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[1] Two sets of experiments were designed to understand the change in induced
polarization associated with the sorption of copper and sodium, exhibiting distinct sorption
behavior on a silica sand. A sand column experiment was first performed to see the change
in the complex conductivity during the advective transport of a copper sulfate solution. A
second set of experiments was done with the sand at equilibrium with various solutions of
NaCl and CuSO4. In the first experiment, the copper sulfate solution replaced a sodium
chloride solution, keeping the electrical conductivity of the solution nearly constant. During
the passage of the copper sulfate solution, the apparent phase angle decreased from 3 6 0.2
to 0.5 6 0.2 mrad, while the magnitude of the conductivity of the sand remained nearly
constant. A quantitative model is proposed to explain the change in the complex
conductivity as a function of the chemistry assuming a polarization mechanism associated
with the Stern layer (the inner part of the electrical double layer coating the water-mineral
interface). The Stern layer polarization is combined with a complexation model describing
the competitive sorption of copper and sodium at the pore water interface. The change of
the phase lag is directly associated with the ion exchange between sodium and copper at the
surface of the silica grains. The explanation of the observed phase differences between Na
and Cu relies on their different complexation behaviors, with Na being loosely absorbed,
while Cu forms relatively strong complexation with both inner (monodentate) and outer
sphere (bidentate) complexes. The replacement of Cu2þ by Naþ is less favorable; therefore,
the kinetics of such a replacement is much slower than for the opposite replacement (Naþ

by Cu2þ). We were able to reproduce the changes in the phase lags at thermodynamic
equilibrium near the relaxation frequency and in the frequency domain. These
measurements and modeling results open the door to the quantitative interpretation of
spectral induced polarization data in the field in terms of quantification of the sorption
processes.
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1. Introduction
[2] Spectral induced polarization is a nonintrusive geo-

physical method that is able to image the distribution of the
magnitude of the complex conductivity (or complex resis-
tivity) and the phase angle between the current and the
voltage of porous materials [Olhoeft, 1985; Vanhala,
1997; Morgan et al., 1999; Slater and Lesmes, 2002a].
The magnitude of the resistivity and the phase lag can be
written as a complex conductivity or a complex resistivity.
These measurements are usually performed in a broad fre-
quency range (typically, 1 mHz to 100 Hz in the field). At
higher frequencies, the response of the rock is dominated

by electromagnetic coupling and the Maxwell-Wagner
polarization [Olhoeft, 1985, 1986]. Because spectral
induced polarization can be connected to the electrochem-
istry of the pore water –mineral interface [Olhoeft, 1985],
this method has been proposed to detect and image contam-
inant plumes such as oil spills [Olhoeft, 1986; Vanhala,
1997; Morgan et al., 1999], benzene and ethylene dibro-
mide plumes [Sogade et al., 2006], and organic-matter-rich
contaminant plumes associated with leakages from landfills
[Aristodemou and Thomas-Betts, 2000]. However, the
work performed to date in geophysical applications has
been rather qualitative. Typically, the response observed in
the laboratory or in the field has been fitted by an empirical
relationship named the Cole-Cole model (or similar models
such as the Cole-Davidson and the generalized Cole-Cole
models). Mechanistic models of spectral induced polariza-
tion started to emerge 20 years ago in geophysics to predict
the electrical behavior of porous materials below 10 kHz
[de Lima and Sharma, 1992; Lesmes and Morgan, 2001].
However, these models were mainly developed to connect
spectral induced polarization spectra to textural properties
such as permeability [Slater and Lesmes, 2002b; Binley
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et al., 2005]. Until recently, these models were not con-
nected to a full description of the electrical double-layer
theory or, more importantly, to a speciation model between
the components of the pore water and the mineral surface.
Therefore, it was not possible to model quantitatively the
impact of a change in the pore water chemistry upon the
parameters describing spectral induced polarization.

[3] Recently, Revil and colleagues [Leroy et al., 2008;
Leroy and Revil, 2009; Jougnot et al., 2010; Revil and
Florsch, 2010; Schmutz et al., 2010] have developed a fun-
damental theory connecting spectral induced polarization
to the speciation of the mineral surface of silicates and alu-
minosilicates. Their theory is based on a description of the
electrochemistry of the mineral surface and its connection
with a Stern layer polarization model of the grains. This
electrochemical approach was initially developed to model
the electrokinetic properties of porous rocks with the goal
to better understand self-potential measurements in the
field [Revil et al., 1999a, 1999b] and transport properties of
clay-rich materials [Leroy et al., 2007; Jougnot et al.,
2009]. However, this approach can be used to assess the
sensitivity of the spectral induced polarization method to
changes in the speciation chemistry of the mineral surface
(investigating both the kinetics of sorption and thermody-
namic equilibrium), a task that has not been performed to
date to the best of our knowledge.

[4] This work therefore represents a preliminary step in
developing a detailed mechanistic understanding of the
response of spectral induced polarization to monitor prefer-
ential sorption mechanisms at the surface of minerals. In
this paper, spectral induced polarization is used to monitor
the advection of copper sulfate in a porous material. We
use a clean silica sand in our experiments because the spe-
ciation model at the surface of pure silica is well estab-
lished [see Wang and Revil, 2010, and references therein].
However, we point out that the principles are general and
comprehensive enough to be applied to this range of surfa-
ces and electrolyte compositions. The generalization of this
approach to the multicomponent electrolyte would allow
using the spectral induced polarization method in the field
and in the laboratory as a nonintrusive spectral method to
provide constraints regarding the kinetics and thermody-
namics of sorption reactions and to visualize where, in a
contaminant plume, some specific sorption reactions may
take place. Obviously, induced polarization alone could
never be used to look for all the contaminants and chemical
reactions occurring in a contaminated aquifer. However,
we feel that the coupling between such a geophysical
method and reactive transport codes such as TOUGH-
REACT [Mukhopadhyay et al., 2009] or PHREEQC [Par-
khurst and Appelo, 1999] may be a useful tool in
hydrogeophysics to characterize contaminant plumes or to
follow amendments in bioremediation.

2. Theoretical Background
2.1. Macroscopic Conductivity Model

[5] We consider a pack of sand grains with the median
of the grain size distribution denoted by d0, assuming a
very narrow grain size distribution (the theory described
here has recently been generalized to a granular material
with an arbitrary grain size distribution by Revil and

Florsch [2010] and in Appendix A). This mean particle
size represents half of the number of particles made up of
particles either larger or smaller than this size. We note that
! ¼ 2�f is the angular frequency and f is the frequency of
the excitation current or the excitation electrical field. The
resulting electrical field or electrical current exhibits a phase
lag ’ with respect to the electrical current or the electrical
field. At low frequency, induced polarization is caused by
the existence of the electrical double layer at the surface of
the grains [Dukhin and Shilov, 2002; Lyklema, 2002]. This
electrical double layer comprises the Stern layer of sorbed
counterions and the diffuse layer (Figure 1a).

[6] If an alternating electrical field E is imposed, this
field is responsible for three polarization mechanisms, as
broadly discussed in the literature, especially in colloidal
chemistry [see Dukhin and Shilov, 2002; Lyklema, 2002,
and references therein].

[7] 1. The first polarization mechanism corresponds to
the fast displacement of the electrical diffuse layer in the
case where there is no overlap in the diffuse layer between
different grains (which is so only in the dilute suspension
of grains in a background electrolyte). This effect can be
seen in Figure 1b, where the diffuse layer is displaced in
the direction of the electrical field with respect to the equi-
librium situation. This mechanism is similar to the Debye-
Falkenhagen effect, which affects the ionic atmosphere of
an ion in an electrical field. However, this polarization
occurs at frequencies much higher than the low-frequency
range used in the present investigation. This effect is likely
strongly attenuated in porous materials with contiguity
between the grains because of the overlap of the electrical
diffuse layer.

[8] 2. The second polarization mechanism occurs in the
Stern layer. If mobile, the cations of the Stern layer move
in the direction of the electrical field and accumulate on
one side of the particle. Because they are not allowed to
leave the Stern layer (the sorption-desorption process is too
slow with respect to the characteristic time scale of the pul-
sation of the electrical field), they diffuse back in their sur-
face concentration gradient as long as the frequency is low.
The diffusion coefficient of this polarization process is the
molecular diffusion coefficient of the counterions in the
Stern layer (discussed in Appendix B). At high frequencies,
the counterions have no time to build concentration gra-
dients. This mechanism was fully developed by Schwarz
[1962] and later by Schurr [1964] and de Lima and Sharma
[1992]. However, to avoid confusion, it is worth mention-
ing that Schwarz [1962] was interested in modeling the
polarization of the diffuse layer, not the Stern layer. It has
been recognized that these assumptions were not valid to
model the polarization of the diffuse layer [Dukhin and Shi-
lov, 2002]. The characteristic frequency separating low and
high frequencies depends on the distribution of polarization
length scales. These polarization length scales are related
to the grain size distribution plus the heterogeneities associ-
ated with the roughness of the pore water –grain interface
as demonstrated by Leroy et al. [2008]. This will be dis-
cussed further in section 5.

[9] 3. The third polarization mechanism is associated
with the diffuse layer and is called the membrane polariza-
tion in geophysics. It corresponds to an increase of the salt
concentration to the right side of the grain and a depletion
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in the salt concentration on the left side of the grain
because of the charge transfer by the electrical diffuse layer
[e.g., Dukhin and Shilov, 2002]. In this case, there is also a
back diffusion through the pore space, around the grain,
and the diffusion coefficient of the corresponding relaxa-

tion process is the mutual diffusion coefficient of the salt
through the pore space. An expression for the mutual diffu-
sion coefficient at the scale of a porous material is given by
Revil [1999]. In this paper, we neglect this contribution
because it seems that this contribution is not dominant in

Figure 1. Sketch of the electrical double layer (EDL). (a) The EDL consists of the Stern layer of mo-
bile counterions that are able to move tangentially along the mineral surface and the diffuse layer. The
potentials ’0; ’d ; and ’� are three triple-layer-model micropotentials, and �S and �d represent the spe-
cific surface conductivity (in S) of the Stern and diffuse layers, respectively. (b) Three polarization
mechanisms are at play around a grain. The first is the deformation of the diffuse layer because of the
electrical field. The second effect is the membrane polarization of neutral salt clouds around the solid
particle. The third polarization mechanism is associated with the polarization of the Stern layer
(described in Appendix B). The field E represents the imposed electrical field, and Jd

(þ) represents the
back-diffusion flux densities of the counterions of the Stern layer in their surface concentration gradient.
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porous media [Leroy et al., 2008; Leroy and Revil, 2009;
Jougnot et al., 2010; Revil and Florsch, 2010; Schmutz
et al., 2010]. However, it should be kept in mind that this
assumption is untested.

[10] The relationships between the magnitude of the con-
ductivity �j j and the phase angle ’ on one end and the real
(in-phase) and imaginary (quadrature) components of the
conductivity �0 and �00 of the complex conductivity �� are

�� ¼ �j jexpði’Þ ¼ �0 þ i�00 ; ð1Þ

�j j ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�02 þ �002

p
; ð2Þ

tan’ ¼ �00=�0 ; ð3Þ

where i ¼ (�1)1/2 is the pure imaginary number. According
to Leroy et al. [2008], Leroy and Revil [2009], Jougnot et
al. [2010], Revil and Florsch [2010], and Schmutz et al.
[2010], the main mechanism of polarization in sand at low
frequencies (below 100 Hz) corresponds to the polarization
of the Stern layer at the pore water –mineral interface (the
second contribution mentioned above). We develop here
the equations for a porous material having a single polar-
ization scale d0 (the more general case corresponding to a
distribution of polarization scales is discussed in Appendix
A and section 5). The microscopic equations for this mech-
anism are discussed in Appendix B. Under the previous
assumptions, the model developed recently by Revil and
Florsch [2010] can be summarized by the following linear
conductivity model :

�ð!Þ ¼ 1
F
�f þ ðF � 1Þ�Sð!Þ
� �

; ð4Þ

�Sð!Þ ¼
4
d0

�d þ �S
� �

� 4
d0

�S

1þ i!�0
; ð5Þ

where F ¼ ��m (dimensionless) is the electrical formation
factor, � is the connected porosity, m is the cementation
exponent, �f (in S m�1) is the conductivity of the pore
water, �0 ¼ d2

0=8DðþÞ is the relaxation time (in s), D (þ) is
the diffusion coefficient of the counterions of the Stern
layer coating the surface of the mineral (related to the mo-
bility by the Nernst-Einstein relationship and expressed in
m2 s�1), �d is the excess of electrical conductivity in the
electrical diffuse layer (in S), �S represents the excess of
electrical conductivity in the Stern layer (in S), and �S (in S
m�1) is the equivalent conductivity of the grains coated by
the electrical double layer. Equation (5) implies that sur-
face conductivity is characterized by a Debye relaxation
mechanism. This means that there is a single relaxation
time. However, if the above model is convoluted with the
grain size distribution (assumed to be lognormal, for
instance), the resulting distribution of relaxation times can
be fitted by the empirical Cole-Cole model [Revil and
Florsch, 2010]. This is discussed in detail in Appendix A
and in section 5.

[11] The so-called ‘‘surface conductivity’’ can be decom-
posed into an in-phase component �0Sð!Þ and a quadrature
component �00Sð!Þ :

�0Sð!Þ ¼ �1S þ �0
S � �1S

� � 1
1þ !2�2

0
; ð6Þ

�00Sð!Þ ¼ �0
S � �1S

� � !�0

1þ !2�2
0
; ð7Þ

�0
S ¼

4
d0

�d ; ð8Þ

�1S ¼
4
d0

�d þ �S
� �

; ð9Þ

where �0
S and �1S refer to the low- and high-frequency as-

ymptotic limits of surface conductivity, respectively. It fol-
lows that the in-phase conductivity, the quadrature
conductivity, and the phase angle are given explicitly by

�0 ¼ 1
F

�f þ F � 1ð Þ �1S þ �0
S � �1S

� � 1
1þ !2�2

0

� �	 

; ð10Þ

�00 ¼ F � 1
F

�0
S � �1S

� � !�0

1þ !2�2
0
; ð11Þ

’ ¼ atan
ðF � 1Þ �0

S � �1S
� �

!�0

�f þ ðF � 1Þ�1S
� �

1þ !2�2
0

� �
þ ðF � 1Þð�0

S � �1S Þ

" #
;

ð12Þ

’ �
ðF � 1Þ �0

S � �1S
� �

!�0

�f þ ðF � 1Þ�1S
� �

1þ !2�2
0

� �
þ ðF � 1Þð�0

S � �1S Þ
; ð13Þ

respectively. Equation (13) corresponds to the first-order
Taylor expansion of equation (12), which is valid for a
phase smaller than 100 mrad. This assumption is always
valid for all the examples treated in this paper, including
for distilled water and for most of the field applications.
The peak phase is approximately given by ’ð! ¼
1=�0Þ ¼ �2ðF � 1Þ�S=ðd0�f Þ (in the limit where surface
conductivity can be neglected in the in-phase conductivity),
clearly indicating that the peak phase is proportional to the
conductance of the Stern layer and inversely proportional
to the conductivity of the pore water, as discussed by Revil
and Florsch [2010]. However, because the Stern layer con-
ductivity depends also on the ionic strength and composi-
tion of the pore water, the overall effect may be difficult
to separate without the use of an electrical double-layer
(triple-layer) model.

[12] The next step, therefore, concerns the connection
between the previous macroscopic conductivity model and
a chemical speciation model on the mineral surface and its
associated electrical double layer (Figure 1). Two choices
are possible: either we decide to work at thermodynamic
equilibrium or not. Of course, the transport of the ionic spe-
cies through the porous material occurs outside thermody-
namic equilibrium, but if transport is slow enough,
speciation can be modeled as a succession of thermody-
namic equilibrium states with PHREEQC, for instance.
This is a classical standpoint in modeling reactive transport
in contaminant plumes, which is correct as long as the
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characteristic time of the kinetics of the sorption process is
small with respect to the characteristic time of transport.
For example, in one of the examples treated below, a salt
takes 1000 min (~17 h) to move through a column filled with
sand. The characteristic time scale for sorption of sodium
on the surface of silica is typically a few tens of minutes
[Revil et al., 1999a]. In this case, the assumption of thermo-
dynamic equilibrium for the sorption process is valid to
first approximation.

[13] The second choice is to model also the kinetics of
sorption. We point out that there is no difficulty in coupling
our model with a kinetic sorption model (discussed further
in section 5), but such kinetic models are not always avail-
able. This means also that our induced polarization model
could be used to elucidate the kinetics of sorption processes
on a mineral surface or a humic substance.

[14] If there is only one type of counterion sorbed onto
the mineral surface, the specific surface conductance of the
Stern layer is given by [Revil and Glover, 1997]

�S ¼ ezðþÞ�ðþÞ�
0
ðþÞ ; ð14Þ

where e represents the elementary charge (taken positive, e
¼ 1.6 � 10�19C), z(þ)is the valence of the sorbed counter-
ions in the Stern layer (taken positive), �ðþÞ is its mobility
(in m2 s�1 V�1), and �0

ðþÞ is the surface density of the coun-
terions in the Stern layer (expressed in sites m�2). If the
counterion is weakly sorbed, it is safe to consider that its
mobility is the same in the Stern layer and in the bulk solu-
tion (see a complete discussion by Revil and Florsch
[2010] and in Appendix B).

[15] For a multicomponent electrolyte, the specific sur-
face conductance in the diffuse layer (in S) is given by

�d ¼ e
XN

i¼1

zi�i�
d
i ; ð15Þ

where �d
i represents the equivalent surface density of spe-

cies i in the diffuse layer (in sites m�2), zi is the valence
of species i, and �i is its mobility (m2 s�1 V�1). Consid-
ering a classical Gouy-Chapman model and a Boltzman
distribution to describe the concentration profiles in the
diffuse layer (ideality of the solution is assumed), we
have

�d
i ¼ Cf

i

Zþ1
0

exp � 61ð Þzie’ �ð Þ
kBT

� �
d� ; ð16Þ

where T is the temperature (in K), kB is Boltzmann’s con-
stant (1.381 �10�23J K�1), Cf

i represents the concentration
of the species i in the free electrolyte (in mol L�1), (61)
corresponds to the sign of the charge of the species i, ’ �ð Þ
is the local electrical potential (in V) at the distance � from
the mineral surface (in m). To solve analytically the inte-
gral of equation (16), we use the following approximation
[see Pride, 1994, equations 190– 194]:

Z1
0

exp � 61ð Þezi’ �ð Þ
kBT

� �
d� � 2�d exp � 61ð Þezi’d

2kBT

� �
; ð17Þ

where �d is the Debye screening length and ’d (in V) is the
electrical potential at the outer Helmholtz plane (OHP; see
Figure 1). Equations (15), (16), and (17) yield

�d � 2�de
XN

i¼1

zi�i exp � 61ð Þezi’d

2kBT

� �
; ð18Þ

with zi taken positive. The Debye screening length is
defined by

�d ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
"f kBT

2If 103NAe2

s
; ð19Þ

where "f is the mean permittivity of the diffuse layer, If is
the ionic strength of the pore water (usually expressed
in mol L�1), and NA is Avogadro’s number (6.02 �
1023mol�1):

If ¼
1
2

XN

i¼1

z2
i Ci : ð20Þ

[16] We consider that the mean permittivity of the dif-
fuse layer is equal to the permittivity of the free water
("f � 81"0, "0 � 8:85� 10�12 F m�1), as discussed by
Pride [1994]. In this paper, we are interested by the impact
upon induced polarization data of Cu2þ replacing Naþ on a
silica surface (and vice versa). This implies that we need
speciation models for the sorption of both sodium and cop-
per on silica.

2.2. Sorption of Sodium
[17] In this section, we describe an electrical triple-layer

model (TLM) to determine the distribution of coions and
counterions at the pore water – silica interface in the case of
NaCl. The surface mineral reactions at the silanol surface
sites in contact with a NaCl electrolyte and their equilib-
rium constants are reported in Table 1. The surface charge
densities (in C m�2) at the surface of the mineral Q0, in the
Stern layer Q�, and in the diffuse layer Qs (see Figure 1)
can be expressed as

Q0 ¼ e �0
>SiOHþ2

� �0
>SiO� � �0

>SiO�Naþ

� �
; ð21Þ

Q� ¼ e�0
>SiO�Naþ ; ð22Þ

Qs ¼
XN

i¼1

e 61ð Þzi�
d
i ; ð23Þ

Table 1. Equilibrium Constants for Surface Complexesa

Reactions Equilibrium Constants

>SiOH þ Hþ $ >SiOHþ2 K>SiOHþ2
¼ 10�2.2

>SiOH$ >SiO� þ Hþ K>SiO�¼ 10�6.2

>SiO� þ Naþ $ >SiO�Naþ K>SiO�Naþ ¼ 10�4.5

>SiOH þ Cu2þ $ >SiOCuþ þ Hþ K>SiOCuþ ¼ 10�3.4

2>SiOH þ Cu2þ $ 2(>SiO)�Cu2þ þ 2Hþ K2>SiO�Cu2þ ¼ 10�8.8

>SiOH þ SO4
2� þ Hþ $ >SiSO �

4 þ H2O K>SiSO�4 ¼ 105

aFrom Sverjensky [2005].
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where the notation >SiO�Naþ is used to describe the outer
sphere ligand between sodium and the negative silanol site
and it shows the negative charge on the o plane and the
positive charge on the � plane (see Figure 1a). In the case
of a symmetric monovalent electrolyte with a concentration
Cf and if concentrations of Hþ and OH� are small by com-
parison with the salinity Cf, the ionic strength is equal to
the salinity (If ¼ Cf). This yields the following relationship
for the Debye screening length:

�d ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
"f kBT
2Cf e2

s
: ð24Þ

[18] Using equations (16), (17), (23), and (24), the sur-
face charge density in the diffuse layer is given by

Qs ¼ 4�deCf exp � e’d

2kBT

 �
� exp

e’d

2kBT

 �� �
; ð25Þ

Qs ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8"f kBTCf

p
sinh

e’d

2kBT

 �
: ð26Þ

[19] The conservation equation for the surface sites yields

�0 ¼ �0
>SiOH þ �0

>SIO� þ �0
>SiOHþ2

þ �0
>SIO�Naþ ; ð27Þ

where �0 (in sites m�2) is the total surface site density of
the mineral surface (typically around 5 sites nm�2 [Carroll
et al., 2002; Wang and Revil, 2010]). We use the equilib-
rium constants associated with the half reactions to com-
pute the surface site densities. Solving equation (27) with
the expressions of the equilibrium constants defined in Ta-
ble 1 yields [Leroy et al., 2008]

�0
>SiOH ¼ �0

�
A ; ð28Þ

�0
>SiO� ¼ �0

>SiOHK>SiO�
1

CHþX0
; ð29Þ

�0
>SiOHþ2

¼ �0
>SiOHK>SiOHþ2

CHþX0 ; ð30Þ

�0
>SiO�Naþ ¼ �0

>SiOHK>SiO�Naþ
Cf X�

CHþX0
; ð31Þ

where

A¼ 1þK>SiO�
1

CHþX0
þK>SiOHþ2

CHþX0þK>SiO�Naþ
Cf X�

CHþX0
; ð32Þ

X0¼ exp � e’0

kBT

 �
; ð33Þ

X� ¼ exp � e��
kBT

 �
; ð34Þ

with ’0 being the electrical potential (in V) at the o plane
corresponding to the mineral surface and ’� (in V) being

the electrical potential at the � plane corresponding to the
plane of the Stern layer (Figure 1). In the case of sodium,
we can define the specific surface conductances in the Stern
layer and the diffuse layer from equations (14) and (18),

�S ¼ e�Naþ�0
>SiO�Naþ ; ð35Þ

�d � 2�deCf 103NA �Naþ exp � e’d

2kBT

 �
þ�Cl� exp

e’d

2kBT

 �� �
:

ð36Þ

[20] The mobility of the sodium in the Stern layer is
assumed to be the same as in the bulk pore water because
sodium forms a weak complex with the silica surface (see
discussion in Appendix B). Note that our model does not
account for the sorption of chloride that occurs at very low
pH values (below the isoelectric point). For very low pH
values (below 3), we expect chloride to play a dominant
role in the polarization of the Stern layer around the grains.
This will be investigated in a future publication.

2.3. Sorption of Copper
[21] The speciation model for a copper sulfate solution

in thermodynamic equilibrium with a silica surface and the
values of the equilibrium constants are given in Table 1.
The complexation model is taken from Schindler et al.
[1976] and is shown in Figure 2. The equilibrium constants
for leading reactions in the aqueous solution of copper sul-
fate are given in Table 2. Here we assume that in the case
of the monodentate binding sites, copper ions are sorbed as
an inner sphere ligand. Conversely, bidentate complexation
between copper and the silica surface occurs as an outer
sphere ligand (Figure 2). Consequently, there are strong
differences between the different complexation behaviors
between silica and Naþ (being loosely absorbed), while
Cu2þ forms rather strong complexation with both inner
(monodentate) and outer sphere (bidentate) bondings. We
will see that this has strong implications regarding the
phase lag between the electrical field and the electrical cur-
rent. Consequently, the surface charge density Q0 (in
C m�2) at the surface of the minerals (see Figure 2) can be
expressed as

Q0¼ e �0
>SiOHþ2

þ�0
>SiOCuþ ��0

>SiO� �2��0
2>SiO�Cu2þ ��0

>SiSO�4

� �
;

ð37Þ

where �0
i is the surface density species i (in sites m�2). The

surface charge density Q� in the Stern layer is determined
according to

Q�¼2e�0
2>SiO�Cu2þ : ð38Þ

[22] Following the same steps as used in section 2.2,
we can compute the surface charge density in the diffuse
layer in the case of a symmetrical bivalent electrolyte as
follows:

Qs��
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8"f kBTCf

p
sinh

e’d

kBT

 �
: ð39Þ
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[23] The conservation equation for the surface sites
yields

�0¼�0
>SiOHþ�0

>SIO� þ�0
>SiOHþ2

þ�0
>SiOCuþ þ�0

2>SIO�Cu2þ

þ�0
>SISO�4

: ð40Þ

[24] Solving equation (40) with the expressions of the
equilibrium constants defined through the reactions dis-
played in Table 1 yields

�0
>SiOH¼

�bþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2�4ac
p

2a
; ð41Þ

with the following expressions for the parameters a, b, and c:

�0
>SiO� ¼�0

>SiOHK>SiO�
1

CHþX0
; ð43Þ

�0
>SiOHþ2

¼�0
>SiOHK>SiOHþ2

CHþX0 ; ð44Þ

�0
>SiOCuþ ¼�0

>SiOHK>SiOCuþ
CCu2þX0

CHþ
; ð45Þ

�0
2>SiO�Cu2þ ¼ �0

>SiOH

� �2
K2>SiO�Cu2þ

CCu2þ

C2
Hþ

; ð46Þ

�0
>SiSO�4

¼�0
>SiOHK>SiSO�4

CSO2�
4

CHþ

X0
: ð47Þ

[25] The following specific surface conductances of the
Stern and diffuse layers can be defined from equations (14)
and (18):

�S ¼ 2e�Cu2þ�0
2>SiO�Cu2þ ; ð48Þ

�d �4�deCf 103NA �Cu2þ exp �e’d

kBT

 �
þ�SO2�

4
exp

e’d

kBT

 �� �
;

ð49Þ

respectively. The mobility of copper in the Stern layer may
be smaller than in the bulk because of the strong sorption

Figure 2. Sketch of the electrical double layer showing the speciation of copper and sulfate for a solu-
tion of copper sulfate in contact with a silica surface. Sorption of copper on the mineral surface (inner
sphere ligand) occurs as a monodentate complex (immobile), while sorption in the Stern layer (outer
sphere ligand) occurs as a (mobile) bidentate complex.

a ¼ 2K2>SiO�Cu2þ ;

b ¼ 1þ K>SiO�

CHþX0
þ K>SiOHþ2

CHþX0 þ
K>SiOCuþCCu2þX0

CHþ
þ

K>SiSO�4 CSO2�
4

CHþ

X0
;

c ¼ ��0;

ð42Þ
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of these counterions on silica. However, to stay conserva-
tive, we take the same value as in the bulk pore water. Note
that our model does not account for the sorption of sulfate
in the Stern layer. For the environmental conditions used in
our study, there is no evidence for the existence of such a
complex. In some other conditions, the sorption of sulfate
would need to be explicitly accounted for.

2.4. Numerical Resolution of the Problem
[26] The electrical potentials of the TLM are related by

[Hunter, 1981]

’0 � ’� ¼ Q0=C1 ; ð50Þ

’� � ’d ¼ �Qs=C2 ; ð51Þ

where C1 and C2 (in F m�2) are the integral capacities of
the inner and outer parts of the Stern layer, respectively.
Typically, we can use C1 ¼ 1.0 F m�2 and C2 ¼0.2 F m�2

[Carroll et al,. 2002; Wang and Revil, 2010]. The global
electroneutrality equation for the mineral-water interface is

Q0 þ Q� þ Qs ¼ 0 : ð52Þ

[27] The brines are assumed to be completely dissociated
in water, and we neglect the dissolution of silica in the pore
water.

[28] The previous complexation problem cannot be
solved directly to compute the different potentials and
charge densities. We use a quasi-Newton scheme [see Tar-
antola, 2005] to solve equations (34)– (36) and to obtain
potentials in the different planes. We start the optimization
with prior values of the electrical potentials to compute the
surface charge densities using equations (21), (26), and
(28)– (31) in the case of a NaCl solution and equations
(37)– (49) in the case of a CuSO4 solution. The electrical
potentials are optimized step by step. Once convergence
has been reached, the microscopic electrical potentials of
the electrical double layer are obtained, then all the surface
charge densities and the surface site densities are deter-
mined, and finally, the values of the specific surface con-
ductances �d and �S are computed.

3. Materials and Methods
3.1. Experimental Setup

[29] The column (made of an inert plastic) used for our
experiments is shown in Figure 3. The column was filled

Table 2. Equilibrium Constants for Leading Reactions in the
Aqueous Solution of Copper Sulfatea

Reaction Equilibrium Constant

H2O$ Hþ þ OH� 10�14

Cu2þ þ H2O$ CuOHþ þ Hþ 10�8

Cu2þ þ 2H2O$ Cu(OH)2 þ 2Hþ 10�13.7

aFrom Schindler et al.[1996].

Figure 3. Sketch of the column used to perform the first set of experiments. (a) Side view. The height
of the column is 800 mm. (b) Cross sections of the inflow and the electrode array located in the middle
of the column. (c) Picture of the laboratory column and SIPLab II equipment used to measure the com-
plex resistivity.
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with a Fontainebleau sand (type Ga39, 98% silica, well-
sorted and well-rounded grains with a mean grain diameter
d0 ¼ 100 6 10 �m). Care was taken to compact the sand
homogeneously during the infilling of the column with the
sand. Once the column was filled, it was saturated with
CO2 and then saturated by degassed water to avoid
entrapped air. The entry of the column was manufactured
in such a way that the brine entering the column from the
bottom did not produce fingering. The flux of the solution
entering the column was imposed by a peristaltic pump.
The flow was constant (flow rate of 5 mL min�1), and the
velocity of the water was on the order of 2.7 � 10�5 m s�1.
The hydraulic conductivity K of the sand packed in the col-
umn was independently measured at different imposed hy-
draulic heads and was equal to 2.8 � 10�5 m s�1. The
measured total connected porosity is equal to 0.40. The pH
of the solution is between 4.5 and 6 because of the dissolu-
tion of CO2 in the pore water (e.g., see calculations by
Revil et al. [1999a]). A salt advection experiment was per-
formed to determine the effective (mobile) porosity
ð� eff ¼ 0:31Þ and the longitudinal dispersivity (1.6 �
10�3 m). According to Revil and Cathles [1999], the effec-
tive porosity is approximately equal to the inverse of the
electrical formation factor F. This is approximately the
case here as 1=� eff ¼ 3:2, and we will see in section 4
that the formation factor is 3.1.

[30] The spectral induced polarization measurements
were made with the SIPLab II equipment developed by
Radic Research (http://www.radic-research.homepage.
t-online.de/default.html). This apparatus measures the mag-
nitude of the conductivity and the phase lag from 1 mHz to
12 kHz. The sand column was instrumented with 24 nonpo-
larizable electrodes of Cu/CuSO4. The contacts between
the electrodes and the sand of the column were made with
porous cylinders with a length of 20 mm and a diameter of
6 mm. Eight electrodes were located at equal distances
along a circle in the middle of the column (Figures 3 and
4). The cables connecting the electrodes and the impedance
meter were separated as much as possible from each other
to minimize electromagnetic couplings, which typically
occur at high frequencies (e.g., above 100 Hz or higher).

[31] Each measurement is performed with four electrodes
(two are used to inject the current, and two are used to mea-
sure the electrical potential). Several choices are possible to
perform the measurements, as shown in Figure 4. In order to
make a good choice, we studied the sensitivity of the meas-
urements for four distinct arrays using the analytical solu-
tions given by Zhou [2007]. This sensitivity analysis is done
assuming a homogeneous resistivity distribution. The results
are shown in Figure 4. The array labeled setup 1 has a more
or less homogeneous sensitivity inside a cross section of the
column, while setup 2 has a strong sensitivity only close to
the electrodes. The arrays corresponding to setups 3 and 4
have sensitivities only near the outer boundary of the col-
umn. Consequently, we used the array corresponding to
setup 1 to perform our measurements. The raw measure-
ments are the impedance and the phase lag. A geometrical
factor for the middle array is 0.83 m. This geometrical factor
is used to convert the measured impedances to resistivities
or conductivities.

[32] Spectra of the resistivity and the phase angle were
carried out in the range 45 mHz to 12 kHz, with measure-

ments performed at 19 frequencies. Reciprocal measurements
were always performed (for the reciprocal measurements, the
potential electrodes were simply exchanged with the current
electrodes). Reciprocity was a way to estimate data quality;
good reciprocity in spectral induced measurements is often
considered as a way to check that there is no residual polar-
ization of the electrodes [Binley et al., 1996; Chambers
et al., 2004; L. Slater, personal communication, 2009]. These
reciprocal measurements were used to estimate the data qual-
ity, and the uncertainty on the phase was generally found to
be below 0.2 mrad. The measurements were reproducible. A
typical example of two spectra obtained for sodium and cop-
per is shown in Figure 5.

[33] The pore water was sampled in the middle of the col-
umn, so the induced polarization measurements reported
below are taken at the middle of the column. Sampling the
pore fluid was performed with a membrane connected to a
capillary. The pore water was pumped with a syringe. Chlo-
ride and sulfate concentrations were analyzed by chroma-
tography with a Dionex DX120 and a column AS9-HC. The
concentration of copper was determined by colorimetry af-
ter reaction with ammonia, with a wavelength of 640 nm.

3.2. Experimental Procedure
[34] Two sets of experiments were performed. A sand

column experiment was first performed to see the change in
the complex conductivity during the advective transport of
a copper sulfate solution replacing a sodium chloride

Figure 4. Sensitivity of the electrode arrays and phase
spectra. Absolute values of the sensitivity of the resistivity
obtained through a column section for four setups of elec-
trodes for injection (C1 and C2) and for measure of poten-
tial (P1 and P2) are shown. Setup 1 was chosen because it
has a uniform sensitivity at a given depth in the column.
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solution (Figure 6). Before the beginning of the experiment
at t ¼ 0 s, the sand was washed with demineralized water
for several days. The electrical conductivity of the demine-
ralized water was less than 5 �S cm�1 at 25�C. Then, at
t ¼ 0 min, we started to flush the column with a NaCl solu-
tion with an electrical conductivity of 220 �S cm�1 (at
25�C). This corresponds to phase I in Figure 6. Once the
electrical conductivity of the electrolyte at the outlet of the
column was stabilized, we started to inject a solution of
CuSO4 at the same conductivity (220 �S cm�1 at 25�C)
from the bottom of the column. This corresponds to phase
II in Figure 6. Then, a NaCl solution was flushed through
the column with an electrical conductivity equal to 410 �S
cm�1 (phase III). Finally, a CuSO4 solution was flushed
through the column with an electrical conductivity equal to
410 �S cm�1 (see Figure 6). The compositions of the solu-
tions used during each phase are reported in Table 3.

[35] The magnitude of the complex resistivity and the
phase shift between the current and the voltage were meas-
ured with a sampling rate of one measurement per quadri-
pole every 60 min. The pore water samples taken for the
chemical analysis from the column correspond to 3 mL.
This volume is extracted slowly over 4 min in order to not
disturb the flow of the pore water in the column. These
samples are taken every 20 min. In addition to chemical
analysis, we also modeled the reactive transport in the sand
column with the numerical code PHREEQC [Parkhurst
and Appelo, 1999].

[36] A second set of experiments was performed with
both sodium chloride and copper sulfate solutions in a
broad range of salinities at thermodynamic equilibrium
with the same sand at the same state of compaction. The
following conductivities were used at 25�C with NaCl:
100, 210, 320, 420, and 550 � S cm�1. The conductivities
used with the CuSO4 solutions were 110, 210, 320, 410,

and 510 �S cm�1. Thermodynamic equilibrium was con-
sidered to be obtained when the phase lag reached a plateau
(typically after several days).

4. Experimental Results
[37] We performed a total of 866 measurements during

the first set of experiments (433 normal and 433 reciprocal
measurements). The experiment lasted 9 days. Reciprocity
was checked to 0.2% for the resistivity and 0.05 mrad for
the phase. In order to observe the behavior of induced
polarization measurements during the advection of the cop-
per sulfate solution, we plotted the magnitude and the
phase angle at 183 mHz (Figures 6 –10). This frequency is
close to the peak frequency fpeak � 4DðþÞ

�
�d2

0

� �
of the

complex resistivity spectra for both NaCl and CuSO4 solu-
tions. Using d0 ¼ 100 �m and D(þ) ¼ 1.32 � 10�9 m2 s�1

for Naþ, the location of the loss peak fpeak occurs at ~168
mHz, while for Cu2þ, D(þ) ¼ 7.10 � 10�10 m2 s�1 (see
Table 4), we find fpeak � 90 mHz. These loss peaks are
close to the observed frequency peaks at 204 and 110 mHz,
respectively.

[38] In phase I, the resistivity and the phase decrease
from 3200 to 180 �m and from about 60 to 3 mrad, respec-
tively. In the transition between phases I and II, no signifi-
cant change in the resistivity was observed, with the
exception of a small transient change in the resistivity from
180 to 190 �m when the chloride concentration decreases
and the sulfate concentration increases (see Figure 8).
These changes are very well reproduced by the numerical
model as discussed further below. The value of the absolute
phase decreases sharply from 3 to 0.5 mrad during the tran-
sition from phase I to phase II, and then the decay is
smaller over time.

[39] In the transition between phases II and III, the
electrical conductivity of the brine increases from 220 to
410 �S cm�1, and sodium replaces copper as the main
cation in the pore water. This results in a decrease of the
bulk resistivity of the sand from 180 to 95 �m. The
phase angle decreases from 0.5 to 0.3 mrad, and then it
goes back to 0.5 mrad.

[40] In the transition from phase III to phase IV, the so-
dium chloride solution is replaced by a copper sulfate solu-
tion at the same electrical conductivity. The resistivity
remains stable during the transition at around 95 �m (there
is actually a small transient at 105 �m when concentration
of chloride decreases and the concentration in sulfate
increases). The absolute value of the phase decreases from
0.5 to less than 0.2 mrad.

[41] For both salts (NaCl and CuSO4), the resistivity is
equal to 180 �m with a conductivity of the electrolyte at
200 �S cm�1, and it is close to 95 � m with a conductivity
of the electrolyte at 400 �S cm�1. The bulk conductivity
of the material arises from two processes. One is related to
the bulk pore water conductivity, and the other is the sur-
face conductivity along the pore water –mineral interface.
The sorption of copper would modify the surface conduc-
tivity. Therefore, if the modulus of the resistivity does not
depend on the presence of copper (it depends only on the
value of the conductivity of the pore water solution), this
means that the contribution of surface conductivity to the
overall conductivity of the porous material is very small.

Figure 5. Phase versus frequency for the sand saturated
by solutions of NaCl and CuSO4 at 210 �S cm�1. At high
frequencies (>100 Hz), the polarization response is domi-
nated by the Maxwell-Wagner polarization, while at lower
frequencies (<100 Hz), the polarization response is domi-
nated by the polarization of the electrical double layer, as
shown by Leroy et al. [2008]. Reciprocity is checked over
the entire frequency range investigated in our study
(20 mHz to 12 kHz; <0.4% for the resistivity and <0.2
mrad for the phase). The error bars are only shown when
they are larger than the size of the symbols.
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From equations (2) and (10), the in-phase conductivity is
given by

� � 1
F

�f þ
4ðF � 1Þ

d0
�d þ �S
� �� �

: ð53Þ

[42] We use the slope of the linear fit shown in Figure 11
to determine the formation factor of the sand. This yields F
¼ 3.1 6 0.1. This is consistent with Archie’s law, with a
porosity of 0.42 and a cementation exponent m ¼ 1.3. The
value of this cementation exponent is somewhat smaller
than predicted by differential effective medium theory for a
pack of spherical particles (m ¼ 1.5 [see Sen et al., 1981]),

but consistent with data in the literature. Regarding surface
conductivity, taking F ¼ 3.1, d0 ¼ 100 �m, and an overall
specific surface conductivity of 1 � 10�8 S yields a sur-
face conductivity contribution equal to �3 � 10�4 S m�1.
This indicates that the surface conductivity contribution to
the in-phase conductivity is negligible. Therefore, the in-
phase conductivity can be approximated by

�0 � 1
F
�f : ð54Þ

[43] The first lesson learned from these experiments con-
cerns the sensitivity of the phase to the presence of copper.
This means that the DC resistivity method widely used in
the field to map contaminant plumes can be totally blind to
the presence of copper if there is no change in the ionic
strength of the pore water. As discussed above, the phase
lag is, on the other hand, more sensitive to the presence of
a contaminant such as copper. This shows the superiority
of induced polarization over DC resistivity to map this type
of contaminant in the ground. In the field, one can expect a
sensitivity of 0.1 mrad with true 24 bit systems with timing
of 60 ps at 1 kHz (G. Olhoeft, personal communication,
2010). For very extreme and unfavorable conditions,
Grimm et al. [2005] had a sensitivity of 0.8 mrad.

Table 3. Characteristics of the Solutions Injected During the
Experimentationa

Solution Cf (10�3 mol L�1) pH

NaCl 220 �S cm�1 1.6 6
NaCl410 �S cm�1 3.2 6
CuSO4220 �S cm�1 0.9 5
CuSO4 410 �S cm�1 1.8 5

aThese characteristics are also used in the triple layer model (TLM) to
compute the phase angles.

Figure 6. Time sequence of the first experiment at 183 mHz. The sand was initially saturated with de-
mineralized water. At t ¼ 0 min, a solution of NaCl is flushed from the bottom of the column with an
electrical conductivity of 220 �m cm�1. At t ¼ 5160 min, a solution of copper sulfate is flushed from the
bottom of the column at the same conductivity as the sodium chloride solution. At t ¼ 7440 min, a solu-
tion of sodium chloride is flushed through the column with an electrical conductivity of 410 �S cm�1.
At t ¼ 9480 min, a solution of CuSO4 is flushed through the column with an electrical conductivity of
410 �S cm�1. The measurements are made at the middle of the column, which explains the delay
between the injection and the change in the resistivity and the phase. The lines are the results of the mod-
eling of the phase and the resistivity during transport (see Table 6).
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5. Comparison Between Theory and
Experiments
5.1. Influence of the Chemistry Near the Relaxation
Frequency

[44] Using the macroscopic conductivity model and the
TLM approach described in section 2, we compute the the-
oretical values of the phase lag at a frequency of 183.1
mHz for 10 solutions used to saturate our silica sand. The
characteristics of these solutions are reported in Table 5,
predictions from the triple-layer models are reported in Ta-
ble 6, and the computed phase lags are reported in Table 7.
A comparison between the theoretical and measured values
of the phase lags is shown in Figure 12. The equilibrium
constants used for the sodium are taken directly from Sver-
jensky [2005]. To our knowledge, there is no model in the

literature able to explain the sorption of copper on silicate
with a triple-layer model. Subramaniam et al. [2003] pro-
vide a model, but the agreement between the predictions of
this model and experimental data is not very good. We
therefore decided to use a model similar to the one devel-
oped by Phan et al. [2004] for the sorption of zinc. The
model predicts positive values for the diffuse layer poten-
tial in the case of copper and negative values in the case of
sodium. This is qualitatively in agreement with published
experimental data in the cases of copper and sodium. This
type of model explains both the monitoring of the concen-
tration of copper and the spectral induced polarization
response during the transport. Figure 12 shows a quite good
agreement between the prediction of the spectral induced
polarization model (coupled with the complexation and tri-
ple-layer models) and the measurements. This means, in
turn, that complex resistivity or induced polarization is sen-
sitive to the complexation on the mineral surface in a way
that can be quantitatively predicted.

[45] We have not discussed the effect of the pH on the
phase at this point. The pH of the NaCl and CuSO4 solu-
tions are close to 5.3 and 4.5 (Table 5), respectively. Our
solutions are slightly acidic because of the dissolution of
CO2 and the subsequent dissociation of carbonic acid in the
pore water. This can be reproduced assuming that carbonic
acid dissociates to protons and HCO3

- and the secondary
dissociation of the bicarbonate ion was neglected. The
resulting pore water pH is 5.4. As shown in Table 1, a pro-
ton is a determining species of the surface charge of silica,
and therefore, the polarization behavior is based upon this.
It is therefore legitimate to wonder how the change in pH
affects the change of phase. Our simulations show that the
pH effect (1 pH unit in the range 5– 6) upon the phase is a
much smaller effect than the effect of ion exchange. This
was also experimentally proven by Lesmes and Frye [2001]
using a Berea sandstone.

[46] For the first set of experiments, our model predicts
very well the conductivity and the phase for all the experi-
ments (see Figure 6). For instance, when demineralized
water was used (Figure 6), we obtained a measured phase
of �55 6 5 mrad. The value of the peak phase is approxi-
mately given by �2�SðF � 1Þ=ðd0�f Þ. Taking F ¼ 3.1, d0
¼ 100 �m, and �f ¼ 3 �S cm�1 yields a specific surface
conductivity of (0.4 6 0.2) � 10�9 S, in agreement with
Revil and Florsch [2010, Figure 12]. Our model predicts
the phase lag accurately except when copper is replaced by
sodium (see Figure 6). This is because our model assumes
thermodynamic equilibrium, whereas the kinetics of the
replacement of copper by sodium is slow and thermody-
namic equilibrium is not reached in phase III.

[47] The explanation of the observed phase differences
between Na and Cu relies on their different complexation
behaviors, with Na being loosely absorbed [Carroll et al.,
2002], while Cu forms relatively strong (less mobile) com-
plexation with both inner (monodentate) and outer sphere
(bidentate) bondings. If Cu is an inner sphere ligand, it is
difficult for sodium to replace copper in phase IV. In addi-
tion, because copper is a divalent cation, it can be responsi-
ble for a reversal in the electrostatic potential of the diffuse
layer (see Table 6). As a result, Na ions in the bulk fluid
can be strongly excluded from the diffuse layer. How are
these sodium cations to replace Cu in the Stern layer if they

Figure 7. Evolution of the resistivity, the phase angle,
and the chloride concentration during the transition
between the initial stage for which the sand is saturated by
demineralized water (DW) and phase I of the experiment,
corresponding to the flushing of a sodium chloride solution
from the bottom of the column. The dashed line corre-
sponds to the chemical modeling of the concentrations with
the reactive transport model with PHREEQC. The solid
lines are the results of the modeling of the phase and the re-
sistivity during transport. The resistivity and the phase
angle are measured at 183 mHz in the middle of the
column.
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cannot get easily into the diffuse layer? The slow and
incomplete replacement of Cu with Na in phase IV of the
first set of experiments can be seen in Figure 6. This then
indicates that induced polarization may have the ability to fol-
low the kinetics of such slow sorption processes at the surface
of the mineral. Obviously, additional experimental results are
needed to validate the present induced polarization model,
but it appears promising as a nonintrusive (geophysical) spec-
troscopic tool to study sorption processes on mineral surfaces.

[48] The second set of experiments (performed at ther-
modynamic equilibrium) is very well predicted by our
model, as shown in Figure 12. The model is seen to predict
well both the conductivity and the phase lag for a broad
range of salinities. In turn, this means that the Stern layer
polarization is likely to be the dominant polarization mech-
anism in sands.

5.2. Modeling Spectral Induced Polarization Over the
Entire Low-Frequency Spectrum

[49] To explain the induced polarization response in the
complete spectrum of frequencies, we have to account for
two additional points : the first concerns the distribution of
the polarization length scales (and its influence upon the

distribution of relaxation times; see Appendix A), and the
second concerns the Maxwell-Wagner polarization.

[50] The distribution of polarization length scales is
always broader than simply predicted by the grain size dis-
tribution, as discussed in detail by Leroy et al. [2008].
Leroy et al. [2008] have demonstrated experimentally that
the roughness of the grains is responsible for a broad distri-
bution of polarization length scales (bounded in size by the
grain sizes). These polarization length scales are responsi-
ble for polarization losses occurring in between the main
relaxation frequency discussed above and related to the
main grain size and the Maxwell-Wagner polarization
occurring at higher frequencies (see Figure 5). It is custom-
ary to observe a plateau in the magnitude of the phase for
this frequency band [Vinegar and Waxman, 1984], a
decrease of the magnitude of the phase below the relaxation
frequency 1=�0 discussed in section 4 (and associated with
the mean of the grain size distribution), and an increase of
the magnitude of the phase when the Maxwell-Wagner
polarization starts to dominate the IP response [Leroy et al.,
2008]. Fourier and fractal grain shape analysis has been
applied to characterize the surface irregularities of sand
grains [Hyslip and Vallejo, 1997; Drolon et al., 2003]. If

Figure 8. Evolution of the resistivity, phase angle (uncertainty <0.2 mrad), and chloride and sulfate
concentrations during the transition between phase I (flushing of a NaCl solution) and phase II (flushing
of a CuSO4 solution). The dashed lines correspond to the chemical modeling of the concentrations with
the reactive transport model with PHREEQC. The solid lines are the result of the modeling of the phase
lag and the resistivity during transport. The resistivity and the phase angle are measured at 183 mHz at
the middle of the column.
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these surface irregularities are associated with polarization
length scales, this means that there is a broad distribution
of relaxation times, the largest relaxation times being lim-
ited by those associated with the size of the grains them-
selves. The idea that the surface roughness of the particles
affects the complex conductivity of porous materials is not
new. It has been proposed, for instance, by Bordi et al.
[1993] and Cametti et al. [1995] in their studies on the Max-
well-Wagner polarization of human lymphocyte suspensions
in NaCl solutions of varying salinities. Le Méhauté and
Crépy [1983] and Wong [1987] have proposed models con-
necting the fractal dimensions of the mineral surface to the
low-frequency complex conductivity of sedimentary rocks.
In material science, constant phase elements are used exten-
sively in equivalent electrical circuits for fitting impedance
data, and this behavior is generally attributed to surface
roughness [McDonald, 1987].

[51] To model the entire frequency spectrum investi-
gated experimentally, we need to include not only the influ-
ence of the low-frequency polarization mechanisms
associated with charge accumulations at polarization length
scales but also true dielectric polarization mechanisms such
as the Maxwell-Wagner polarization. The complex effec-
tive conductivity and the apparent phase lag of the porous
material are now given by [de Lima and Sharma, 1992]

��ð!Þ ¼ �eff ð!Þ þ i!"eff ð!Þ ; ð55Þ

’ ¼ atan
!"eff

�eff

� �
; ð56Þ

respectively, where the effective conductivity and the
effective permittivity are defined by [see Leroy and Revil,
2009, Appendix A]

�eff ð!Þ ¼ Re ��ð!Þ½ � ; ð57Þ

"eff ð!Þ ¼ Im ��ð!Þ=!½ � : ð58Þ

[52] In equations (57) and (58), Re[ ] and Im[ ] represent
the real and imaginary components of the complex number
in the argument. The effective complex conductivity is
given by

��ð!Þ ¼ 1
F

��f þ ðF � 1Þ��Sð!Þ
h i

; ð59Þ

where we have included the discontinuity of the current
displacement at the interface between the different phases
of the porous composite [see Leroy and Revil, 2009,

Figure 9. Evolution of the resistivity, phase angle (uncertainty <0.2 mrad), and chloride and sulfate
concentrations during the transition between phase II (flushing of a CuSO4 solution) and phase III (flush-
ing of a solution NaCl solution). The dashed lines correspond to the chemical modeling of the concentra-
tions with the reactive transport model with PHREEQC. The solid lines are the results of the modeling of
the phase and the resistivity during transport. The resistivity and the phase angle are reported at 183 mHz.
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Appendix A]. The complex conductivity of the solid grain
��S is defined by

��S ¼ �0S þ ið�00S þ !"SÞ ; ð60Þ

and for frequencies far below the relaxation frequency of
water, the complex conductivity of water ��f is given by

��f ¼ �0f þ i!"f : ð61Þ

[53] In the following, we will use "f ¼ 80 6 1 "0 (pure
water) and "s ¼ ð4:6 6 0:8Þ "0 (quartz) as representative
values for the permittivity of the pore water and the grains,
respectively. The constant "0 is the permittivity of vacuum
(8.854 � 10�12 F m�1). In the following, we use a Cole-
Cole distribution of polarization length scales:

f ðdÞ ¼ 1
�d

sin �ð1� 	Þ½ �
cosh 2	 ln d=d50ð Þ½ � � cos �ð1� 	Þ½ � ; ð62Þ

Figure 10. Evolution of the resistivity, phase angle (uncertainty <0.2 mrad), and chloride, sulfate, and
copper concentrations during the transition between phase II (flushing of a NaCl solution) and phase III
(flushing of a CuSO4 solution). The dashed lines correspond to the chemical modeling of the concentra-
tions with the reactive transport model with PHREEQC including copper. The solid lines are the results
of the modeling of the phase and the resistivity during transport. The resistivity and the phase angle are
reported at 183 mHz. Note the delay in the advection of the sulfate, which is also reproduced by the reac-
tive transport model because of retardation.

Table 4. Peak Frequencies of the Polarization Spectraa

Species Ionic Mobility
�i (m2 s�1 V)

Diffusion Coefficient
Di

b (m2 s�1)
Relaxation Time

�0
c (s)

Peak Frequencyd

(mHz)

Naþ 5.14 �10�8 1.32�10�9 0.95 168
Cl� 8.47 �10�8 2.18�10�9 - -
Cu2þ 5.52 �10�8 7.10�10�10 1.76 90
SO2�

4 4.14 �10�8 5.32�10�10 - -

aThe ionic mobilities are from Revil et al. [1998, Table 1].
bUsing Di ¼ kBT�i = jqi j, where kB is Boltzmann’s constant (1.3807 � 10�23 J K�1), T ¼ 298 K is the absolute temperature,

and jqij is the absolute value of the charge of the counterions.
cUsing �0 ¼ d2

0=8DðþÞ with d0 ¼ 100 �m.
dUsing fpeak � 4DðþÞ

�
�d2

0

� �
.
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Zþ1
0

f ðdÞdd ¼ 1 ; ð63Þ

where d50 represents the median of the polarization length
scale distribution and 	 is the Cole-Cole exponent (0 	 	
	 1 ; where 	 ¼ 1 corresponds to a Debye model). In this
case, surface conductivity is described by a Cole-Cole model:

�S ¼ �1S þ
�0

S � �1S
1þ i!�ð Þ	 ; ð64Þ

�0
S ¼

4
d0

�d ; ð65Þ

�1S ¼
4
d0

�d þ �S
� �

: ð66Þ

[54] Such a model accounts for the broad distribution of
relaxation times between the relaxation time of the grain
and the relaxation time of the Maxwell-Wagner polariza-
tion. A comparison between the prediction of such a model

and the experimental data is shown in Figure 13 using
"f ¼ 81 "0 and "S ¼ 5 "0. The model reproduces the data
quite well over the frequency range investigated (10 mHz
to 10 kHz) but requires a distribution of polarization length
scales much broader than the grain size distribution.

[55] A second possibility to explain the broad distribu-
tion of relaxation times is that there are nonlinear interac-
tions between the dipole moments of each grain,
broadening the apparent distribution of polarization length
scales (D. Lesmes, personal communication, 2010). A
pore-scale model would be needed to check this prediction
for a collection of grains immersed in an electrolyte.

[56] A third possibility to explain the broadness of the
relaxation time distribution would be to account for mem-
brane polarization. We know that for a given grain size dis-
tribution, membrane polarization produces a distribution that
is broader than the Stern layer polarization [de Lima and
Sharma, 1992]. We plan, in a future contribution, to develop
a unified model of low-frequency polarization including
membrane polarization, Stern layer polarization, Maxwell-
Wagner polarization, and the Debye-Falkenhagen effect.

6. Conclusions
[57] Our research was motivated by the need to develop

new nonintrusive approaches to characterize contaminant
plumes and to bridge the gap between reactive transport code
modeling and time lapse– induced polarization measure-
ments. We performed a set of experiments showing the
change in complex resistivity associated with the advective
transport of a copper sulfate solution in a sand column. These
data have been explained with a model connecting the com-
plex conductivity of the porous material to a speciation
model for sodium and copper onto the silica surface of the
grains. The following conclusions are reached. (1) When sur-
face conductivity can be neglected, the macroscopic conduc-
tivity depends only on the conductivity of the pore water and
may be insensitive to the presence of small amounts of cop-
per in the pore water. (2) Conversely, the phase lag is very
sensitive to the presence of copper because the phase is
directly sensitive to the speciation of such a metal onto the
mineral surface. (3) Experimental data are reasonably well

Figure 11. (a) Conductivity of the sand versus the conductivity of the brine (second set of experi-
ments). The inverse of the slope provides the value of the formation factor. (b) Phase versus the conduc-
tivity of the brine (sodium chloride and copper sulfate solutions). (c) Quadrature conductivity versus the
conductivity of the brine. The measurements are reported at 183 mHz.

Table 5. Characteristics of the Solutions Mixed with the Samples
of Sanda

Solution
Cf

(10�3 mol L�1)
Conductivityb

(�S/cm) pH

NaCl 0.9 100 5.8
NaCl 1.6 210 5.5
NaCl 2.6 320 5.3
NaCl 3.4 420 5.2
NaCl 4.5 550 5.1
CuSO4 0.4 110 4.8
CuSO4 0.9 210 4.6
CuSO4 1.5 320 4.5
CuSO4 2 410 4.4
CuSO4 2.6 510 4.4

aThese characteristics are also used in the TLM to compute the phase
angles.

bAt 25�C.
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reproduced by a linear conductivity model in which polariza-
tion occurs in the Stern layer. (4) The sorption of cations on
the surface of silica can occur either as an immobile inner
sphere ligand or a mobile outer sphere ligand. An example
of an outer sphere ligand is sodium, which is weakly sorbed
on the mineral surface. Sodium keeps its hydration shell
and is able to move tangentially along the mineral surface
in response to an electrical field. In contrast, copper is pre-
dicted to get sorbed quite strongly onto the mineral surface,
mainly as an inner sphere (immobile) ligand. This strong
sorption is responsible for the decrease of the amplitude of
the phase in comparison with the case where the counterion
is sodium. This demonstrates how complexation on the
mineral surface is directly responsible for a change in the
value of the phase lag. This presents an exciting perspec-
tive in coupling complex resistivity tomography with reac-
tive transport code modeling to constrain, nonintrusively,
chemical reactions in contaminant plumes. With modern
24 bit acquisition cards, one can expect a sensitivity on the
phase lag on the order of 0.1 mrad in the field, which is low
enough to see the phase lag changes reported in this work
in field conditions.

Appendix A: Generalization to a Distribution of
Polarization Length Scales

[58] In this appendix, we provide the generalization of the
case discussed in the main text to a distribution of polariza-
tion length scales. The idea is to use the convolution product
(resulting from the superposition principle applied to linear
systems) as discussed by Lesmes and Morgan [2001] for the
diffuse layer polarization model. This idea was applied to the
Stern layer polarization model by Revil and Florsch [2010].
These polarization length scales include the grain size distri-
bution and possibly the heterogeneities associated with the
roughness of the grains, as experimentally shown by Leroy
et al. [2008]. The conductivity equation remains the same:

�ð!Þ ¼ 1
F
�w þ F � 1ð Þ�Sð!Þ½ � ; ðA1Þ

Table 6. Summary of the Characteristics of the TLM Obtained for Interfaces Between Silica and Solutions of NaCl and CuSO4, Both
With Measured Electrical Conductivities of 220 and 410 �S cm�1

Parameter Units

NaCl CuSO4

220 �S cm�1 410 �S cm�1 220 �S cm�1 410 �S cm�1

’0 V �0.087 �0.069 �0.065 �0.001
’� V �0.076 �0.058 0.004 0.001
’d V �0.050 �0.034 �0.002 0.001
Q0 C m�2 �0.013 �0.013 �0.003 �0.003
Q� C m�2 0.008 0.008 0.003 0.003
Qs C m�2 0 0 0 0
�0
>SiO�Naþ m�2 4.9 � 1016 4.80 � 1016 - -

�0
>SiOCuþ m�2 - - 1.0 � 1017 1.0 � 1017

�0
2>SiO�Cu2þ m�2 - - 9.9 � 1015 8.3 � 1015

�d m 7.62 � 10�9 5.39 � 10�9 5.07 � 10�9 3.59 � 10�9

�S S 3.91 � 10�9 4.77 � 10�9 4.42 � 10�8 4.42 � 10�8

�d S 4.00 � 10�8 1.98 � 10�8 1.76 � 10�8 2.55 � 10�8

Table 7. Resistivity and Phases Measured and Modeled for Fre-
quencies of 183.1 mHza

Electrolyte
Conductivity

(�S/cm)

Resistivity (�m) Phaseb (mrad)

Measured Modeled Measured Modeled

NaCl 110 307 311 �2.40 6 0.03 �2.30
200 160 166 �1.22 6 0.10 �1.17
320 102 102 �0.84 6 0.02 �0.80
420 78 78 �0.54 6 0.05 �0.53
550 61 60 �0.44 6 0.10 �0.42

CuSO4 110 307 308 �0.96 6 0.16 �0.87
210 160 157 �0.51 6 0.10 �0.48
320 102 103 �0.28 6 0.07 �0.28
410 78 81 �0.21 6 0.01 �0.21
510 61 65 �0.16 6 0.06 �0.16

aThe measurements were done on samples of sand filled with solutions
of NaCl and CuSO4. The reported errors on the phases are those given by
the impedance meter.

bThe uncertainties are from the measurement system (SIPLab II).

Figure 12. Comparison between the measured phase and
the phase predicted with the model shown in this paper for
10 electrolytes at 183 mHz. The triangles correspond to the
solutions of NaCl with conductivities of 100, 210, 320, 420,
and 550 �S cm�1, respectively (at 25�C). The diamonds
correspond to the solutions of CuSO4 with conductivities of
110, 210, 320, 410, and 510 �S cm�1, respectively.
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but now the complex surface conductivity is given by

�Sð!Þ ¼ 4Eh�d þ 4Eh�S 1�
Z1
0

gð�Þ
1þ i!�

d�

0
@

1
A ; ðA2Þ

Eh ¼
Zþ1
0

f ðdÞd ln d ; ðA3Þ

Z1
0

gð�Þd� ¼ 1 ; ðA4Þ

Z1
0

f ðdÞdd ¼ 1 : ðA5Þ

[59] In equations (A2) – (A5), Eh (in m�1) is the expected
value of the inverse of the grain diameter, f(d) is the proba-
bility density of the grain diameter distribution, and gð�Þ
represents the probability distribution of the relaxation
times � (both probability density distributions are related to
each other by Revil and Florsch [2010]). We provide an
example in the following to illustrate how the probability
distribution on the polarization length scales and the proba-
bility distribution on the relaxation times are related to
each other.

[60] The surface conductivity �Sð!Þ ¼ �0Sð!Þ þ i�00Sð!Þ
can be decomposed into a real component and a quadrature
component as

�0Sð!Þ ¼ �0
S þ �1S 1�

Z1
0

gð�Þ
1þ !2�2

d�

0
@

1
A ; ðA6Þ

�00Sð!Þ ¼ �1S
Z1
0

!�

1þ !2�2
d� ; ðA7Þ

�0
S ¼ 4�SEh ; ðA8Þ

�1S ¼ 4�SEh : ðA9Þ

[61] We can consider, for instance, that the distribution of
the polarization length scale is described by a lognormal
distribution:

f ðdÞ ¼ 1ffiffiffiffiffiffi
2�
p

�̂
exp � ln d � �ð Þ2

2�̂2

" #
; ðA10Þ

where �̂ ¼ ln �g and � ¼ ln d50 are the standard deviation
and the mean of the polarization length natural logarithm,
respectively, �g is the geometric standard deviation, and
d50 represents the median of the polarization length scale
distribution. If the distribution of the polarization length
scales is associated with the particle size distribution, the
median d50 (in m) is a measure of the average particle di-
ameter size of the granular material. In this case, the expec-
tation of the distribution of the inverse of the grain size (the
raw moment of order �1 of the particle size distribution) is
given by

Eh ¼ exp
1
2
�̂2 � �

 �
¼ 1

d50
exp

1
2
�̂2

 �
: ðA11Þ

[62] For such a lognormal distribution of polarization
length scales, the related distribution of the relaxation times
is given by [Revil and Florsch, 2010]

Figure 13. Measured grain size distribution and models used for the convolution in the SIP model.
(a) Grain size distribution. The solid circles represent the measured grain size distribution. Model 1, Cole-
Cole probability distribution with d50 = 100 �m and a = 0.98); model 2, Cole-Cole probability distribution
with d50 = 100 �m and a = 0.55. (b) Phase versus frequency and comparison with the model fitting the
grain size distribution (model 1). (c) Phase versus frequency and comparison with model 2.
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gð�Þ ¼ 1ffiffiffiffiffiffi
2�
p
ð2�̂Þ�

exp � ln �=�0ð Þffiffiffi
2
p
ð2�̂Þ

 !" #
; ðA12Þ

for which the characteristic time �0 is associated with the
polarization length scale d50.

Appendix B: Microscopic Description of the
Stern Layer Polarization

[63] In order to get a better insight as to what the Stern
layer polarization is, we introduce here the microscopic
equations describing the physics of the transport of the coun-
terions located in the Stern layer (see Schwarz [1962], Schurr
[1964], and Rosen et al., [1993] for additional details). The
existence of the Stern layer of weakly sorbed counterions is
demonstrated, for example, by molecular dynamic simula-
tions [Tournassat et al., 2009]. An external field, varying
with time as E ¼ E0expði! tÞ, is applied to a grain
immersed in a background electrolyte. Because the grains do
not move under the influence of the electrical field in a po-
rous material, we can consider that the electrophoretic effect
(movement of the particles under the effect of an electrical
field) can be safely neglected. Electro-osmosis (movement of
the pore water due to the viscous drag of the water by the
movement of the counterions) is also neglected. The Stern
layer is assumed to be infinitesimally thin. We assume that
there is no flux of ions from the diffuse layer into or out of
the Stern layer. Under these conditions, the conservation of
ionic species along the mineral surface in the Stern layer is

@�i

@t
¼ �rS 
 ji ; ðB1Þ

where �k is the concentration of species i at the mineral
surface (density of counterions i per surface area), rS
denotes a surface divergence (with respect to the curvilin-
ear coordinates describing the mineral surface), and ji is
the flux density of species i along the mineral surface. The
electrostatic equations obeyed by the electrical field in the
low-frequency limit of the Maxwell equations are

r 
 E ¼ 

"
; ðB2Þ

r � E ¼ 0 ; ðB3Þ

where 
 is the volumetric charge density and " is the dielec-
tric constant in the Stern layer. This dielectric constant can
be derived from the inner capacitance of the double layer
(see section 2.4, equation (50)). Equation (B3) implies, in
turn, that the electrical field can be derived from an electro-
static potential  , which is distinct from the electrostatic
potential of the electrical double layer ’. The flux of spe-
cies i along the mineral surface is given by the Nernst-
Planck local equation:

ji ¼ �
�i�i

qij j
rS ~�i ; ðB4Þ

ji ¼ ��
�i�i

qij j
rS qi þ kBT ln �ið Þ ; ðB5Þ

ji ¼ �
�i

qij j
qi�irS þ kBTrS�ið Þ ; ðB6Þ

where ~�i denotes the electrochemical potential of species i,
rS denotes a surface gradient along the mineral surface, �i
is the (Stern layer) ionic mobility of species i, and qi ¼ (61)
zie is the charge of species i (zi is the unsigned valence). The
tangential mobility of the weakly sorbed counterions is con-
firmed by nuclear magnetic resonance (NMR) spectroscopy.
For instance, in the case of sodium on silica, Carroll et al.
[2002] showed that sodium forms a mobile outer sphere sur-
face complex on the basis of the narrow line width of the
NMR spectra, the lack of a chemical shift from aqueous so-
dium, and negligible quadrupolar couplings. The question is
to know whether the mobility of the counterions in the Stern
layer is the same as the mobility in the free electrolyte (free
from long-range Coulombic interactions). Electrochemists
distinguish two types of sorption: weak sorption in the outer
Helhmotz plane (outer sphere ligand) and strong sorption in
the inner Helmholtz plane (inner sphere ligand), which is
closer to the mineral surface than the former. Sodium and
alumina are known to be extreme examples of sorption at
the surface of silica. While sodium keeps its hydration layer
and seems to have the same mobility along the mineral sur-
face as in the free electrolyte [Revil and Florsch, 2010], alu-
mina has no mobility whatsoever along the mineral surface
[Revil et al., 1999a]. Zukoski and Saville [1986a, 1986b] pro-
vided several values regarding the mobility of some counter-
ions in the Stern layer.

[64] According to equation (B4), the lateral transport of
the counterions in the Stern layer by electromigration is
coupled to diffusion. In other words, the flux density is con-
trolled by the gradient of the electrochemical potential ~�i of
species i, which comprises an electrostatic term and a con-
centration gradient term (an activity gradient term for a non-
ideal solution). Combining equations (B1) and (B4) yields

@�i

@t
¼ �i

qij j
rS 
 qi�irS þ kBTrS�ið Þ : ðB7Þ

[65] Therefore, both the concentration gradient and the
imposed electrical field are locally tangential to the mineral
surface. Note that the electrical field resulting from the elec-
trical double layer is normal to the mineral surface, and
therefore, the two electrical fields are normal to each other
[Revil and Glover, 1997]. Concentration gradients and the
electrical field provide the driving forces for the migration of
the counterions along the Stern layer. The first boundary con-
dition results from the continuity of the tangential component
of the electrical field at the interface between the Stern layer
and the diffuse layer. The second boundary condition results
from the fact that the surface of the grain is insulating and
therefore impervious to the transport of the counterions.
Finally, Gauss’s law states [Rosen et al., 1993] that

�" @ 
@r

 �
r¼d=2
¼ Q0 þ Q� ; ðB8Þ

where Q0 is the surface charge density, Q� is the charge
density of the Stern layer, and r is the radial distance from
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the center of the spherical grain of diameter d. Equations
(B1) – (B8) can be solved numerically [see Schwarz, 1962;
Schurr, 1964] or numerically [Rosen et al., 1993]. Rosen
et al. [1993] considered in their model the possible
exchange of counterions between the Stern layer and the
diffuse layer, while Schwarz [1962] considered that the
counterions of the entire electrical double layer can only
move tangentially along the mineral surface. However, the
kinetics of the sorption/desorption of the counterions is a
slow process, and we believe that this effect can be
neglected at the frequencies typically considered for
induced polarization (generally above 1 mHz). If the micro-
scopic set of equations is solved analytically, the expres-
sion of the dipole moment can be inserted into a
macroscopic conductivity model giving the expression of
the complex conductivity model described in section 2.1.
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