditions (Rundgren and Ingólfsson, 1999). 

However, vegetation feedback was not as pronounced as at sites closer to ecotone boundaries, 

i.e. at higher altitudes (Ammann et al., 1993; Birks and Ammann, 2000; Wick, 2000) or closer 

to the remaining Scandinavian Ice Sheet (Goslar et al., 1993; Litt and Stebich, 1999; Merkt 

and Müller, 1999). 

In contrast to the vegetation response, changes in the sedimentation regime around the onset 

of the Younger Dryas were rather complex. Microfacies analysis reveals a first minor increase 

in detrital matter flux (reappearance of faint silt–clay laminae) parallel to the onset of the δ18O 

decrease. This indicates that, similar to the end of the Younger Dryas, a subtle 

sedimentological change occurred synchronously with the climatic shift. However, more 

pronounced changes in the sedimentation regime as the reduction of calcite precipitation and 

the increase of allochthonous flux only occurred at the end of the temperature decrease around 

12 620 cal. a BP and continued for ca. 60 a after δ18O had already reached the low Younger 

Dryas level (Fig. 9). The delay in the reduction of calcite precipitation is difficult to explain 

because the presence of endogenic calcite in the sediments is influenced by a variety of 

factors, e.g. temperature, lake productivity or water chemistry. For example, a gradual 

increase in aridity or the establishment of permafrost might have reduced the availability of 

carbonate ions through groundwater flux and thus caused a delayed reduction in calcite 

precipitation. It could also reflect temperature threshold effects as endogenic calcite formation 

can persist even under low temperatures (Ohlendorf and Sturm, 2001). Moreover, also 

seasonality might have played a role as endogenic calcite formation is a proxy for 



spring/summer conditions and there is evidence from model studies (Isarin et al., 1998) and 

proxy data (Lücke and Brauer, 2004) that Younger Dryas winter cooling was more severe 

than the drop in summer temperatures. The delay in the first occurrence of distinct turbidites, 

which were deposited only ca. 130 a after the general increase of detrital flux, could be related 

to the gradual build-up of discontinuous permafrost in the catchment (cf. Stebich et al., 2009), 

but might also reflect the persistence of perennial snow fields or the build-up of small local 

glaciers in the Northern Calcareous Alps. 

Proxy Response to Short-Term Lateglacial Coolings 

The relatively warm conditions during the Lateglacial Interstadial are punctuated by three 

short negative δ18O excursions of 0.8–1.5‰, labelled as Mo-LG1, Mo-LG2 and Mo-LG3, 

which are interpreted as cold intervals (Fig. 8). 

Mo-LG1 is characterised by a ∼1.5‰ drop in δ18O, which lasted about 140 a (ca. 13 985–13 

845 cal. a BP) and corresponds to Greenland isotope substage GI-1d (Björck et al., 1998), the 

Aegelsee oscillation in Switzerland (Lotter et al., 1992) and a period of higher detrital flux 

(MK-4) in Lake Meerfelder Maar (Brauer et al., 2000). Rapid fluctuations superimposed on 

the general decrease in δ18O may result from the high temporal resolution (ca. 4 a per sample) 

during this interval as a consequence of the high sedimentation rate in Lithozone IIb. As Mo-

LG1 occurred still within the 750 a period of elevated detrital matter flux during the early 

Lateglacial Interstadial, the δ18O decrease is not clearly reflected by sedimentological changes 

(Fig. 8). Also vegetation development reveals an ambiguous response to the Mo-LG1 cooling 

as the replacement of Juniperus by Pinus forests rather indicates successive forest 

stabilisation than climatic deterioration. Thus climatic and vegetational development during 

this period appear to be decoupled, most probably owing to the superimposed migration 

processes (Ammann et al., 1994). 

Cold interval Mo-LG2, which is characterised by a ∼1.0‰ drop in δ18O, lasted ca. 155 a (ca. 

13 625–13 470 cal. a BP). It correlates to a short period of lower δ18O values in the Lake 

Ammersee record (von Grafenstein et al., 1999a), to the ca. 180 a long isotope substage GI-

1c2 in the Greenland ice core records (Björck et al., 1998; Rasmussen et al., 2006) and 

probably to the Older Dryas pollen zone in the Eifel Maar lakes (Brauer et al., 2000). In 

contrast to Mo-LG1, the δ18O decrease coincides with a marked negative oscillation in Ca 

counts and TIC contents, reflecting the response of calcite precipitation to decreasing 

temperatures (Brunskill, 1969; Kelts and Hsü, 1978). Two distinct negative spikes in the Ca 

record and corresponding positive Al peaks are due to the presence of discrete clay layers 

(Figs 3 and 8), reflecting siliciclastic detrital matter deposition by extreme surface runoff 

events. The direct coupling between climate change and sedimentological response during 



cold interval Mo-LG2 provides evidence that under certain conditions even sedimentation in a 

large lake system is sensitive to minor climate changes. In contrast to the clear 

sedimentological shift, the pollen record reveals only a subdued response during Mo-LG2, 

suggesting that local forest cover at this time was sufficiently stable to compensate for the 

low-amplitude cooling. Although subtle changes in different Pinus species (Schmidt et al., 

2002) cannot be excluded, the temperature decrease was, even if higher herb pollen and lower 

Pinus and Betula concentrations indicate a slight reduction in forest cover, not sufficient to 

exceed a critical threshold necessary for a major shift in forest composition. This probably 

reflects a certain insensitivity of vegetation at sites far from ecotone boundaries to small-scale 

climatic changes (Wohlfarth et al., 1994; Walker, 1995). 

The ∼0.8‰ decrease in δ18O during Mo-LG3 lasted for ca. 290 a (ca. 13 125–12 835 cal. a 

BP) and corresponds to Greenland isotope substage GI-1b (Björck et al., 1998) and the 

Gerzensee oscillation in Switzerland (Eicher and Siegenthaler, 1976; Lotter et al., 1992). The 

peak amplitude of the gradual δ18O decrease appears to be smaller than for the preceding two 

cold intervals, which is different than in Lake Ammersee (von Grafenstein et al., 1999a) and 

the Greenland ice cores (Rasmussen et al., 2006) and might be related to variations in local 

hydrology. The temperature decrease during Mo-LG3 was directly paralleled by a reduction 

in calcite precipitation after about 13 125 cal. a BP, reflected by drops in TIC contents and Ca 

counts (Fig. 8). Moreover, rising temperatures at the end of Mo-LG3 (ca. 12 910–12 835 cal. 

a BP) were paralleled by immediately increasing endogenic calcite contents. It is also striking 

that even the gradual δ18O decrease by about 0.5‰ during the ca. 135 a prior to Mo-LG3 is 

reflected by fluctuations in endogenic calcite contents. Although two discrete clay layers, 

reflected by discrete Al peaks, indicate sporadic surface runoff events, the interval between 

ca. 13 615 and 12 620 cal. a BP is characterised by rather low detrital contents and thus low 

erosion rates. This might be related to (i) increased aridity and thus decreased snow 

meltwalter discharge/surface runoff, (ii) increased infiltration of precipitation due to the 

disappearance of permafrost or (iii) further soil stabilisation through the spread of dense and 

stable late Allerød forest communities dominated by Pinus. Their ability to compensate low-

amplitude cooling (Lotter et al., 1992; Wick, 2000) would explain the lack of a clear 

vegetational response to the Mo-LG3 cooling. The subdued reaction is restricted to slight 

reductions in the concentrations of tree pollen and Dryopteris filix-mas spores, indicating 

reduced flowering due to climatic cooling during this interval. 

Conclusions 



The combination of continuous microfacies data and sub-decadally to sub-annually resolved 

multi-proxy analyses provides new information on the environmental response of a rather 

large pre-Alpine lake system to rapid Lateglacial climatic fluctuations. 

Major warmings at the onset of the Lateglacial and Holocene reveal differential 

environmental responses, largely controlled by the ecological and climatic preconditions. 

While lake productivity responded immediately to the warming at 14 600 cal. a BP, the spread 

of woodlands in the surroundings and the decrease of detrital flux lagged the temperature 

increase by 500–750 a. Causes for the delay were persistent permafrost, plant-specific 

migrational lags and slow catchment stabilisation. In contrast, immediate ecosystem recovery 

within ca. 100 a in response to the Holocene temperature rise was favoured by already 

established forest cover and stable soils. 

Shifts in local vegetation and temperature at the onset of the Younger Dryas occurred broadly 

synchronously. Although subtle sedimentological changes occurred at about the same time, 

the pronounced reduction of calcite precipitation, the general increase of detrital flux and the 

deposition of distinct detrital layers lagged the onset of the cooling by 150–300 a. This 

complex sedimentological response reflects the inertia of a large lake system, but probably 

also seasonal effects. 

Sedimentological responses to short-term Lateglacial coolings are complex and largely 

determined by the environmental preconditions. As sedimentological changes during cold 

intervals are commonly characterised by variations in detrital flux, they are better 

recognisable during intervals of mainly autochthonous sedimentation (Mo-LG2, Mo-LG3), 

but hardly detectable for intervals with predominantly detrital sedimentation (Mo-LG1). The 

absence of a clear vegetational response to the low-amplitude Lateglacial coolings indicates a 

low climate sensitivity of local Pinus woodlands once a stable forest cover was established. 
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Figure 1. Bathymetry of Lake Mondsee and simplified geological maps of the entire 

catchment and the surrounding area (modified after Nagl, 1976, and van Husen, 1989). 

Isobaths are given with corresponding depths in metres below lake level. The small river 

Kienbach, which drains the Northern Calcareous Alps, is the main source of allochthonous 

detrital material to the coring site. 

 

 



 
 

Figure 2. Correlation between the segments of cores Mo 05_01 and Mo 05_02 (grey shaded 

intervals indicate sections included in the composite profile), schematic lithological profile 

and corresponding lithozones of the Lake Mondsee sediment record. Positions of radiocarbon-

dated samples within Lithozone V are indicated by stars. Further information on AMS 

radiocarbon dating is presented in the online supporting Appendix S1. The grey shading 

between 1060.0 and 1320.0 cm corresponds to the sequence investigated in detail in this 

study. 



 
 
Figure 3. Typical sediment microfacies of different lithozones and results of µ-XRF element scanning 
of representative sediment slabs. Scanned thin sections (cross-polarised light) along the µ-XRF scans 



are displayed for comparison. Detail photographs were taken on thin sections under a Zeiss Axiophot 
polarisation microscope at 25–50× magnification with cross-polarised light and on dried sediment 
samples under a scanning electron microscope (SEM). For further explanations on the figures see the 
text. (A) Laminated sediments of Lithozone I. Silt–clay laminae (SC) are composed of a basal silt layer 
of detrital carbonates and siliciclastics which grades into a clay layer. Frequently intercalated 
turbidites (T) represent deposition by underflows. Occasional silt-sized minerogenic detritus within 
the clayey sub-layer reflects a secondary pulse of detrital flux. Dropstones within the silty sub-layer 
originate from drift-ice transport. (B) Homogeneous lake marl of mainly microcrystalline endogenic 
calcite in Lithozone III. Two intercalated distinct clay layers (high Al and low Ca counts) and a 
turbidite composed of detrital carbonates (high Mg and intermediate Ca and Al counts) reflect 
occasional surface runoff events. The µ-XRF cross-plot reveals the high abundance of endogenic 
calcite (Ca counts) and low amounts of dolomitic detritus (Mg counts). (C) Faintly laminated sediment 
of Lithozone IV. Distinct turbidites intercalated within the silt–clay laminae are reflected by high Mg 
counts, whereas Ca and Al counts remain on a low/intermediate level. The µ-XRF cross-plot reflects 
the continuing presence of endogenic calcite (Ca counts) but also increased amounts of dolomitic 
detritus (Mg counts). 
 
 
 

 
 
Figure 4. Results of µ-XRF element scanning (thin lines: measurements at 200 µm resolution; thick 
lines: 25-point running mean) and carbon geochemistry analyses obtained from the Lake Mondsee 
sediments across the Last Glacial–Holocene transition. µ-XRF Mg counts reflect input of detrital 
dolomite and Al counts those of detrital siliciclastics, whereas Ca counts and TIC contents reflect 
variations in the abundance of endogenic calcite. 
 



 
 

Figure 5. Results of stable isotope measurements on juvenile ostracod (Candona neglecta and 

Fabaeformiscandona harmsworthi) valves obtained from the Lake Mondsee sediments across 

the Last Glacial–Holocene transition. δ
18

O values, which are considered as a temperature 

proxy, are not corrected for the species-specific vital offset. 



 



Figure 6. Pollen percentage/concentration diagram for Lake Mondsee for selected taxa. 

Outline curves in the percentage diagrams represent a 10× exaggeration. Pollen 

concentrations are given as pollen grains per cm
3
 dry sediment. 

 
 
Figure 7. (A) Age–depth model for the Lateglacial part of the Lake Mondsee sediment record based 
on wiggle matching between the δ18O records from Lake Mondsee and NGRIP, the latter plotted 



according to the GICC05 chronology (Rasmussen et al., 2006), corrected by an offset of −65 a 
(Muscheler et al., 2008). For further information on the chronological tie points see the text and 
Table 1. (B) Comparison of the NGRIP, Lake Mondsee and Lake Ammersee (von Grafenstein et al., 
1999a) δ18O records. Solid lines and arabic numerals in both figures indicate the six tie points used 
for the construction of the Lateglacial age model (Table 1). The varve counting-based age of 11 
507 varve a BP for the base of Lithozone V at 1129.0 cm in the Lake Mondsee record is used as an 
additional tie point for the Lateglacial age model. Additional dashed lines reveal the close agreement 
between the records. Slight differences between the Lake Mondsee and Lake Ammersee δ18O 
records prior to ca. 13 500 cal. a BP might be an artefact of the different approaches used for 
establishing the chronologies 
 
 
 
 

Table 1. Chronological tie points used for the establishment of the 

Lateglacial age–depth model of the Lake Mondsee sediment record. 

Isotopic marker points in the Lake Mondsee δ18O record are given with 

their depth in the composite profile and corresponding ages in the 

NGRIP record (Rasmussen et al., 2006). Sample ages between these tie 

points were interpolated linearly. 

Marker 

point 
Marker point description 

Age 

(cal. a 

BP) 

Lake Mondsee 

composite depth 

(cm) 

 *  

The Greenland GICC05 chronology (Rasmussen et al., 2006) was transferred 

from years b2k (before AD 2000) into cal. a BP (before present/AD 1950) 

and shifted by −65 a (Muscheler et al., 2008). 

  

Base of Lithozone V in Lake 

Mondsee, age determined by 

varve chronology 

11 507 1129.00 

1 
End of GI-1/GS-1 transition in 

Greenland 
12 625* 1169.25 

2 
Onset of Greenland isotope 

substage GI-1c2   
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Figure 8. Detailed comparison of selected proxy data from the Lake Mondsee sediment record during 
the Lateglacial Interstadial. Grey shaded areas indicate periods of major proxy changes given with 
their approximate duration in years. Oxygen isotope ratios obtained from juvenile ostracod valves 
(not corrected for the species-specific vital offset) are considered as a temperature proxy. Thin lines 
in the results of µ-XRF element scanning represent measurements at 200 µm resolution. Thick lines 
indicate a 25-point running mean. Small-scale cold events seen in the oxygen isotope record (Mo-LG2 
and Mo-LG3; for further explanations see the text) are reflected by reductions in TIC and Ca counts, 
both considered as a proxy for biochemically precipitated calcite. Al counts reflect the corresponding 
increase of siliciclastic detrital input and particularly the occurrence of clay layers during cooling 
events Mo-LG2 and Mo-LG3. The Pinus pollen record reveals that small-scale coolings had no/only 
minor influence on local forest vegetation. 
 



 
 

 
 
Figure 9. Detailed comparison of selected proxy data from the Lake Mondsee sediment record across 
the Allerød–Younger Dryas and Younger Dryas–Holocene transitions. Grey shaded areas indicate 
periods of major proxy changes with their approximate duration given in years. Oxygen isotope ratios 
obtained from juvenile ostracod valves are not corrected for the species-specific vital offset. Thin 
grey lines in the results of µ-XRF element scanning represent measurements at 200 µm resolution. 
Thick coloured lines indicate a 25-point running mean. µ-XRF Ca counts are considered as a proxy for 
biochemically precipitated calcite, whereas Mg counts reflect detrital input (dolomite). Pollen 
records of NAP and Juniperus are plotted as representatives for shrub/herb vegetation. 
 
 


