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Abstract 

With a cratonic nucleus, the North China Craton (NCC) experienced a complex tectonic 

evolution with multiphase compressional and extensional events during Mesozoic times. 

Along the northern part of the NCC, the Yinshan–Yanshan fold and thrust belt was a typical 

intraplate orogen. Jurassic and Cretaceous continental sedimentation, magmatism, widespread 

intraplate characterize the Yinshan–Yanshan orogenic belt. The geodynamic significance of 

these tectonic events is still in dispute. In the western part of the Liaoning province, the 

Yiwulüshan massif crops out at the eastern end of the Yinshan–Yanshan orogenic belt. The 

Yiwulüshan massif presents an elliptical domal shape with a NE–SW striking long axis. The 

structural evolution of this massif brings new insights for the understanding of the Mesozoic 

plutonic–tectonic history of the NCC. A multidisciplinary study involving structural geology, 

geochronology, Anisotropy of Magnetic Susceptibility (AMS) and gravity modeling have 

been carried out. The presentation of the new results splits into two parts. Part I (this paper) 

deals with field and laboratory structural observations, and presents the main 

geochronological results. The AMS, gravity modeling data will be provided in a companion 

paper (Part II). The early compressional deformation (D1) corresponds to a Late Jurassic to 

Early Cretaceous southward thrusting. The subsequent deformation is related to the Early 

Cretaceous exhumation of the Yiwulüshan massif. A detailed structural analysis allows us to 

distinguish several deformation events (D2, D3, and D4). The Cretaceous extensional 

structures, such as syntectonic plutons bounded by ductile normal faults, metamorphic core 

complexes, and half-graben basins are recognized in many places in East Asia. These new 

data from the Yiwulüshan massif constitute a link between Transbaikalia, Mongolia, North 

China and South China, indicating that NW–SE extensional Mesozoic tectonics occurred 

throughout the entire region. 



Highlights 

► Structural geology and geochronology improve the knowledge of the NCC destruction. ► 

The Yiwulüshan massif is an example of deformation from compression to extension. ► New 

data link extensional tectonics of North China, Transbaikalia, and South China. 
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1. Introduction 

After its Neoarchean to Proterozoic evolution ( [Zhao et al., 2003], [Faure et al., 2007], [Trap 

et al., 2007] and [Zhai and Santosh, 2011]), the North China Craton (NCC) experienced a 

complex tectonic evolution during Late Paleozoic–Mesozoic times (e.g. [Yin and Nie, 1993], 

[Yin and Nie, 1996], [Davis et al., 2001], [Kusky and Li, 2003] and [Kusky, 2011]). The 

Qinling–Dabie belt is the boundary between the NCC and South China Blocks (SCB). The 

presence of UHP metamorphic rocks attest to a very deep subduction of the continental crust 

of the SCB below the NCC (e.g., [Mattauer et al., 1985], [Yin and Nie, 1993], [Faure et al., 

1999], [Faure et al., 2003], [Ratschbacher et al., 2003], [Hacker et al., 2006] and [Hacker et 

al., 2009] and references therein). To the north, the Solonker suture zone (Fig. 1) corresponds 

to the collision zone between the NCC and the Paleozoic Mongolian magmatic arcs ( [Sengor 

and Natal'in, 1996], [Xiao et al., 2003] and [Chen et al., 2008] and references therein). The 

age of the collision remains debated, from Early Paleozoic to Early Triassic times ( [Wang 

and Liu, 1986], [Xu and Chen, 1997], [Xiao et al., 2003] and [Shang, 2004]). Whatever the 

geodynamic models, it is well acknowledged that the amalgamation of the NCC with 

neighboring blocks was completed in Late Triassic. These two collisional events were 

followed by a localized Jurassic to Early Cretaceous compressional deformation ( [Davis et 

al., 1996] and [Davis et al., 2001]) and widespread Early Cretaceous to Eocene extensional 

structures are responsible for lithospheric thinning ( [Zhai et al., 2004], [Lin and Wang, 

2006] and [Li et al., 2011a]). Unlike most of Precambrian cratons that have thick sub-

continental mantle lithospheric roots, the mantle lithosphere beneath the NCC is considered to 

be less than 80 km owing to these tectonic events. The old and thick Archean mantle 

lithosphere beneath the NCC is believed to have been replaced by juvenile lithospheric mantle 

(Wu et al., 2008 and reference therein; Yang and Wu, 2009). The processes and mechanisms 

of the destruction of the NCC have become a topic of interest in Earth sciences worldwide 

(Carlson et al., 2005). 



 

Fig. 1. Simplified geological map of the eastern Yinshan–Yanshan belt and the location of the 

Yiwulüshan massif (modified from Du et al., 2007). 

In the northern part of the NCC, the Yinshan–Yanshan fold and thrust belt (or Yinshan–

Yanshan belt) is a typical intraplate orogen that extend east–west, at about 40°N latitude, from 

west of the Tan-Lu fault and western Liaoning province to the western Inner Mongolia along 

more than 1000 km (Fig. 1). Jurassic coal-bearing clastics and continental volcano-

sedimentary units unconformably overlay the older units ranging in age from Archean to 

Triassic (HBGMR, 1989). The geology of the Yinshan–Yanshan belt (Fig. 1) has attracted the 

attention of Chinese geologists for about one century (e.g. Wong, 1929). The Jurassic–

Cretaceous “Yanshanian” Orogeny was named after this region and, subsequently, applied to 

all the Jurassic–Cretaceous tectonic events throughout China. The Yinshan–Yanshan belt is 

characterized by Jurassic and Cretaceous continental sedimentation, magmatism, and 

widespread intracontinental tectonics with several compressional, extensional, and strike-slip 

deformation phases ( [Davis et al., 1998] and [Davis et al., 2001]). The origin of the Yanshan–

Yinshan belt was variously interpreted to be related to i) the collision between Siberia and 

Mongolia after the closure of the Mongol–Okhotsk Ocean (Yin and Nie, 1996), ii) the 

subduction of the Paleopacific plate beneath Eastern Eurasia ( [Xu and Wang, 1983], [Zhu et 

al., 2011a] and [Zhu et al., 2011b]), iii) the interactions of north–south Eurasian intraplate 

deformation and northwestward Pacific Ocean subduction and attendant arc magmatism 

(Davis et al., 2001) or iv) formed independently of plate interactions in Eastern Asia (e.g. Cui 

and Wu, 1997). A multidisciplinary study has been carried out in the Yiwulüshan massif, 

which is a typical area of the Yinshan–Yanshan fold and thrust belt that recorded Mesozoic 

polyphase deformation events. Several approaches have been applied, such as structural 

geology, 
40

Ar/
39

Ar geochronology on different potassium rich minerals, U–Pb geochronology 

on zircon, Anisotropy of Magnetic Susceptibility (AMS) on granite massif and gravity 

modeling on granite. The AMS and gravity data will be presented in the companion paper 

(Lin et al., this issue). 



2. Geological overview of Yiwulüshan massif as the witness of Late Mesozoic 

compression and extension in the Yinshan–Yanshan belt 

In the eastern end of the Yinshan–Yanshan belt, the Yiwulüshan massif (Fig. 1) is a typical 

region that illustrates the tectonic evolution of the Yinshan–Yanshan belt. The Yiwulüshan 

massif is bounded to the east by the NNE-trending Cretaceous to Eocene Xia–Liaohe 

depression, the northern part of the Bohai Bay basin, and to the west by the Fuxin–Yixian 

Cretaceous graben (Fig. 1 and Fig. 2; Li et al., 2011b). The Yiwulüshan massif can be divided 

into three main litho-tectonic units which are, from bottom to top: 1) an orthogneissic 

monzogranitic unit of Neoarchean or Paleoproterozoic metamorphic rocks considered to 

represent the basement rocks of the Yinshan–Yanshan belt ( [LBGMR, Liaoning Bureau of 

Geology and Mineral Resources, 1989], [Ma et al., 1999] and [Zhang et al., 2002]); 2) a 

plagioclase–amphibolite and micaschist unit of Paleoproterozoic age ( [LNBGMR-Yixian, 

1970] and [LBGMR, Liaoning Bureau of Geology and Mineral Resources, 1989]); and 3) a 

Mesoproterozoic to Mesozoic sedimentary cover ( [LNBGMR-Yixian, 1970], [Ma et al., 

1999], [Ma et al., 2000] and [Zhu et al., 2003]). These three units are intruded by several 

generations of Mesozoic plutons. 



 

Fig. 2. Structural map of the Yiwulüshan massif. 

Located near the Beizhen city, the Yiwulüshan massif presents an elliptical shape of ca 

60 × 30 km
2
 with a NNE–SSW oriented long axis (Fig. 2). According to previous studies and 

our own field work, the Yiwulüshan massif essentially exposes metamorphic and granitic 

rocks ( [Ma et al., 1999], [Ma et al., 2000] and [Darby et al., 2004]). The Jurassic plutons 

intrude into the metamorphic rocks (Fig. 2). The basement rocks can be separated into two 

parts: gray to black and gray to white porphyritic orthogneiss, and metasedimentary rocks 



with amphibolite, plagioclase–amphibolite, micaschist, and magnetite quartzite. Most of the 

sedimentary rocks belong to Mesoproterozoic to Mesozoic series (LBGMR, Liaoning Bureau 

of Geology and Mineral Resources, 1989; Fig. 2). In the eastern and northern parts of the 

massif, Mesoproterozoic to Neoproterozoic (Changcheng to Wumishan Groups) rocks consist 

of carbonates (limestone, dolomite and marble), sandstones, and quartzites (LNBGMR-

Yixian, 1970). The Paleozoic series does not crop out in the research area, but more to the 

west, near the Fuxin–Yixian basin, the Paleozoic series can be observed, except for the Late 

Ordovician to Middle Carboniferous formations (Fig. 1). 

The Mesozoic strata are well defined from a large opencast coal mine in the Fuxin–Yixian 

basin, which is situated to the north of the research area. From bottom to top, the “Yixian 

Formation” is mostly formed by volcanic rocks of mafic, intermediate-felsic, and felsic 

compositions, and several intercalated sedimentary layers. The ages of the volcanic rocks 

range from 135 to 120 Ma ( [LBGMR, Liaoning Bureau of Geology and Mineral Resources, 

1989] and [Peng et al., 2003]). The “Jiufotang Formation” consists of shale and siltstone 

deposited in deep lacustrine sedimentary environment (Wang et al., 1998b). The upper part of 

the series is represented by the “Shahai Formation” sandstone and siltstone of deep to shallow 

water lacustrine sedimentation ( [LBGMR, Liaoning Bureau of Geology and Mineral 

Resources, 1989] and [Li, 1994]). 

Mesozoic granitoid plutons occupy most part of the massif (Fig. 2). On the basis of 

petrological and geochronological studies, two groups of plutonic rocks can be distinguished 

in the study area. The Lüshan pluton, situated in the central part of the massif, is the largest 

Mesozoic pluton in the western Liaoning province. It is composed of medium to fine-grained 

gray-colored monzogranite and granodiorite. Plagioclase, K-feldspar, amphibole, biotite and 

muscovite are the dominant minerals; garnet occurs as accessory phase (LBGMR, 1989). The 

geochronological studies from the Lüshan pluton reveal a large time span: the method of 

SHRIMP U/Pb and ICP-MS have been carried on zircon, the former yields late Jurassic ages 

of 162.8 ~ 153.5 Ma; while the latter yield ages of 153 ± 2 Ma, 163 ± 3 Ma, and 

152.6 ± 1.8 Ma ( [Wu et al., 2006], [Yin, 2007] and [Zhang et al., 2008]). On the west of the 

pluton, the granitic rocks are deformed and even mylonitized. The mylonitization is well 

developed along the western margin of pluton and decreases towards the center. But, in fact, 

the deformation is not homogeneous, several centimeters scale mylonitic zones have been 

observed inside the pluton. Lying to the western part of the massif, the Jianshilazi and 

Guanyindong plutons are entirely composed of biotite bearing monzogranite and granodiorite. 

Geochronology indicates similar intrusion ages as for the Lüshan pluton ( [Darby et al., 

2004] and [Wu et al., 2006]). In the south and east of the Yiwulüshan massif, a medium to 

fine-grained tonalite and adamellite Shishan pluton crops out (Fig. 2). However, according to 

recent ICP-MS zircon U–Pb age of 123.0 ± 3.0 Ma, this pluton must be considered as an early 

Cretaceous intrusion (Wu et al., 2006). 

In the Yiwulüshan massif, deformation features were considered by previous workers to have 

been formed in a variety of tectonic settings: 1) On the basis of the ductile shear zone 

observed along the western side of the massif, which was considered to extend for more than 

150 km (LBGMR, 1989), a “Yanshanian” (Jurassic to Cretaceous) or “Indosinian” (Late 

Triassic) metamorphic core complex (MCC) has been suggested (Lü and Liu, 1994). 2) 

According to the understanding of the geometry and the deformation, [Ma et al., 

1999] and [Ma et al., 2000] and Zhu et al. (2003) considered that the Yiwulüshan massif was 

a “Yanshanian” MCC, as suggested, by the detachment fault situated along the western 

margin of the massif. But they proposed a “symmetric” MCC structure. 3) After their 



40
Ar/

39
Ar dating of the ductile shear zones situated to the northern and northwestern parts of 

the massif, Zhang et al. (2002) distinguished two stages of ductile deformation: namely, an 

early, dextral one with a late Triassic age (219 ± 4 Ma) and a Cretaceous extensional and 

sinistral strike-slip one characterized by 
40

Ar/
39

Ar ages comprised between 116 ± 2 Ma and 

127 ± 3 Ma, and superimposed on the late Triassic shear zone. 4) Concentrating on the 

regional Jurassic compressional deformation, Zhang et al. (2004) interpreted the NE–SW 

structures along the western margin of Yiwulüshan massif as due to a sinistral strike-slip 

related to a Jurassic thrust. 5). On the basis of the structural analysis, especially the kinematics 

along WNW–ESE mineral and stretching lineation, Darby et al. (2004) emphasized the NE–

SW striking structures along the western margin of the Yiwulüshan massif, as the Waziyu 

detachment fault, and renamed the Yiwulüshan MCC as the Waziyu MCC. The top-to-the-W, 

or WNW, shearing and its geochronological age around 127–116 Ma was first mentioned by 

Darby et al. (2004). 6) On the basis of geochemistry, Liu et al. (2000) interpreted the Lüshan 

monzogranite as a syntectonic granite emplaced in an extensional tectonic setting. 

3. Structural analysis in the Yiwulüshan massif 

3.1. Lithological units and bulk architecture of the Yiwulüshan massif 

The Yiwulüshan massif is a metamorphic NE–SW trending structure bounded by Mesozoic 

and Cenozoic basins, the Fuxin–Yixian basin and the Xia–Liaohe Depression to the west and 

to the east, respectively (Fig. 2). The Fuxin–Yixian Basin is filled by various continental 

sedimentary rocks alternating with unmetamorphosed basaltic and andesitic lava flows. 

According to paleontological data and lithological correlations, these rocks are likely late 

Jurassic to early Cretaceous age ( [LBGMR, Liaoning Bureau of Geology and Mineral 

Resources, 1989] and [Zhang et al., 2005]). 

The bulk architecture of the Yiwulüshan massif is dominated by a NE–SW elongated dome, 

which results from a polyphase evolution (Fig. 2 and Fig. 3). The heterogeneously deformed 

monzogranite forms the core of the dome. In the central part, the major part of the pluton is 

not or weakly foliated. In some place, magmatic foliations can be observed 

(Fig. 2 and Fig. 4A). Our field work indicates that the mafic enclaves and K-feldspar 

megacrysts exhibit a preferred NE–SW orientation (Fig. 5B). Centimeter-thick mylonitic 

zones can be observed in several places (Figs. 4B, 5A). In the pluton margins, especially on 

the Northern and Western parts, the deformation is relatively strong as suggested by the 

conspicuous development of the foliation (Fig. 2 and Fig. 3A,B). Wherever the places are in 

the massif, the post-solidus foliation in the Lüshan, Jianshilazi and Guanyidong plutons 

exhibits a relatively low dip (Fig. 5A). Near the boundary between the granite and country 

rocks, for example at Dawansangou, in the NW of the massif, centimeter scale oriented 

xenoliths of orthogneiss and amphibolite exhibit foliations both parallel to the granite-host 

rock contact and the foliation in the country rocks (Fig. 2). 



 

Fig. 3. Cross-sections though the Yiwulüshan massif and Fuxin–Yixian basin (the pluton roots are 

hypothetic. Location in Fig. 2 and figure captions are the same as in Fig. 2). A: Cross-section drawn 

parallel to the direction of the D1 southwestward deformation; B: Cross-section drawn parallel to the 

direction of the D2 northwestward deformation; C: Seismic profile parallel to the D2 extensional 

direction (re-interpretation from Wang et al., 1998b). 



 

Fig. 4. Photographs showing the various lithologies of the Yiwulüshan massif. A. Magmatic foliation in 

the undeformed monzogranite (41°28.201′, 121°37.099′); B. Post-solidus lineation in the foliated 

monzogranite (41°37.560′, 121°28.561′); C. Undeformed pegmatite (Pg) intrusive into the foliated 

micaschist (Ms) and Monzogranite (Mg) (41°22.241′, 121°30.588′); D. Unfolded pegmatite vein and 

boudinaged pegmatite (Pg), the later cut the well foliated amphibolite (Am) and foliated interlayered 

monzogranite (Mg) intrusion (41°32.590′, 121°33.678′); E. Pegmatite vein cutting the undeformed 

granodiorite and monzogranite vein (41°33.629′, 121°37.085′); F. Pegmatite vein intrusive into the 

unfoliated monzogranite massif (41°32.009′, 121°40.106′). 

 



 

Fig. 5. Structural planar and linear elements of the Yiwulüshan Massif: bedding, foliation, mineral and 

stretching lineation and fold axis. All diagrams are equiareal Schmidt net, lower hemisphere (figure 

captions are the same in Fig. 2). 

 



Around these granitoids, the Precambrian units comprise the Late Archean and 

Paleoproterozoic Jianping and Waziyu Groups, (Fig. 2). The Jianping Group is composed of 

monzogranitic gneiss, gneissic tonalite, biotitic plagio-amphibolite, biotitic plagio-gneiss, 

amphibolite, quartzite, and lenticular marble (LBGMR, 1989). The foliated, even mylonitic, 

monzogranitic gneiss and gneissic tonalite constitute the main part of this metamorphic unit 

(LNBGMR-Yixian, 1970). From a lithological point of view, it is difficult to separate the 

Archean monzogranitic gneiss and the foliated Jurassic monzogranite ( [LNBGMR-Yixian, 

1970] and [Wu et al., 2006]). The Waziyu Group, mainly exposed in the northwest, north and 

east of the massif, consists of micaschist, two-mica quartz-schist, sericite quartz-schist, 

quartzite, and metapelite (Fig. 2; LNBGMR-Yixian, 1970). In the NW part of the massif, near 

the Waziyu city, these rocks are strongly mylonitized with a well developped NE–SW striking 

foliation slightly plunging to the northwest, and a NW–SE striking mineral stretching 

lineation (Fig. 5C). In the north of the massif, the sedimentary bedding is preserved in 

Mesoproterozoic to Mesozoic slates, quartzites, limestones, dolomite, sandstone, and volcanic 

rocks (Fig. 2). These sedimentary strata are deformed by northwestward or westward verging 

folds (Fig. 2 and Fig. 3A, 5F). In spite of local structural disturbances by the Cretaceous 

intrusions or late faulting, the systematic measurement of the planar structures (bedding, slaty 

cleavage and foliation) shows that NE–SW planar structures progressively turn to the ENE–

WSW to the west-northwest and southwest margins, and E–W in the northern and southern 

parts of the massif. This foliation pattern indicates a domal structure of the Yiwulüshan massif 

(Fig. 2 and Fig. 5J). 

Granitic veins are well developed in the Yiwulüshan massif (Fig. 4C–F). Except the 

undeformed latest stage quartz vein, at least two stages of granitic veins can be separated on 

the basis of their mineralogical composition and deformation. Namely, 1) monzogranitic, 

tonalitic and granodiorite veins, and 2) pegmatite with K-feldspar megacrysts are recognized. 

The granitic veins of the first stage commonly intrude in the orthogneiss, amphibolite, and 

micaschist that form the country rocks of the Lüshan pluton. These granitic veins exhibit a 

foliation parallel to that of the country rocks (Fig. 4C,D). As the most abundant veins in the 

Yiwulüshan massif, the foliated monzogranitic veins often extend from several hundred of 

meters to several kilometers. In the mylonitic zone, these granitic veins are boudinaged 

(Fig. 6F,G). In the Lüshan pluton, undeformed granodiorite is cut by unfoliated granitic veins, 

indicating that the different granitic facies have different emplacement time (Fig. 4E). The K-

feldspar megacrysts pegmatite veins of the secondary stage are not foliated at the scale of the 

entire massif (Figs. 4D,F). These features indicate that the pegmatite veins are not involved in 

the deformation responsible for the regional foliation. 

 



 

Fig. 6. Field-scale photographs related to Late Jurassic to Early Cretaceous top-to-the S or SW 

shearing (D1 deformation): A: NE–SW trending stretching lineation in marble in a shear zone 



developed in weakly metamorphosed Proterozoic sedimentary rocks, Kalafangzi 

(41°50.780′,121°43.040′); B: NE–SW trending mineral and stretching lineation formed by biotite and 

amphibole grains in a mylonitic amphibolite. Note that, in the granite vein (top-left), a NW–SE 

mineral and stretching lineation related to D2 is developed, east of Dayushubu village 

(41°32.590′,121°33.678′); C: NE–SW trending mineral and stretching lineation formed by biotite, 

quartz and feldspar aggregates in the mylonitic gneissic tonalite, north of Lüyang city 

(41°23.732′,121°38.239′); D: SW verging folds with NE dipping axial planes subparallel to cleavage in 

the Proterozoic quartzite and quartzo-sandstone, northeast of Beizhen city (41°36.668′,121°52.460′); 

E: SW-vergent folds and sigmoidal quartz lenses in the mylonitic plagio-amphibolite and interlayered 

quartzo-felsic vein, north of Dawangshangou village (41°42.536′,121°34.992′); F: Sigma-type 

porphyroclast system of feldspar in mylonitic plagio-amphibolite and interlayered quartzo-felsic vein, 

north of Dawangshangou village (41°42.536′,121°34.992′); G: NW–SE folded, NE–SW boudinaged, 

and top-to-the SW sheared granitic vein in a mylonitic amphibolite, east of Dayushubu village 

(41°32.755′,121°33.613′); H: Meter scale D1 shear zone developed in a monzogranitic sill intruding 

the host rock of Lüshan pluton, southeast of Dayushubu village (41°29.728′,121°31.288′). 

 

In the western boundary of the Yiwulüshan massif, close to the Fuxin–Yixian basin, the well 

expressed foliation that strikes NE–SW, and plunges slightly (10°–45°, maximum around 18–

22°, Fig. 5C) to the northwest is related to a several hectometers to kilometers thick shear 

zone called Waziyu or Sunjiawan–Shaohuyingzi detachment fault by Darby et al. (2004) and 

[Ma et al., 1999] and [Ma et al., 2000], respectively (Fig. 2 and Fig. 3C). This pervasive 

foliation contains a NW–SE striking mineral and stretching lineation, well marked by the 

preferred orientation of biotite, amphibole, K-feldspar, and quartz aggregates (Fig. 5C). More 

to the west, this fault prolongates under the Cretaceous Fuxin–Yixian basin with a low angle 

(Fig. 3C). 

3.2. Polyphase deformation 

Our field structural analysis and laboratory geochronological work allow us to recognize at 

least four successive events (referred to as D1 to D4) that can be distinguished on the basis of 

the geometry, kinematics and structural styles of the relevant macro-, meso-, micro-structures, 

and their chronological attribution. The identification of several distinct stages has been made 

in order to clarify the different structures, but obviously, the D2 to D4 events correspond to the 

same dynamics, namely extensional tectonics that prevailed during the formation of the 

Yiwulüshan MCC. 

3.2.1. Early stage compressional event (D1) 

Previous works argued that the Yiwulüshan massif was a MCC formed during a NW–SE 

extension, with a top-to-the-NW low-angle normal fault ( [Ma et al., 1999], [Zhu et al., 

2003] and [Darby et al., 2004]). In fact, this deformation (referred to as D2, in the following), 

observed mainly in the western part of the Yiwulüshan massif, is not the first one. The 

heterogeneously deformed granites and their host rocks that compose the main part of the 

massif, exhibit a pervasive foliation (S1), and ductile shear zones attributed to an earlier 

deformation event-D1 (Figs. 3A, 4B). In the central part of the Yiwulüshan massif, the S1 

foliation, developed during D1, is subhorizontal to moderately dipping to the north, the axial 



planes of isoclinal folds strike WNW–ESE (Fig. 2 and Fig. 3A, 5A,C,D,E,F,G,H,J). In 

mylonitic monzogranite, orthogneiss, amphibolite, micaschist, quartzite, and metapelite, D1 is 

also characterized by a NE–SW trending mineral and stretching lineation (L1) 

(Fig. 5A,C,D,E,F,G,H,J), represented by oriented aggregates of quartz, feldspar, muscovite, 

biotite, amphibole, epidote and chlorite (Fig. 6A–C). This indicates that D1 is coeval with a 

lower amphibolite to greenschist facies metamorphism. 

3.2.1.1. D1 deformation in the sedimentary cover 

In the sedimentary rocks exposed in the northern, northeastern, and eastern parts of the 

Yiwulüshan massif (Fig. 2), the strongly folded and mylonitized sedimentary cover also 

recorded this early deformation stage but under low metamorphic conditions. It is limited to 

the recrystallization of sericite or chlorite in the Mesoproterozoic to Neoproterozoic 

carbonates sandstones and quartzites (Fig. 6A). Bedding is often overprinted by a slaty 

cleavage and by a NE–SW trending stretching lineation marked by elongated and 

recrystallized chlorite, sericite or quartz grains (Fig. 6A,D). Northeast of Beizhen city, SW 

verging folds with NE dipping axial planes subparallel to cleavage in the Proterozoic quartzite 

and quartz–sandstone indicate the same kinematics (Fig. 6D). In thin section, cut parallel to L1 

and perpendicular to S1, several shear criteria, such as sigma-type quartz and plagioclase 

porphyroclasts and sericite and chlorite pressure shadows, can be observed in the mylonitic, 

but weakly metamorphosed pelitic rock (Fig. 7A). 



 

Fig. 7. Microphotographs showing shear criteria showing top-to-SW kinematics related to D1 phase 

deformation from various lithologies: A: Sigma-type quartz and plagioclase porphyroclasts and 

related pressure shadows in a mylonitic weakly metamorphosed pelitic rock, north of Kalafangzi 

(41°51.405′,121°42.502′); B: Asymmetric pressure shadow around K-feldspar clast in a mylonitic 

plagio-amphibolite and interlayered quartzo-felsic vein, north of Dawangshangou 

(41°42.536′,121°34.992′); C: Sigmoidal amphibole porphyroclast and oriented biotite in a mylonitic 

plagio-amphibolite, South of Waziyu city (41°38.185′,121°29.100′); D: Mica (muscovite) fish in a 

mylonitic orthogneiss, northeast of Zhangjiabu (41°29.728′,121°31.288′); E: Sigma-type quartz 

porphyroclast in a mylonitic orthogneiss, northeast of Zhangjiabu (41°29.728′,121°31.288′); F: sigma-

type porphyroclast system of quartz with asymmetric pressure shadow in a mylonitic monzogranite, 

south of Dawangshangou village (41°41.214′, 121°37.642′). 



3.2.1.2. D1 deformation in the basement rocks (micaschist, amphibolite and orthogneiss) 

More to the south, micaschist, amphibolite, gneissic tonalite and monzogranitic gneiss occupy 

almost the half part of the Yiwulüshan massif (Fig. 2 and Fig. 3A,B). Though the foliation 

trend turns around the dome showing diverse dip directions, the mineral and stretching 

lineation L1 is consistently oriented along a NE–SW strike with an average trend around 

N37°E (Fig. 2 and Fig. 5I,J, 6B,C). Whatever, the lithology: a top-to-the SW sense of shear is 

indicated by sigmoidal felsic veins, sigma-type K-feldspar, amphibole porphyroclasts, and 

SW-vergent folds at the outcrop scale (Fig. 6E,F,G,H). In thin section, mica (muscovite) fish 

and quartz, biotite, and amphibole in the pressure shadows around feldspar, amphibole and 

quartz clasts indicate the same kinematics at the scale of micro-structure (Fig. 7B–E). Under 

the microscope, quartz grains of mylonitic monzogranitic gneiss are intensely deformed by 

crystal–plastic mechanisms. For example, elongated quartz aggregates exhibit dynamic 

recrystallization microstructures such as core and mantle structure or serrated newly formed 

grains (Fig. 7D,F). Conversely, high strength minerals such as hornblende and K-feldspar are 

cataclastic and do not exhibit plastic deformation (Figs. 6F, 7C). 

The Lattice Preferred Orientation (LPO) of quartz provides useful information of the 

deformation conditions. From North to South, sample CR 102 and Y 44 come from a quartz 

layer in mylonitic plagio-amphibolite. CR 100 is micaschists samples. Y 25 comes from a 

mylonitic plagio-amphibolite as xenolith in the mylonitic orthogneiss. Y 22 and Y 24 are a 

tonalitic orthogneiss (Fig. 8). The corresponding sub-fabrics (Fig. 8) exhibit some general 

characteristics. Namely, two diagrams have an orthorhombic symmetry with four 

suborthogonal point maxima, and three samples are dominated by a single point maximum. 

The location of points along the diagram edge, between the stretching lineation (X axis) and 

the foliation pole (Z axis) indicates that basal < a > gliding system is dominant. In agreement 

with natural and experimental data (e.g. [Etchecopar, 1977], [Law, 1990] and [Passchier and 

Trouw, 1996] and references therein), such quartz fabrics develop under low to middle 

temperature conditions (i.e. 300–400 °C). Therefore, these quartz c-axis fabrics likely 

developed subsequently to the peak metamorphism experienced by the gneisses of the 

Yiwulüshan massif. This conclusion agrees with the crystallization–deformation timing since, 

as shown above, shear criteria develop after the development of the metamorphic 

assemblages. The bulk kinematic picture provided by the quartz c-axis fabrics corresponds to 

non-coaxial flow in the entire massif (Fig. 8). 



 

Fig. 8. Kinematic map for the different tectonic events in the Yiwulüshan massif and examples of 

quartz LPO obtained by universal stage measurement (figure captions are the same in Fig. 2). Arrows 

point to the sense of shear of the upper layer over the lower layer. Samples are foliated or mylonitic 

monzogranite (CR90, Y 72 and Y 74), quartz layer in mylonitic plagio-amphibolite (CR 102 and Y 37), 

and mylonitic plagio-amphibolite as xenolith in the mylonitic orthogneiss (Y 25), mylonitic plagio-

amphibolite (Y 44), micaschist (CR 100), and mylonitic orthogneiss (Y 22, Y 24, and Y 30). All diagrams 

are lower hemisphere Schmidt net drawn in the XZ section of the bulk strain ellipsoid (e.g., 

perpendicular to foliation and parallel to the mineral and stretching lineation). Contour intervals 

given as multiple of random distribution are shown for each sample. 



3.2.1.3. D1 deformation in the Mesozoic monzogranite 

Mesozoic monzogranite occupies almost half of the surface of the massif (Fig. 2). In the 

southern and western parts of the massif, the regional foliation exhibits a NE–SW trending 

mineral and stretching lineation L1 (Fig. 2 and Fig. 5A). In the deformed granite, the 

mylonitization increases from the central part to the edge of the pluton. Low plunge foliation, 

and a NE–SW trending mineral and stretching lineation (L1) are indicated by preferred 

orientation of feldspar, quartz, biotite and muscovite (Fig. 2 and Fig. 4B). Top-to-the-

southwest the sense of shear is indicated by a meter scale shear zone at outcrop scale and 

sigma-type porphyroclast systems of quartz or asymmetric pressure shadow in the thin-

sections and the LPO of quartz (Figs. 6H, 7F, and Y 72 of Fig. 8). 

For the entire Yiwulüshan massif, the D1 structures are observed in every litho-tectonic unit. 

All the kinematic criteria related to this early stage of deformation (D1) show a top-to-the-SW 

sense of shear. The D1 deformation is the dominant event in the Yiwulüshan massif, even if a 

late deformation stage (D2) changed the geometry of the western part of the massif. 

3.2.2. Main extensional deformation event (D2) 

In the western part of the massif, along the Kalafangzi–Waziyu–Chefang–Dayushubu area, a 

decameter to kilometer thick, flat-lying to west or northwest gently dipping, high strain shear 

zone developed (Fig. 2 and Fig. 3B, 3C). The NE–SW trending foliation exhibits a 

conspicuous mineral and stretching L2 lineation with a dominantly NW–SE trend, and plunges 

slightly (10°–45°, the maximum around 20°) to the northwest (Fig. 2 and Fig. 5C–F). 

Mylonites are well developed in the metapelite micaschist and orthogneiss, which form the 

main part of the western massif, the sedimentary cover and the Mesozoic granites 

(Fig. 2 and Fig. 3C, 5). The previous workers interpreted this high strain zone as a detachment 

fault, named Waziyu or Sunjiawan–Shaohuyingzi fault, respectively ( [Ma et al., 1999], [Ma 

et al., 2000] and [Darby et al., 2004]). NW–SE striking linear structures are indicated by the 

mineral and stretching lineation and the axes of intrafolial folds (Fig. 9A,B). The mineral and 

stretching lineation, L2, which is marked by preferred orientation of biotite, muscovite, 

amphibole, epidote, K-feldspars and quartz aggregates, is consistently oriented along a NW–

SE trend with a maximum around 285°/18° (Fig. 2 and Fig. 5C,D,E,I, 6B, 9A). 



 

Fig. 9. Field-scale photographs related to the Early Cretaceous top-to-the NW shearing (D2 

deformation): A: Ultra-mylonitic foliation surface of monzogranitic orthogneiss holding a well 

pronounced NW–SE trending mineral and stretching lineation consisting of biotite, quartz and K-

feldspar aggregates, east of Zhangjiabu city (41°27.447′,121°32.651′); B: Intrafolial folds of 

monzogranitic vein in the micaschist with axes parallel to the NW–SE trending D2 regional stretching 

lineation, northeast of Chefang village (41°37.584′, 121°28.547′); C: Sigmoidal monzogranitic vein and 

NW verging intrafolial fold in mylonitic micaschist, northeast of Chefang village (41°37.584′, 

121°28.547′); D: Sigmoidal interlayered quartzo-felsic vein and micaschist, and shear band indicating 

a top-to-the NW shearing along the Wuziyu detachment fault, northeast of Waziyu village 

(41°35.728′,121°27.394′); E: Asymmetric quartzose and felsic vein within the mylonitic amphibolite, 



southeast of Dayushubu village (41°30.100′,121°29.855′); F: Sigmoidal mafic enclaves within the 

ultra-mylonitic monzogranite, northeast of Zhangjiabu city (41°27.959′,121°29.871′);. 

Top-to-the-NW shear criteria are documented at the outcrop scale by sigmoidal granitic veins, shear 

band, and mafic enclaves within the ultra-mylonitic monzogranite (Fig. 8C,D,E,F). At the 

microstructural scale, the same kinematics is shown by sigma-type porphyroclast systems of 

plagioclase, quartz asymmetric pressure shadows and shear bands (Fig. 10A). Muscovite fish, shear 

bands, and quartz, chlorite, biotite, and amphibole asymmetric pressure shadows around muscovite, 

epidote, plagioclase, and quartz clasts in thin sections (Fig. 10B–G). Alike D1 deformation, quartz 

grains involved in this D2 deformation is deformed by crystal–plastic mechanisms. Conversely, the 

high strength minerals like epidote and K-feldspar are cataclastic, and do not exhibit plastic 

deformation (Fig. 10C,D). The LPO of quartz was used also to assess this D2 stage deformation 

(Fig. 8). The LPO of quartz c-axes of deformed quartz aggregates and ribbons was analyzed using a 

universal stage for four localities from foliated monzogranite (Y 74), a quartz layer in mylonitic 

plagio-amphibolite (Y 37), orthogneiss (Y 30), and mylonitic monzogranite (CR 90) (Fig. 8). Three 

samples are dominated by a single point maximum indicating the activity of basal < a > gliding 

system. Such quartz fabrics develop under low to middle temperature conditions like the D1 

deformation (i.e. 300–400 °C). 



 

Fig. 10. Examples of top-to-the NW kinematics (D2 deformation) at hand sample and microscope 

scales A: Sigma-type porphyroclast system of plagioclase with asymmetric pressure shadow and 

shear band in mylonitic micaschist involved into the Cretaceous detachment (Waziyu) fault, D2 

deformation, northeast of Waziyu (41°35.728′,121°27.394′); B: Sigma-type quartz, muscovite, and 

chlorite porphyroclasts and related pressure shadows in a mylonitic weakly metamorphosed pelitic 

rock, north of Kalafangzi (41°50.288′,121°43.555′); C: Asymmetric pressure shadow around 

plagioclase in a mylonitic weakly metamorphosed pelitic rock, north of Kalafangzi 

(41°50.288′,121°43.555′); D: Sigma-type porphyroclast system of epidote with asymmetric pressure 



shadow and shear band in mylonitic amphibolite, D2 deformation, plagio-amphibolite, northeast of 

Zhangjiabu (41°30.100′,121°29.855′); E: Asymmetric pressure shadow around plagioclase in mylonitic 

amphibolite, D2 deformation, northeast of Zhangjiabu (41°30.100′,121°29.855′). F: Mica (muscovite) 

fish in a mylonitic orthogneiss, southeast of Dayushubu (41°32.139′,121°30.529′); G: Sigma-type 

porphyroclast system of quartz with asymmetric pressure shadow in a mylonitic orthogneiss, 

southeast of Dayushubu (41°32.139′,121°30.529′). 

 

It is worth to note that, in the sedimentary rocks exposed in the northern part of the 

Yiwulüshan massif (Fig. 2), the metamorphism is weak, only represented by the 

recrystallization of sericite or chlorite in the Mesoproterozoic sandstone, pelites, muddy 

limestones or dolomite. Along this L2 lineation, a top-to-the-northwest sense of shear is 

indicated by sigma-type quartz, muscovite, and chlorite porphyroclasts and asymmetric 

pressure shadow around plagioclase (Fig. 10B,C). 

To the western side of the Yiwulüshan massif, the top-to-the-northwest kinematics is in 

agreement with the normal fault displacement: the sedimentary cover is moving downwards 

to the west. We consider that the geometry and kinematics of D2 event is related to the 

exhumation of the Yiwulüshan massif. It is worth to mention that the D2 deformation is 

globally devoid in the eastern part of the massif (Fig. 2). However, several decacentimeter-

scale shear zone with NW–SE trending mineral and stretching lineation are recognized 

(Fig. 2), and our AMS work in the NE of the Lüshan pluton reveals a NW–SE magnetic 

lineation LM2 due to a secondary magnetic fabric related to a solid-state deformation (Lin et 

al., this issue). These structures indicate that even the main detachment fault is not arched in 

the eastern part of massif, as a subbranch, several splays related to this D2 deformation had 

marked at this part (Fig. 3B). 

3.2.3. Gravity collapse folding-Late doming deformation (D3) 

Another late deformation (D3) corresponds to the folding of the planar and linear structures 

formed during the D1 and D2 event. This D3 event is characterized by different structures 

depending on the lithology. In the eastern part of the massif, in the sedimentary cover, 

Neoproterozoic quartzite and marble are deformed by NE–SW trending, and east or southeast 

verging drag folds (Fig. 11A). They are related to the southeastward displacement, normal 

motion of the eastern flank of the Yiwulüshan massif. In the gneissic amphibolite, southeast 

vergent recumbent folds with centimeter scale axial planar cleavage that deformed the D1 

foliation are also attributed to the D3 event (Figs. 11B, 5H). Similar structures are observed in 

the northwestern part of the massif, WNW vergent drags folds develop within the Proterozoic 

pelitic schist and granitic vein (Fig. 11C). North of Waziyu city, the D2 foliation and lineation 

deformed by NW vergent folds indicate a normal motion of the western flank of the massif 

(Fig. 11D). The D3 folds can be seen as gravity-driven drag-folds due to the collapse of the 

tilted series once they have reached the critical dip that allows folding of the bedding and the 

pre-D3 foliations. Therefore, at the scale of the whole massif, the post-folial folds in the 

metamorphic rocks, and some of the recumbent folds in the sedimentary cover are overturned 

to the southeast in the southeastern part of the massif, and to the northwest in the northwestern 

part, respectively. 



 

Fig. 11. Field-scale photographs related to gravity collapse folding (D3 deformation) and brittle 

normal faulting (D4 deformation): A: D3 related meter-scale fold overturned to the southeast in 

Proterozoic quartzite and marble in the eastern edge of the massif, northeast of Beizhen city 

(41°39.536′,121°53.731′); B: D3 related SE vergent recumbent fold with centimeter scale axial planar 

cleavage in gneissic amphibolite in the eastern edge of the massif, southeast of Lüyang city 

(41°20.510′,121°34.758′); C: NW vergent drag folds developing within Proterozoic pelitic schist and 

granitic vein related to the D3 deformation, western edge of the massif, north of Kalafangzi 

(41°50.228′,121°43.555′); D: D2 foliation and lineation deformed by NW vergent folds related to the 

D3 deformation in the micaschist, western edge of the massif, north of Waziyu city 

(41°41.965′,121°31.752′); E: Slickenline and fault striae related to the D4 deformation, western edge 

of the massif, north of Waziyu city (41°35.728′,121°27.394′); F: Pebbles of the mylonitic orthogneiss, 



amphibolite, micaschist, pelitic schist, and undeformed granite situated at the upper most part of 

Early Cretaceous conglomerate (Sunjiawan formation-LBGMR, 1989), northwest of Wuziyu city 

(41°44.520′,121°33.828′). 

At the scale of the Yiwulüshan massif, these northwest or southeast-vergent D3 folds observed 

in the metamorphic core and in the sedimentary cover are interpreted as the later stage of the 

same tectonic event that is also responsible for the D2 deformation. The generally flat-lying 

attitude of the axial planes is in agreement with a vertical shortening. Thus, the transition from 

D2 to D3 likely corresponds to the exhumation of the deep levels with a progressive tilting and 

partly arching of the detachment fault. 

3.2.4. Brittle extensional faulting and related basin-forming Late doming deformation (D4) 

In the western margin of the Yiwulüshan massif, a brittle deformation zone separates the 

metamorphic rocks from the sedimentary rocks of the Early Cretaceous Fuxin–Yixian basin 

(Fig. 2 and Fig. 3B,C). This deformation is represented by high-angle brittle faults. In 

previous works, the Sunjianwan–Shaohuyingzi fault was undistinguishable used to describe 

both the brittle and ductile deformations ( [LBGMR, Liaoning Bureau of Geology and 

Mineral Resources, 1989], [Ma et al., 1999], [Ma et al., 2000] and [Zhu et al., 2003]). 

Because the ductile fault was named Waziyu detachment fault (Darby et al., 2004), the 

Sunjianwan–Shaohuyingzi fault is preferred here to describe the brittle fault. Along this high-

angle brittle fault, west to northwest-dipping planes bear striations trending about N290°E, i.e. 

down-dip. Tension gashes, Riedel fractures and offset markers indicate normal displacement 

(Fig. 11E). These normal faults represent the eastern boundary of the Fuxin–Yixian graben to 

half-graben. Inside the basin, a progressive increase of the proportion of coarse deposits (i.e. 

red sandstone and conglomerate) is observed when approaching the fault. 

The sedimentological features and the tilt of the beds towards the fault suggest that normal 

faulting was coeval with the sedimentary infill of the half-graben basin (Fig. 3B). In 

summary, the D4 brittle normal faulting deforms the D2 foliation, which is folded during D3. 

These D2 to D4 events represent the same extensional tectonics, however, pebbles of the 

mylonitic orthogneiss, amphibolite, micaschist, pelitic schist, and undeformed granite are 

observed in the uppermost part of Early Cretaceous conglomerate (Sunjiawan formation) 

(Fig. 11F; Peng et al., 2003). 

4. Geochronological constraints 

During the field work, several samples were collected from the Yiwulüshan massif in order to 

constrain the timing of the different tectonics events (Table 1). Nine mineral samples have 

been dated with 
40

Ar/
39

Ar method using step-heating experiments mineral samples, which 

were carried out at IGGCAS (Institute of Geology and Geophysics, Chinese Academy of 

Sciences). One sample (CR 105) of monzogranite has been dated by U/Pb method on zircon 

via the measurements of U, Th and Pb, which were conducted in situ using the Cameca IMS-

1280 secondary ion mass spectrometry (SIMS) at IGGCAS. 

 

 



Table 1. Summary of the samples dated by 
40

Ar/
39

Ar method. 

Sam

ple 

Rock 

type 
Coordinates 

Analyz

ed 

minera

l 

Total 

age 

(Ma) 

Plateau 

age 

(Ma) 

Inverse 

isochro

n age 

(Ma) 

(
40

Ar/
36

Ar)i 

MS

WD 

Y 22 

Mylonitiz

ed 

tonalitic 

gneiss 

N 

41°17.872′;E121°

27.881′ 

Amphi

bole 

143.0 ± 

0.9 

140.9 ± 

1.8 

140.4 ± 

2.3 

319.7 ± 

51.7 
11.88 

Y 24 

Mylonitiz

ed 

orthognei

ss 

N 41°18.516′; 

E121°25.415′ 
Biotite 

96.5 ± 1

.9 

97.0 ± 1

.7 

96.6 ± 2

.6 

298.0 ± 

10.5 
4.63 

Y 25 

Enclave 

of 

amphibol

ite in 

mylonitiz

ed 

orthognei

ss 

N 41°18.516′; 

E121°25.415′ 

Amphi

bole 

138.1 ± 

0.8 

137.7 ± 

1.4 

137.3 ± 

1.5 

318.9 ± 

37.6 
13.36 

Y 37 

Mylonitiz

ed 

plagio-

amphibol

ite 

N 41°29.596′; 

E121°31.893′ 
Biotite 

126.4 ± 

1.1 

128.5 ± 

1.9 

128.9 ± 

2.3 

288.1 ± 

23.6 
22.01 

Y 44 

Mylonitiz

ed 

amphibol

ite 

N 41°42.536′; 

E121°34.922′ 
Biotite 

111.4 ± 

1.8 
– – – – 

Y 44 

Mylonitiz

ed 

amphibol

ite 

N 41°42.536′; 

E121°34.922′ 

Muscov

ite 

121.8 ± 

0.7 

121.1 ± 

0.7 

120.9 ± 

0.7 

305.6 ± 

10.1 
1.71 

Y 71 

Mylonitiz

ed 

micaschis

t 

N 41°23.732′; 

E121°38.239′ 
Biotite 

150.9 ± 

1.5 
– – – – 

Y 72 

Gneissic 

monzogr

anite 

N 41°26.187′; 

E121°35.940′ 
Biotite 

133.8 ± 

1.9 

138.7 ± 

1.8 

140.2 ± 

2.2 

285.4 ± 

10.2 
5.95 

CR 

90 

Mylonitiz

ed 

monzogr

anite 

N 41°32.439′; 

E121°29.786′ 

Muscov

ite 

118.4 ± 

1.7 

113.2 ± 

1.3 

112.9 ± 

2.4 

297.1 ± 

10.7 
3.35 

CR 

100 

Mylonitiz

ed 

N 41°42.532′; 

E121°34.988′ 

Muscov

ite 

113.9 ± 

4.2 

107.1 ± 

2.0 

106.1 ± 

3.0 

299.5 ± 

9.2 
3.47 



Sam

ple 

Rock 

type 
Coordinates 

Analyz

ed 

minera

l 

Total 

age 

(Ma) 

Plateau 

age 

(Ma) 

Inverse 

isochro

n age 

(Ma) 

(
40

Ar/
36

Ar)i 

MS

WD 

micaschis

t 

CR 

100 

Mylonitiz

ed 

micaschis

t 

N 41°42.532′; 

E121°34.988′ 
Biotite 

106.4 ± 

2.2 

98.4 ± 2

.0 

97.7 ± 4

.0 

296.5 ± 

4.8 
0.89 

Sample descriptionY 22: Southwestern part of the massif. Mylonitized tonalitic gneiss 

with NE–SW mineral and stretching lineation (L1) and top-to-the-SW sense of shear 

(D1 deformation).Y 24 and Y 25: Southwestern border of massif. Mylonitic 

orthogneiss (Y 24) with sheared amphibolite boudin (Y 25). All these two samples 

with handle scale, NE–SE mineral and stretching lineation could be observed (L1) and 

top-to-the-SW sense of shear (D1 deformation).Y 37: Western part of massif. 

Mylonitic plagio-amphibolite which intrusive by the undeformed monzogranite. On 

the foliation of plagio-amphibolite, NW–SE (L2) mineral and stretching lineation 

could be observed with top-to-the-NW kinematic (D2 deformation).Y 44: 

Northwestern part of the massif. Mylonitic plagio-amphibolite and interlayered 

quartzo-felsic vein with NE–SW mineral and stretching lineation (L1) and top-to-the-

SW sense of shear (D1 deformation, Figs. 6E,F, and 7B).Y 71: Southeastern part of the 

massif. Mylonitized gneissic tonalite with NE–SW mineral and stretching lineation 

(L1) and top-to-the-SW sense of shear (D1 deformation, Fig. 6C).Y 72: Southeastern 

part of the massif .Gneissic monzogranite with NE–SW mineral and stretching 

lineation (L1) and LPO indicated top-to-the-SW sense of shear (Fig. 8; D1 

deformation).CR 90: Western part of massif. Mylonitized monzogranite with NE–SW 

mineral and stretching lineation (L1) and top-to-the-SW sense of shear (D1 

deformation).CR 100: Northwestern part of the massif. Mylonitic micaschist and 

quartzo-schist with NE–SW mineral and stretching lineation (L1) and top-to-the-SW 

sense of shear (D1 deformation). 

The detailed presentation of these data will be provided in another subsequent work, only the main 

results are given here (Fig. 12). Zircon yields a Late Jurassic age (160.4 ± 1.8 Ma), which is 

interpreted as that of the pluton emplacement. This result is in agreement with the previous results of 

Late Jurassic ( [Darby et al., 2004], [Wu et al., 2006], [Du et al., 2007] and [Yin, 2007]). 
40

Ar/
39

Ar 

dating of amphibole, biotite, muscovite and K-feldspar give two groups of ages (Fig. 13). The earlier 

one, between 151 and 137 Ma, has a peak of statistic around 141 Ma defined from the amphibole, 

biotite and K-feldspar of the mylonitic tonalitic gneiss and amphibolite at the southern and eastern 

parts of the massif (Fig. 13). K-feldspar from mylonitic tonalitic gneiss yields a plateau age around 

141 ± 1.0 Ma (Fig. 12). The late stage, between 129 and 97 Ma, is statistically defined around 126 Ma 

in the mylonitic orthogneiss, monzogranite, plagio-amphibolite and micaschist at the western and 

northwestern parts of the Yiwulüshan massif along the Waziyu detachment fault (Fig. 12 and Fig. 13). 

These two different group ages are considered to be the closest to the deformation ages of D1 and D2 

events, respectively. 

http://www.sciencedirect.com/science/article/pii/S1342937X12000548#f0040


 

Fig. 12. Structural geological map with the kinematic component of the different tectonic events of 

the Yiwulüshan massif with the available radiometric ages (figure captions are the same in Fig. 2). 

 



 

Fig. 13. Age probability diagram of the Mesozoic igneous rocks in the Yiwulüshan massif. 

 

5. Discussion 

5.1. Polyphase deformation and its geochronological constrain in Yiwulüshan—the MCC 

The Yiwulüshan massif experienced several superimposed deformation events. The geometric 

and kinematic features related to each event described in the above sections are summarized 

in Fig. 14. Up to now, the D1 deformation was poorly reported, especially in the Lüshan 

pluton. In fact, as mentioned before, the D1 deformation is widespread in the Yiwulüshan 

massif. NE–SW mineral and stretching L1 lineation and top-to-the-SW kinematics are not 

only recorded in the metamorphic rocks, but also in the sedimentary cover and in the Late 

Jurassic granitoids (Fig. 14). Our AMS work also documents a NE–SW magnetic lineation 

(LM1, Lin et al., this issue). The D1 event can be observed in every unit, except in the 

Cretaceous Fuxin–Yixian basin, and in the late intrusive tonalitic and adamellitic Shishan 

pluton. Thus, the D1 deformation represents the main tectonic event of the Yiwulüshan 

massif, even if the primary architecture of the massif had been significantly modified by the 

D2 event. 



 

Fig. 14. Synthetic block diagram of the Yiwulüshan massif showing the bulk geometry and polyphase 

deformation (figure captions are the same in Fig. 2). 

The age of this D1 deformation is poorly established. Along the NE–SW L1 mineral and stretching 

lineation, several radiometric ages have been determined in order to define the age of this main 

deformation (Fig. 12). Biotite, K-feldspar, and hornblende 
40

Ar/
39

Ar ages indicate a statistic peak 

around 141 Ma (Fig. 13). This result is in agreement with our work to establish the cooling path of the 

massif (Fig. 15). The combination the different mineral closure temperature form zircon U–Pb 

(800 °C) to K-feldspar multiple diffusion domain (MDD, 400–100 °C) indicates a “fast” cooling rate 

during this time (Fig. 15). The question will be raised whether this early Cretaceous D1 deformation is 

due to compressional or extensional tectonics. Several lines of evidence lead us to consider that this 

tectonic event developed during a compressional tectonics. 1) Unlike the Waziyu fault of the D2 event, 

an extensional detachment fault is absent in the south of the massif. 2) The geometry of the Lüshan 

pluton shows that the northern part is wider than the southern one. This suggests that the granite pluton 

is rooted to the north. The Bouguer gravity anomaly and gravity modeling support this structure 

(Fig. 2 and Fig. 3A; Lin et al., this issue). 3) The degree of anisotropy (Pj), which indicates that the 

mineral preferred orientation is higher in the southern than in the northern part of the massif (Lin et al., 

this issue), in agreement with a top-to-the-South shearing. 4) Similar top-to-the-south (southwest) 

compressional shearing of early Cretaceous age has been observed in the Miyun–Yunmengshan and 

Daqingshan areas, 400 km and 1000 km west from the research area, respectively ( [Davis et al., 

1996], [Davis et al., 2001], [Liu et al., 2002] and [Wang et al., 2011b]). 



 

Fig. 15. Cooling paths of the Yiwulüshan massif, geochronological measurements come from the 

Fig. 12 

Regionally, the D2 deformation phase is observed along the western margin of the massif. The 

NW–SE trending mineral and stretching lineation and the top-to-the-NW kinematics are in 

agreement with a normal fault displacement ( [Ma et al., 1999], [Ma et al., 2000], [Zhang et 

al., 2002], [Zhang et al., 2004], [Darby et al., 2004], [Liu et al., 2005] and [Lin and Wang, 

2006]). This D2 deformation is responsible for the construction of the final domal architecture 

of the Yiwulüshan massif, but it is not the most conspicuous deformation. Previous workers 

considered the D2 event as concentrated along the Waziyu detachment fault ( [Darby et al., 

2004], [Liu et al., 2005] and [Lin and Wang, 2006]). After detail field survey in the central 

and eastern part of the massif, this NW–SE lineation and the top-to-the-NW kinematics is also 

observed in the mylonitic Jurassic monzogranite and host rock Precambrian gneiss 

(Fig. 2 and Fig. 3B, 5H and 8 (Y 74)). This structure is comparable with the Hohhot MCC, 

where the arched detachment fault is splayed into two parts ( [Davis et al., 2002] and [Davis 

and Darby, 2010]). But in the Yiwulüshan massif, this warped detachment fault is limited at 

the centimeter to decacentimeter scale in the eastern part of the massif. Our AMS work 

confirms this observation (Lin et al., this issue). 

Several radiometric ages of the D2 deformation have been determined by previous works and 

our own 
40

Ar/
39

Ar measurement along the NW–SE mineral and stretching lineation (Fig. 12). 

Biotite and muscovite yield ages of 
40

Ar/
39

Ar from 129 to 97 Ma with peak of ages around 

128–126 Ma (Fig. 13). We consider that the 128–126 Ma age approaches the true age of the 

Waziyu detachment fault, because this time was the beginning of the secondary fast cooling 

period from the view of K-feldspar multiple diffusion domain (Fig. 15). We argue that the 

116–97 Ma ages correspond to the inhomogeneous cooling age of the minerals involved in the 

D2 event. 

At the scale of the whole Yiwulüshan massif, the D3 deformation is represented by the west to 

northwest and east to southeast vergent folds with a flat-lying attitude of the axial planes. This 

geometric pattern allows us to define roughly the principal strain axes, characterized by NW–

SE stretching (X axis) and vertical shortening (Z axis). As an important, but relatively limited 

deformation event, the D4 event controls the opening of the Fuxin–Yixian basin as a 

supradetachment basin along the western trace of the Waziyu detachment. West-dipping 

normal faults that cut Neoproterozoic strata and micaschist in the hanging wall of the 

detachment fault north of Waziyu may be related to core complex development. Since the D3 

http://www.sciencedirect.com/science/article/pii/S1342937X12000548#f0030


and D4 structures have similar finite strain background, these two events are interpreted as the 

later stage of the same tectonic event responsible for the D2 deformation. Thus, the 

rheological evolution from D2 to D4 likely corresponds to the same exhumation processes 

from the deep ductile levels to shallow brittle ones, along the detachment fault. This late stage 

structure is observed in many extensional structures, such as the South Liaodong Peninsula 

massif ( [Lin and Wang, 2006], [Lin et al., 2008] and [Lin et al., 2011]). A similar evolution is 

also recognized in eastern China (e.g. [Faure et al., 1996], [Lin et al., 2000] and [Lin et al., 

2008]). 

Previous works (e.g. [Darby et al., 2004] and [Liu et al., 2005]) and our own structural and 

geochronological results allow us to summarize the main tectonic features of the Yiwulüshan 

massif. The geometry appears as an asymmetric metamorphic dome with a NE–SW trending 

long axis (Fig. 2, Fig. 3 and Fig. 5J). The dome bulk architecture and its kinematic pattern are 

controlled by the activity of D1 and D2 events. The upward arcuated shape of the mylonitic 

zones develops during the late stages of extension, in response to isostasy (e.g., [Spencer, 

1984], [Lister and Davis, 1989] and [Wernicke, 1992]). The Waziyu detachment fault along 

west or northwest flank of Yiwulüshan massif is the master fault, whereas synformally folded 

faults to east or southeast are replaced by several limited splays of centimeter scale mylonitic 

zone in the Lüshan granite and micaschist and orthogneiss (Fig. 3B). 

5.2. Regional significance of polyphase deformation–compression tectonics 

The significance of the late Jurassic to early Cretaceous D1 ductile event was not well worked 

in the Yiwulüshan massif (Darby et al., 2004). At the scale of the entire Yinshan–Yanshan 

orogenic belt, a late Jurassic to early Cretaceous top-to-the-south or southwest ductile 

thrusting is recognized north of Beijing, in Yunmengshan (Sihetang nappe) and Miyun area 

(pre-143 Ma to ≤ 127 Ma) ( [Davis et al., 1996] and [Davis et al., 2001]). 

In fact, a compressional deformation represented by fold and thrust structures has been 

mentioned in several places of Yinshan–Yanshan belt ( [Wong, 1929], [Davis et al., 1996], 

[Davis et al., 1998], [Davis et al., 2001], [Chen, 1998], [Yang et al., 2001], [Darby, 2003], 

[Zhao et al., 2004], [Davis and Darby, 2010] and [Zhang et al., 2011]), the Southeast of 

Chengde city (Fig. 1), the Pingquan–Gubeikou thrust is a pre-early Middle Jurassic 

(> 180 Ma) South-directed structure ( [Zhao, 1990] and [Davis et al., 2001]). The South 

vergent high-angle brittle Gubeikou reverse fault is dated between 148 and 132 Ma (Davis et 

al., 2001). In the Lingyuan–Qinglong area, 150 km west of Yiwulüshan massif (Fig. 1), late 

Triassic or pre-middle Jurassic polyphase deformations are recognized ( [Davis et al., 

2009] and [Hu et al., 2010]). But He et al. (1998) considered that the SE thrusting 

deformation occurred in late Jurassic. 

As mentioned above, the Late Mesozoic Yinshan–Yanshan intra-continental orogenic belt 

exhibits unexplained structures such as multiple folds, thrust and reverse faults, extensional 

faults, strike-slips faults and a large volume of syn- to late kinematic plutons (Davis et al., 

2001 and reference therein). The top-the-the-south (southwest) thrusting in the Yiwulüshan 

massif is comparable in time with the thrusts structures observed in the Yunmengshan and 

Miyun areas ( [Davis et al., 1996], [Davis et al., 2001] and [Wang et al., 2011a]). Instead of 

the NE–SW trending of the Early Cretaceous basins, the sedimentation in the Jurassic basins, 

which develop along the Yinshan–Yanshan belt, with E–W or ENE–WSW axes, was 

terminated in the late stage of the Late Jurassic ( [HBGMR, Hebei Bureau of Geology and 

Mineral Resources, 1989] and [He et al., 1998]). This marked a large compressional tectonic 



period along the Yinshan–Yanshan belt during this time (Fig. 16). The geodynamic of this 

compressional deformation was related to the closure of the Mongol–Okhotsk Ocean, despite 

the fact that the distance between the suture and the belt is in excess of 1000 km ( [Yin and 

Nie, 1996], [Davis et al., 2001] and [Metelkin et al., 2010]). But this hypothesis does not 

explain why there is no significant reactivation in the Solonker–Xilamulun belt, which is 

situated between the Mongol–Okhotsk and Yinshan–Yanshan belts, and was considered as the 

weakest zone because of the Paleozoic orogenic belt (Davis et al., 2004). The subduction of 

the Paleopacific or Pacific plate beneath Eastern Eurasian continent was also considered ( [Xu 

and Wang, 1983], [Zhu et al., 2011a] and [Zhu et al., 2011b]), but this suggestion cannot 

explain the NE–SW direction of compressional deformation that is almost perpendicular to 

the direction of subduction. The influence of north–south Eurasian intraplate deformation and 

northwestward Pacific plate subduction and attendant arc magmatism (Davis et al., 2001) or 

formed independently of plate interactions in eastern Asia (e.g. Cui and Wu, 1997) was 

suggested to account for this puzzling compressional deformation. Nevertheless, the 

geodynamic explanations of the Late Jurassic–Early Cretaceous “Yanshanian” tectonics 

remain feeble. 



 

 

Fig. 16. Distribution of geological elements related to the Late Mesozoic extension at the eastern part 

of Eurasia continent (Modified from Charles, 2010): i) extension domes formed during Early 

Cretaceous: Yb (Yablonovy, Zorin, 1999); Buteel ( [Mazukabzov et al., 2006] and [Donskaya et al., 

2008]); Nartyn (magmatic dome, Daoudene et al., 2009), Zagan (Donskaya et al., 2008); Ed 

(Ereendavaa, [Daoudene et al., 2009] and [Daoudene et al., 2011]); Cb (Central basement uplift of 

Songliao basin, Zhang et al., 2000); Xy (Xiuyan magmatic dome, Lin et al., 2007); Yg (Yagan-Onch 

Hayrhan, [Zheng et al., 1991] and [Webb et al., 1999]); Hohhot ( [Davis et al., 2002] and [Davis and 

Darby, 2010]); Kl (Kalaqin magmatic dome, Han et al., 2001); Ym (Yunmengshan, [Zheng et al., 1991], 

[Davis et al., 1996] and [Davis et al., 2002]); Yw (Yiwulüshan, [Darby et al., 2001], [Darby et al., 2004], 

[Zhang et al., 2002] and [Lin and Wang, 2006]); Xs (Xishan pluton, Wang et al., 2011c); Gd (Gudaoling 

syntectonic granite, [Guan et al., 2008] and [Lin et al., 2011]); Sl (South Liaodong Peninsula, [Yin and 

Nie, 1996], [Liu et al., 2005], [Lin and Wang, 2006] and [Lin et al., 2008]); Np (Nampho magmatic 

dome, Wu et al., 2007); Lg (Linglong–Guojialing complex dome, Charles et al., 2011); Jn (Jiaonan 

extensive dome, Hacker et al., 2009); Xql (Xiaoqinling MCC, Zhang et al., 1997); Cdb (Central 

Dabieshan MCC, Ji et al., 2011); Hz (Hongzhen magmatic dome Zhu et al., 2010); Ls (Lushan magmatic 

dome, Lin et al., 2000); Dy (Dayunshan syntectonic granite, Our field survey) and Zf (Syntectonic 

granite of Zhangfang in Wugongshan massif, Faure et al., 1996); ii) Late Jurassic to Early Cretaceous 

volcanics issued from Li (2000), Kirillova (2003), Meng (2003), Lin and Wang (2006), Wang et al. 

(2006), iii) Late Mesozoic continental red beds basin. (Modified from Traynor and Sladen (1995); 

[Allen et al., 1997] and [Lee, 1999]; [Ren et al., 2002], [Meng et al., 2003] and [Zhang et al., 2003]; Dill 

et al. (2004); Erdenetsogt et al. (2009)). A in the Fig. stand for the Age probability diagram of the 



Mesozoic igneous rocks in eastern China, showing two important periods of magmatism in this area 

(from [Wang et al., 1998a], [Zorin, 1999], [Chough et al., 2000], [Li, 2000], [Wu et al., 2000], [Zhou 

and Li, 2000], [Davis et al., 2001], [Choi et al., 2005], [Wu et al., 2005a], [Wu et al., 2005b], [Wu et al., 

2006], [Cheng et al., 2006], [Yang et al., 2006], [Zhou et al., 2006], [Wu et al., 2007] and [Wong et al., 

2009] and references there in). 

5.3. Cretaceous extension in the Eastern part of the Eurasian continent 

The D2 to D4 events in the Yiwulüshan massif are related to the progressive extensional 

tectonics during the Cretaceous, which is recognized in a vast area in the eastern part of the 

Eurasian continent (Fig. 17). The presently documented MCCs, syntectonic plutons, 

detachment faults, and supradetachment basins are characterized by a NW–SE stretching, 

with either a top-to-the-northwest or a top-to-the-southeast sense of shear (Fig. 16). These 

extensional structures develop in the Transbaikalia–Mongolia–Great Xing'an range, Yinshan–

Yanshan belt, Eastern China–Korea range (East of Tan-Lu fault), Qinling–Dabie belt and 

northern margin of the South China block (Fig. 17). The extensional metamorphic or 

magmatic domes indicated in the Fig. 17 are often associated with the formation of half-

grabens developed in the detachment hanging walls (Fig. 3 and Fig. 17). The cooling period 

of MCC, geochronological dating of detachment faults and syntectonic plutons allow us to 

accurately define the time of this extensional tectonics (Fig. 17). In the Yiwulüshan massif, 

the detachment fault activity and pluton cooling age is around 126 Ma (Fig. 13). In the 

northern margin of SCB, the Hongzhen massif yields similar ages (Zhu et al., 2010). In 

eastern Liaoning province, the South Liaodong peninsula MCC has a younger, fast cooling 

period, between 121 and 114 Ma, and the syntectonic Gudaoling pluton has a fast cooling 

period between 118 and 114 Ma (Fig. 17; [Yang et al., 2008] and [Lin et al., 2011]). Because 

detailed geochronological work is lacking, the extensional period is imprecisely defined 

between the 135 and 120 Ma in the Transbaikalia–Mongolia–Great Xing'an range and North 

margin of the South China block (Fig. 16 and Fig. 17; [Donskaya et al., 2008], [Daoudene et 

al., 2009], [Daoudene et al., 2011], [Zhu et al., 2010] and [Ji et al., 2011]). On the contrary, in 

the Eastern Qingling–Dabieshan and Yinshan–Yanshan belt, it seems that the peak of 

extensional tectonics took place during 130–125 (Fig. 17). Eastern China and Korea (East of 

the Tan-Lu fault, EC of Fig. 17) this extensional event seems to have a larger time range, 

from 134 to 110 Ma, and a rapid cooling period at 122–114 Ma (Lin et al., 2011). This is 

slightly younger than in the other four areas (131–120 Ma, Fig. 17). 



 

Fig. 17. Extensional structures (extensional dome, syntectonic plutons, detachment faults and 

basins), and their radiochronological ages in the eastern part of the Eurasian continent (the dash line 



indicates the relative probability of the biotite 40Ar–39Ar dating on the ductile detachment faults). The 

times of formation of the metamorphic complexes and domes are indicated to reflect the active time 

of detachment fault. Information partly from Daoudene et al. (2011), additional information of 

extensional dome, syntectonic pluton, detachment fault and extensional basins from the same 

reference as in Fig. 16. Locations and the statistical data are indicated on Fig. 16 and its caption. 

The origin of this continental-scale tectonic event is variously interpreted. Namely, 1) west-

directed subduction of a Paleo-Pacific plate during the Mesozoic causes intra- or back-arc 

extension ( [Watson et al., 1987], [Traynor and Sladen, 1995] and [Ren et al., 2002]); 2) roll-

back of the westward subducting Paleo-Pacific oceanic plate, and post-orogenic collapse is 

following the Late Jurassic to Early Cretaceous contraction (Davis et al., 2001); 3) South-

Southeast-directed subduction of the Mongol–Okhotsk oceanic plate during the Mesozoic is 

responsible for extension (Wang et al., 2002); 4) interaction between the Pacific back-arc 

spreading and a radial eastward tectonic escape resulting from the Lhasa block–West Burma–

Qiangtang–Indochina collision ( [Schmid et al., 1999] and [Ratschbacher et al., 2000]); 5) E–

W extension coeval with N–S shortening in relation to collision along the northern and 

southern boundaries of the NCC ( [Yin and Nie, 1996], [Gao et al., 2002] and [Zhang and 

Sun, 2002]); 6) post-orogenic thinning caused by gravitational collapse of a continental crust 

previously thickened during a collisional event ( [Webb et al., 1999], [Zorin, 1999], [Graham 

et al., 2001], [Meng et al., 2003] and [Yang et al., 2005]); 7) thermal weakening due to Early 

Cretaceous magmatism (Darby et al., 2004) or 8) mantle plume ( [Deng et al., 

2004] and [Zhao et al., 2004]). If all the Early Cretaceous extensional structures have the 

same geodynamic origin, a scale problem arises since they are distributed all along the eastern 

part of Eurasia, over more than 1200 km across strike. Indeed, the distribution of MCC at the 

eastern part of Eurasia continent is much wider than the width of the Basin and Range 

Province in US where MCC is distributed parallel to the Cordilleran Orogenic Belt. In the 

eastern part of Eurasia continent, extensional structures do not exhibit a clear linear pattern, 

since they sporadically crop out in a vast area (Fig. 16). Neither of the hypotheses proposed 

above can completely account for the large extent of the continental crust involved in the 

early Cretaceous extension ( [Watson et al., 1987], [Traynor and Sladen, 1995], [Ratschbacher 

et al., 2000], [Ren et al., 2002] and [Lin and Wang, 2006]). Back-arc extension or similar 

plate margin processes related to the subduction of a Paleo-Pacific plate is considered as the 

most active mechanism (Zhu et al., 2010 and reference therein). But these processes cannot 

explain the extensional features observed in the Transbaikalia–Mongolia–Great Xing'an 

range, the Yinshan–Yanshan belt, and the Qinling–Dabie belt, since these ranges are almost 

perpendicular the subduction direction. For the South China region, some of the previous 

workers attributed this Cretaceous event to mantle derived magma promoting thermal 

softening and gravitational extension (Faure et al., 1996), a rolling-hinge isostatic rebound 

during the eastward tectonic escape ( [Schmid et al., 1999] and [Ratschbacher et al., 2000]) or 

asthenospheric upwelling through a gap opened by a detachment of slab and lithospheric root 

(Bryant et al., 2004). However, these models do not explain the similar extensional features 

situated in the NCC. The youngest event responsible for crustal thickening took place in the 

late Triassic, along the Tongbaishan, Dabieshan and Sulu ultrametamorphic belt, which is 

situated between the North China block and the South China block ( [Zhang et al., 

2001] and [Yang et al., 2005]) but the large time span, about 100 Ma, between the Late 

Triassic thickening and Cretaceous extension makes the explanation of the post-orogenic 

thinning unlikely. 

Some authors related these extensional structures to a mantle plume ( [Deng et al., 

2004] and [Zhao et al., 2004]). However, such an interpretation is neither supported by the 



regional architecture of the NCC nor geophysical data, since radial extensional structures are 

absent (Zhao and Xue, 2010). Furthermore, the high-resolution P wave tomography indicates 

that the subducting Pacific slab becomes stagnant in the mantle transition zone under east 

China (Huang and Zhao, 2006). This will make the model of the mantle plume rising from the 

lower mantle unlikely, as the stagnant slab will produce a screen that would not allow the 

plume to rise. 

Intraplate or plate-margin processes appear unable to explain the Cretaceous continental-scale 

extension. As a matter of fact, mantle lithosphere removal (convective removal or 

delamination raised by the back-arc extension of the NW-direct subduction of Pacific plate) 

might account for the large continental area involved in extensional tectonics, occurring 

during a quite short time span in Late Mesozoic times (Lin and Wang, 2006). The partial loss 

of the lithospheric mantle would also be responsible for a significant uplift and the rise of a 

high plateau (Turner et al., 1996). Although such a plateau has been suggested for Mongolia 

and northeastern China in Cretaceous time ( [Yin and Nie, 1996] and [Meng et al., 2003]), its 

topographic effect is not well recorded in the sedimentation since the amount of terrigeneous 

material deposited in the Cretaceous basins does not correspond to the important eroded 

volume of rock associated with such an uplift (Li et al., 1997). Moreover, the paleo-

topographic evolution of the Cretaceous North China block remains poorly constrained. A 

more detailed discussion of the models of lithosphere removal is beyond the scope of this 

paper (c.f. Lin and Wang, 2006 for further discussion). 

6. Conclusions 

As a typical intraplate orogenic belt, the Yinshan–Yanshan belt remains poorly understood. 

The Yiwulüshan massif provides a good example of the Late Mesozoic succession of 

compressional and extensional tectonics experienced by the North China Block along the 

Yinshan–Yanshan belt. This massif combines polyphase synmetamorphic ductile shearing, 

synkinematic plutonism and half grabens formation. The early, south to southwest-directed 

thrusting, D1 event is related to a compressional event recognized elsewhere in the Yinshan–

Yanshan belt. The early Cretaceous tectonic, and plutonic events (D2) recorded in the study 

area belong to the continental extension recognized in the central and eastern Eurasia. This 

early Cretaceous extensional deformation, subdivided into D2, D3 and D4 events, is 

responsible for the final formation of the Yiwulüshan massif. The D2 event, which 

corresponds to the northwestward normal ductile shearing around 126 Ma along the Waziyu 

detachment fault, accommodates the exhumation of the Precambrian basement and Jurassic 

plutons. The D3 deformation is characterized by the development of gravity-driven recumbent 

folds affecting the micaschist, Neoproterozoic to Paleozoic sedimentary cover rocks, and 

partly arching of the detachment fault. D4, which is restricted to the brittle normal faulting at 

the Eastern and Western sides of the massif reworks the mylonitic fabric developed during D1. 

D4 also controls the formation of Cretaceous continental Fuxin–Yixian graben. 

The Yiwulüshan massif is the easternmost extensional dome recognized in the Yinshan–

Yanshan belt. This extensional dome belongs to the widespread cretaceous extensional regime 

in the eastern part of Eurasian continent, in which a NW–SE trend of the maximum stretching 

structures is well developed. However, in spite of numerous studies, the geodynamic 

significance of this Cretaceous continental scale extension remains unclear (Fig. 17). Plate-

boundary or intracrustal processes cannot satisfactorily explain all the geological features of 

this extension. The models involving lithosphere removal must be put forward to account for 

the destruction of the North China Craton. Asthenospheric convection or “erosion” of the 



mantle lithosphere might account for craton thinning, crustal weakening and development of a 

tensional regime throughout a wide (> 1200 km) area of eastern Eurasian continent during late 

Mesozoic times. Nevertheless, in the present state of knowledge, additional geological, 

geochronological and geophysical investigations such as precise time span of the compression 

and extension events as well as the switching time from one regime to the other are needed to 

reach a satisfying understanding of the geodynamic significance of the continental-scale 

Mesozoic extension in the eastern part of the Eurasian continent. 
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