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Abstract 25 

Purpose: Eighteen soils were sampled in the Lake Aydat catchment in order to analyse free fatty acid (FA) 26 

content; FAs are considered to be among the most amenable biomarkers to mobilisation by runoff waters. The 27 

majority of the study area has soil cover consisting of grasslands or forest since the 2nd World War, although 28 

some covers having changed more recently.  29 

Material and methods: The soil studied all developed on volcanic rocks (andisols). The bulk organic matter (OM) 30 

content of the samples was characterized by Rock-Eval (RE) pyrolysis. The FAs were determined by gas 31 

chromatography-mass spectrometry (GC-MS) analysis of isolated and derivatized (methylation and 32 

trimethylsilylation) FA fractions. 33 

Results and discussion: Few low molecular weight compounds (LMW; i.e., <C20) were detected; FA distributions 34 

were dominated by even numbered-carbon high molecular weight (HMW; ≥C20) normal FAs and 35 

difunctionalized FAs that included: dicarboxylic acids (diFAs), n-alkylcarboxylic acids (nFAs), and α- and ω-36 

hydroxycarboxylic acids (αHOFAs and ωHOFAs). The distributions and abundances of HMW terms of all 37 

families (which can be all considered as representative of terrestrial OM source) displayed only slight differences. 38 

These differences were rationalized by the following ratios: (C26:0+C28:0)/ΣCeven nFAs, C22/C24 di-FAs, and C20-39 

/C20+ω-HOFAs). Soils from areas that had changed use recently consistently displayed intermediate ratio values 40 
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typical of their double inheritance. All grassland soils and some samples from intermediate areas contained 41 

notable amounts of the bile acid deoxycholic acid that testifies to their present or recent use for cattle breeding. 42 

Conclusions: Despite the variety and the abundance of all HMW FAs in soils, work done previously on Lake 43 

Aydat sediments found only nFAs (Stefanova, M. and Disnar, J. R. 2000. Composition and early diagenesis of 44 

FAs in lacustrine sediments, Lake Aydat (France). Org Geochem 31, 41-55). These results suggest we should 45 

question the importance of the watershed contribution, the source (plant or soil) and mode of transportation of 46 

the FAs to the lake sediments. 47 
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 51 

1 Introduction 52 

Fatty acids (FAs) are major components of the lipids of living organisms. They mostly occur: (i) in the form of 53 

esters (of alkanols, sterols and glycerol) if they are components of the cell membranes of bacteria and eukaryotes; 54 

(iia) as polyesters in the protective tissues of higher plants (namely cutin in leaves and suberin in barks and 55 

roots); and also (iib) in the free or combined state (waxes) at the outer surface of leaves (Feng et al. 2010 and 56 

references therein). Similar to other lipid compounds, FAs have been extensively studied by organic geochemists 57 

as tracers of plant input to marine and lacustrine sediments (Cranwell 1977, 1978, 1981; Meyers and Ishiwatari 58 

1993; Ho and Meyers 1994; Prartono and Wolff 1998; Ficken et al. 2000; Fisher et al. 2003; Jacob et al. 2007). 59 

While the FAs incorporated into phospholipids have received considerable attention as specific tracers of soil 60 

microorganisms (Zelles 1997, 1999; Ruess and Chamberlain 2010 and references therein), soil lipids, including 61 

FAs, have been little investigated. This paucity of data was pointed out by Bull et al. (2000a), and still remains 62 

fully valid, despite the publication of a few papers in the meantime (see below). Most papers on soil lipids in 63 

general and FAs in particular deal with the fate or turnover of lipid components of the soil organic matter (SOM) 64 

in cultivated or uncultivated soils (Dinel et al. 1998; Nierop and Verstraten 2005; Otto and Simpson 2006; 65 

Wiesenberg and Schwark 2006; Wiesenberg et al. 2008, 2010; Amelung et al. 2008; Feng et al. 2010 and 66 

references therein). Only very few papers consider FAs as plant source indicators (Almendros et al. 1996; van 67 

Bergen et al. 1997; Bull et al. 2000b; Gleixner et al. 2001; Marseille et al. 1999). Both these objectives are 68 

considered together in studies in which lipids are used for tracking changes in soil use (Lichtfouse et al. 1994; 69 

Wiesenberg et al. 2004; Quénea et al. 2006).   70 

As soil scientists, sediment geochemists usually base the identification of the source organisms of FAs (and other 71 

lipid compounds) on the composition of the putative living organism (e.g., Cranwell 1974; Rieley et al. 1991). 72 

The possibility that original FA distributions might be altered during compound transfer from plant source to 73 

downstream sediment trap (lake or sea) – and especially in the soil where they can remain for a rather long time 74 

– is generally overlooked (e.g., Kusch et al. 2010).  75 

A few years ago, Stefanova and Disnar (2000) published a study on the free and bound FA content in the recent 76 

sediments of Lake Aydat (> ca. 1950). This lake is located in the French Massif Central, in an area covered by 77 

grasslands and forests. It is presently eutrophic and, accordingly, the previous authors evidenced only a minor 78 

organic contribution from the watershed to the lake sediment as per the results of their FA study. The present 79 

study deals with the analysis of the free FAs extracted from 18 representative soils in relation to the different 80 
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vegetation cover and topographic conditions (orientation and slope) in the lake catchment. This work has a 81 

threefold interest: 1) to evaluate the variations in the content and natural composition of free FAs, 2) to check 82 

their ability to differentiate the vegetation covers as a source of FAs and 3) their possible use as biomarkers from 83 

catchment.   To answer these questions we selected soils under different plant cover (i.e., grass and trees) and 84 

over a range of environmental factors (soil characteristics, elevation, slope, etc.). Some of the studied soils that 85 

have experienced changes in land use during the last century should also allow us to assess the persistence of 86 

FAs from historic land uses and, accordingly, to test the potential of lipids to track such changes.  87 

 88 

2 Setting 89 

Soil samples were taken from the catchment of Lake Aydat, located in the French Massif Central, about 25 km 90 

SW of Clermont-Ferrand (Fig. 1). The catchment is at an altitude ranging from 825 m (lake level) to about 1300 91 

m above sea level. The highest points are volcanoes of the Chaîne des Puys. Between the volcanic domes flows 92 

the Veyre River, the major tributary of Lake Aydat. The Lake Aydat catchment comprises rather shallow soils 93 

developed on recent volcanic rocks (i.e. younger than 70 000 years, one of the latest manifestations of the 94 

volcanic activity being the basaltic flow that dammed the Veyre river valley about 8600 years ago, giving birth to 95 

Lake Aydat). The area was most certainly covered by forest until its intensive exploitation for the development of 96 

agriculture, from the middle of the first millennium (Michelin 1996). Nowadays, in the Aydat catchment, the 97 

areas of greatest slope are no longer used as pasture and are covered by forest or by shrubby meadows (Table 1 98 

and Fig. 1). Here, the areas designated as “intermediate” were used as grasslands until the end of the 1940’s and 99 

are presently abandoned (namely S05, S28, S33 and S34; Institut Géographique National, 1946). 100 

The volcanoes are presently covered by forests (mainly Picea sp.), most of them being recent plantations, 101 

whereas the rest of the catchment is covered by pastures (grasslands) and, in lesser abundance, by shrubs. In total, 102 

the present watershed comprises 70% grasslands, 15% forest, with the rest being urbanized areas. The geological 103 

substratum is mostly basaltic, accompanied by basaltic trachyandesite and Quaternary alluvium near the Veyre 104 

River. Aydat soils are andisols, constituted by lightly-textured basic lava. Sand-silt constituted the only horizon 105 

(A, organo-mineral) above the C horizon. These soils are well drained and slightly acidic. The abundance of 106 

worm casts and molehills indicates a high degree of biological activity. 107 

 108 

3 Materials and methods 109 

3.1 Sampling, soil characterization and slope calculation 110 

Eighteen soil monoliths, representative of the diversity of soil present in the catchment of Lake Aydat, were 111 

sampled in autumn 2008. The location and context of the eighteen sites are described in Fig. 1 and the vegetation 112 

cover and the main characteristics of the selected soils are listed in Table 1. Slope calculations were performed 113 

according to Kasel and Bennett (2007). Samples of the top of superficial organo-mineral horizon (2–4 cm) were 114 

dried in an oven (40°C), crushed and sieved at 2 mm. The < 2 mm fractions were analysed.  115 

 116 

3.1.1. pH and granulometry 117 

Soil pH was determined as described in Margesin and Schinner (2005). Granulometry was performed on air-118 

dried samples on the < 2 mm fraction from one sample within each of the three land uses. The size distribution 119 

of particles was determined using the pipette method after dispersion with 1M NaOH (Embrapa 1997). 120 
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 121 

3.1.2. Rock-Eval analyses 122 

Approximately 60 mg of dried and crushed soils were used for RE analysis. The RE parameters used in this 123 

study were: (i) Total Organic Carbon (TOC; %) that accounts for the quantity of OC present in the soil; (ii) the 124 

Hydrogen Index (HI, in mg hydrocarbons.g-1 TOC), which is the amount of HC released during pyrolysis, 125 

normalized to TOC and  (iii) the Oxygen Index (OI, in mg CO2. g
–1 TOC) that corresponds to the oxygen content 126 

of the OM released during pyrolysis, normalized to TOC (Espitalié et al. 1985; Lafargue et al. 1998; Disnar et al. 127 

2003). 128 

 129 

3.2. Lipid extraction and analysis by Gas Chromatography–Mass Spectrometry (GC-MS) 130 

Lipids were extracted from ca. 2 g of dried and crushed soil samples using accelerated solvent extraction with 131 

CH2Cl2:MeOH (1:1 v/v; ASE 200 Dionex®) at 100°C and 1000 psi for 5 min in 3 cycles (5 ml cells, 60% flush 132 

volume). The total extract was dried under N2 and then fractionated into neutral and acidic compounds using 133 

solid phase extraction on Aminopropyl Bond Elute© phase according to Jacob et al. (2005). Acid fractions were 134 

dried under N2 and methylated by adding a mixture of anhydrous MeOH and acetyl chloride kept at room 135 

temperature for 1 hour. The obtained methyl esters were then further derivatized by reacting with 125 µl N,O-136 

bis(trimethylsilyl)trifluoroacetamide (BSTFA) in 250 µl pyridine at 60°C during 1 hour. Standard (5α-cholestane) 137 

was added prior to GC-MS analysis. 138 

Esterified and silylated acid fractions were analyzed by GC-MS with a Polaris TRACE-GCQ. The 139 

chromatograph was fitted with an Rtx-5MS column (30 m, 0.25 mm i.d., 0.25 µm film thickness). The GC 140 

operating conditions were: 40°C (hold 1 min) ramping from 40°C to 120°C at 30°C.min–1, then from 120°C to 141 

300°C at 5°C.min–1, hold 30 min. The samples (2.0µl) were injected automatically in splitless mode, with the 142 

injector temperature set at 280°C. Helium was the carrier gas (1 ml.min–1). The mass spectrometer was operated 143 

in the electron ionization (EI) mode at 70 eV and scanned from 50 to 650 m/z. Identifications were based on GC 144 

retention times and comparison of mass spectra with published data. Because of possible coelution, the 145 

concentrations were estimated by measuring peak areas on ion specific chromatograms. Acid concentrations 146 

were estimated after calculating a correction factor between the peak area on the ion specific chromatogram and 147 

the peak area on the Total Ion Current (TIC) and then reported to the area of standard peak (5α-cholestane) on 148 

the TIC. The Pearson product moment correlation was used to test for correlation with Statistica (Statsoft 2008). 149 

The level of significance of all tests was set at P<0.05.  150 

 151 

4 Results 152 

The samples analysed were separated into three groups depending on their present and past vegetation cover: 153 

forests, grasslands and intermediate areas that have changed occupation during the past century. In most cases 154 

these intermediate areas correspond to abandoned grasslands that were colonized by shrubs and/or trees (mostly 155 

conifers). 156 

 157 

4.1 Soil samples main characteristics (Table 1) 158 

All the samples are rich in TOC, with the range being between 5.2 %, the value obtained for grassland soil S14, 159 

up to 38.2 % in the forest sample S26 (Table 1). Grassland soils in general exhibited lower TOC values (average 160 
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= 10.8%, SD = 5.6%) than both intermediate site soils (average = 16.1%, sd = 6.9%) and forest soils, except for 161 

site S12 (25.7%) that was located in a swampy area. Slope values were low to moderate, ranging from 0.5 to 162 

16.6°. The largest slope gradients were reached in forest soils (average = 15.8°) whereas grasslands developed on 163 

lower slopes (average = 6.9°, SD = 4.5). OI values were relatively higher in forest soil samples (e.g. sample S26, 164 

has the high OI value but also the highest HI, the greatest slope and the lowest pH value: 4.2). Granulometry 165 

revealed a gradient from grassland to forest soils, characterized by a decreasing amount of silts compensated by 166 

an increase in sand, accompanied by a slight decrease in pH (Table 1). 167 

 168 

4.2 Identification, composition and distribution of lipids in the acid fraction of soil samples 169 

The free FA fraction of the soil total lipid extract (TLE) contained the following groups of aliphatic compounds: 170 

nFAs, diFAs, ω- and α-HOFAs. Total fatty acids (TFA) concentrations varied between 823 and 6794 µg/g TOC 171 

for grassland soils, between 1639 and 6636 µg/g TOC for intermediate soils, and between 833 and 23346 µg/g 172 

TOC in forest soils (Table 1). Characteristic chromatograms of the acid extractable fractions from grassland and 173 

forest soils are shown in Fig. 2.  174 

 175 

4.2.1 n-alkylcarboxylic acids (nFAs) 176 

The total abundance of nFAs ranged from 396 to 6318 µg/g TOC/sample, making it the most abundant family of 177 

free FAs in grassland and intermediate soils (53 to 68% of TFA). Fig. 3 summarizes the distributions of nFAs 178 

from each group of vegetation cover studied. In all cases, nFAs ranged from n-C16:0 to n-C34:0 and displayed an 179 

even-over-odd predominance. In grassland samples (Fig. 3a; 3b), nFAs showed a monomodal distribution, with a 180 

maximum at n-C26:0. In forest soils and sample S34 (intermediate vegetation; Fig. 3d), nFAs showed similar 181 

concentrations of n-C22:0, n-C24:0, n-C26:0 and n-C28:0 (Fig. 3e; 3f). 182 

 183 

4.2.2 ω-hydroxycarboxylic acids (ωHOFAs) 184 

ωHOFAs represented between 34 to 65% of the TFA for forest soils. In grassland and intermediate soils this 185 

compound family was less abundant than the nFAs and represented up to 28% of the TFA. All samples presented 186 

a homologous series of compounds ranging from C12-ωHOFA to C29-ωHOFA with an even-over-odd 187 

predominance. The distribution was monomodal in grassland soils and bimodal in intermediate and forest soils. 188 

High abundances of the C22-ωHOFA and C24-ωHOFA homologues were recorded in grassland and intermediate 189 

soils (Fig. 4a; 4d), with higher concentrations than the n-C22:0 and n-C24:0 nFAs, respectively. Forest soil samples 190 

(Fig. 4e; 4f) exhibited an exceptionally high abundance of C12, C14 and C16-ωHOFA. Intermediate soil sample 191 

S34 (Fig. 4d) showed the characteristics of grassland and forest soils, the major compounds being C22, C24 and 192 

C16-ωHOFA, respectively. 193 

 194 

4.2.3 α-Hydroxycarboxylic acids (αHOFAs) 195 

α-Hydroxycarboxylic acids (αHOFA) represented between 8 and 22% of aliphatic acids in grassland soil TFAs, 196 

between 11 and 23% in intermediate soils and between 5 and 12% in forest soils. Homologous series ranged 197 

from C20 to C30. In all samples, C24-αHOFA was the dominant homologue, followed by notable and comparable 198 

levels of all homologues from C22 to C26, including odd-numbered chains (Fig. 5). 199 

 200 
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4.2.4 Dicarboxylic acids (diFAs) 201 

All samples displayed a homologous series of diFAs extending from C20 to C26 with a marked even-over-odd 202 

predominance. DiFA distributions showed a maximum at C24, with high C22-diFA proportions in grassland and 203 

intermediate soils (Fig. 6a; 6d). In forest soil samples, diFA distributions were dominated by C22-diFA, followed 204 

by C24 and C20-diFAs (Fig. 6e,f). 205 

 206 

4.2.5 Other compounds 207 

In the Aydat catchment area, traces of nC22, nC24 and nC26 alkanols were observed in some soil samples 208 

regardless of the vegetation cover. These compounds represented a simple and modest contamination of the FA 209 

fraction by dominant compounds of the neutral lipid fraction (ca. 0.04% of the TFA). Deoxycholic acid, a bile 210 

acid, was found at notable levels in all grassland soils but one (from a shrubby area), and in most of those from 211 

intermediate areas (Fig. 8).  212 

 213 

5 Discussion 214 

5.1 Abundance and preservation of SOM and FAs in catchment soils 215 

With TOC contents between 5% and 38.2 %, all the studied samples were rich in OM irrespective of their 216 

vegetation cover (grassland S12: 25.7 %; forest S26: 38.2 %; intermediate S33: 29.7% TOC; Table 1). This 217 

richness provides preliminary evidence for a rather long residence time of SOM and consequently for good OM 218 

preservation. More direct indications were provided by RE parameters (HI and OI values). For example, samples 219 

S26 and S33, which were among the richest in OM, also presented relatively high HI and low OI values (namely 220 

in the 360-380 mgHC.g–1TOC and 170-250 mgCO2.g
–1TOC ranges; Table 1). Such HI and OI values that are 221 

common for forest litter in temperate areas are also typical for well-preserved type III OM (Disnar et al. 2003). 222 

In contrast, sample S36, which also originated from a forest soil and which contained only 8% TOC, presented 223 

lower HI and higher OI values (i.e. 220 mgHC.g–1TOC and 378 mgCO2.g
–1TOC, respectively; Table 1) that 224 

constituted a clear indication of a more intensive OM alteration than the other samples. Despite this alteration, 225 

sample S36 had an extremely high FA content that suggests a better preservation of these compounds than bulk 226 

SOM, in agreement with general knowledge on the greater resistance of lipids compared to other biochemical 227 

compounds to (bio-)degradation (namely proteins and polysaccharides; Tissot and Welte 1984). 228 

At the molecular scale, the overall good FA preservation is first evidenced by high even-over-odd compound 229 

predominance in the four compound families examined (Zelles 1997; Jandl et al. 2005; Disnar et al. 2005). The 230 

low contents of odd C numbered FAs strongly suggests that there has been no significant contribution from 231 

products of the oxidative degradation of alkanols or n-alkanes, via methyl ketones (Amblès et al. 1994; Bull et al. 232 

2000b). From a general point of view, soil lipids can indeed be affected by chemical processes such as hydrolysis 233 

and transesterification of lipid esters and further by oxidation and reduction. The latter processes are dependent 234 

on soil pH and moisture, but also on other environmental factors such as the clay content, the nature of the 235 

microbial biomass, and the vegetation types (van Bergen et al. 1997). In the present case, two of these factors 236 

might immediately be suspected of having played a notable role in the preservation of FAs, and more generally 237 

of SOM. The first one is acidity since, as has long been observed, the preservation of soil lipids is primarily 238 

favored by a low pH (Moucawi et al. 1981; Jambu et al. 1985, 1987; van Bergen et al. 1998), although acidity 239 

favours the hydrolysis of biopolymers (Nierop et al. 2005) and the selective preservation of certain types of FAs, 240 
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especially aliphatic compounds (Bull et al. 2000a; Nierop and Verstraten 2003). The second factor is the volcanic 241 

nature of the soil parent material that might have given rise to abundant non-crystalline minerals. These are 242 

thought to be capable of forming stable organo-mineral complexes that might favour physical protection of SOM 243 

(Torn et al. 1997). In fact, this hypothesis has been contradicted by recent work (Buurman et al. 2007) and thus 244 

remains to be confirmed. Nevertheless, the role played by minerals in OM preservation is a generally accepted 245 

concept (e.g., Six et al. 2002).  246 

 247 

5.2 Acid compounds as potential biomarkers in catchment soils 248 

First, it is worth noting the low proportion of LMW nFAs C16:0 and C18:0, and above all the absence of their 249 

unsaturated counterparts such as n-C18:1 and/or n-C18:2 (i.e., linoleic acid). The latter compounds are frequently 250 

detected at variable concentrations in plant lipids, for example in the TLE as well as in the hydrolysate of the 251 

residue of the grass Holcus latanus (Bull et al. 2000b). In contrast, both these compounds and especially n-C18:2 252 

were only present at low levels in the soil where this grass grew. This is consistent with the high biodegradability 253 

of the LMW saturated and unsaturated FAs (Marseille et al. 1999).  254 

With the exception of the LMW ωHOFAs that are particularly abundant in soil sample S36 (cf. section 5.1; Fig. 255 

4), all Aydat catchment soils display similar or at least comparable FA distributions, whatever their plant cover or 256 

the compound family considered (Figs 3–6).  257 

Among all the compound families examined, nFAs display the widest distribution of homologues, at least from 258 

n-C16:0 to n-C34:0 (Fig. 3). This family of compounds is usually divided into LMW and HMW compounds [i.e. n-259 

C20- and n-C20+ (including n-C20)], which is consistent with the reputed origin of these two sub-groups: the 260 

cellular membrane for the former and epicuticular waxes for the latter (Kolattukudy 1980). In contrast to the 261 

former that are ubiquitous and rather easily biodegraded as a result of their biological location and of their rather 262 

low molecular weight (e.g., Marseille et al. 1999), the latter are quite resistant and are thus frequently used as 263 

plant source indicators in sediment studies. However, in such cases they are generally considered as “markers of 264 

higher plants” without any further detail (Tissot and Welte 1984; Baudin et al. 2010), disregarding the fact that 265 

compound distributions are also known to vary depending on the species studied (e.g., Rieley et al. 1991), but 266 

also on the age of the plant (Martins et al. 1999; Lecomte 2009), and many abiotic factors such as light, 267 

temperature, osmotic stress, etc (Shepherd and Griffiths 2006).  268 

Among the various other FA families observed in the studied samples, ωHOFAs were frequently present at high 269 

concentration levels, i.e. almost identical to those of nFAs (Fig. 2). As is particularly well exemplified by the 270 

altered forest sample S36 (cf. previous section), this compound family presents a bimodal distribution similar to 271 

that of nFAs, with a first mode in the LMW range (i.e., at C16) and a second mode in the HMW range, at C22 (Fig. 272 

4). Based on early studies (Eglinton and Hunneman 1968; Holloway 1982), authors usually assume that ωHOFA 273 

are cutin and/or suberin derivatives, irrespective of whether the ωHOFAs were found in sediment samples (e.g., 274 

Huang et al. 1996; Wakeham 1999; Stefanova and Disnar 2000) or soils (van Bergen et al. 1998; Naafs et al. 275 

2004; Bull et al. 2000b). In fact, the “long chain” [as designated by Eglinton and Hunneman (1968)] HOFAs 276 

constitutive of cutin are almost exclusively C16 and/or C18 mono, di and trihydroxy FAs (Espelie and 277 

Kolattukudy 1979; Holloway 1982; Goni and Hedges 1990; Järvinen 2010). Here, such LMW ωHOFA are 278 

present in all samples but especially in soils developed under forest. The absence of the C18 HOFA was also 279 

consistent with the distribution of ωHOFAs of two spruce species, including P. abies, the dominant tree species 280 
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in the study area (Priigelt and Lognay 1996). This source assignment did not hold for the HMW ωHOFA (C20+). 281 

However, in contrast to cutin, which comprises only LMW FAs (≤ C18), suberin contains notable proportions of 282 

heavier terms. For example, Matzke and Riederer (1991) compared the chemical constitution of cutin and 283 

suberin from the leaves and the periderm (bark) of three major tree species (Picea abies L., Quercus robur L. and 284 

Fagus sylvatica L.), and found that the suberin-rich periderm from stems and branches of the three species (plus 285 

roots of Picea) yielded notable proportions of ≥C20 ωHOFAs (up to n-C24:0 for Picea and to n-C26:0 for Fagus and 286 

Quercus). These results strongly suggest that the HMW ωHOFAs (C20+) in Aydat soils probably originated from 287 

the suberin of twigs, branches and roots of trees and/or grasses.  288 

Among the various families examined, diFAs present the smallest number of homologues (namely, even-289 

numbered carbon chain diFA from C20 to C26; Fig. 6 and Fig. 7c). An even smaller distribution of diFAs (i.e., 290 

C22diFA + C24diFA only) was found in the grass Holcus lanatus and the underlying soil by Bull et al. (2000b). 291 

Among the plant samples analysed by Bull et al. (2000b) the almost exclusive presence of diFAs in the 292 

hydrolysates of roots and lipid extract of aerial parts of grasses substantiate their contribution to plant 293 

constitutive polymers, and especially to the suberin of roots. In addition, the absence of such compounds in non-294 

hydrolysed plant samples and their presence in the soil provides clear evidence that the original polymers only 295 

start to undergo degradation (i.e., hydrolysis) once they have been incorporated in soils. According to Amblès et 296 

al. (1994) diFAs may well be formed by oxidation of ωHOFAs. However, the similarity in chain length of the 297 

dominant components in both families would in this case cause little alteration in component distribution. 298 

Suberin was probably also the source for the αHOFAs (Matzke and Riederer 1991). In addition to the case of 299 

trees, which has been well documented (see refs here above), C16 to C24-αHOFAs have also been found in the 300 

roots and leaves of the herbaceous angiosperm Arabidopsis thaliana (Franke et al. 2005). As schematized in Fig. 301 

5, all the samples, whether they were taken in grassland or forest, showed a similar distribution of αHOFAs with 302 

notable amounts of even-carbon-numbered components in the C22-C26 range, and a maximum at C24.  303 

 304 

5.3 Differentiating source materials in catchment soils  305 

The greatest differentiation between grassland and forest is provided by the ωHOFAs and especially by the 306 

abundance of the LMW terms (Fig. 7), even in the absence of extensive alteration such as that experienced by 307 

sample S36. In forest soils, the importance of the annual needle litterfall (notwithstanding the contribution of 308 

rather resistant suberin-rich branches and roots) could explain the dominance of LMW ωHOFA (i.e. C12 to C16-309 

ωHOFA; Fig. 4). In contrast, in grassland and intermediate area soils, the abundance of HMW ωHOFA (i.e. C24-310 

ωHOFA and C22-ωHOFA; Fig. 7a) might underline a significant contribution of grass root suberin to SOM. In 311 

the latter case, most of the cutin-rich aerial plant production is either harvested (to make hay) or grazed by cattle. 312 

Although the residual matter can return to the soil after a transit through the cattle gut, either directly or due to 313 

manuring practices, the contribution of cutin from aerial parts of grasses to SOM might be minor when 314 

compared to suberin from roots. This distinction between cutin and suberin and their biomarkers is probably the 315 

most marked in an area such as that of Lake Aydat where forest litters that are prone to mobilisation by running 316 

waters are rich in leaves and/or needles (and consequently in cutin) whereas, in contrast, the suberin from plant 317 

roots of grasslands probably contributes predominantly to SOM formation, most of the cutin-rich aerial plant 318 

production being either grazed by the cattle or harvested (see here above).  319 

The major differences between grasslands and forests have been tentatively rationalized by the following ratios: 320 
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(n-C26:0+n-C28:0)/ΣCeven nFAs, C22/C24 di-FAs, and C20-/C20+ ω-HOFAs (Fig. 7). For all of these ratios, a gradient 321 

between these two vegetation types emphasizes the characteristics of the intermediate area, sometimes close to 322 

grasslands, sometimes to forests. n-C26:0, which constitutes the mode of nFA distributions in grassland soils, is 323 

also accompanied by n-C24:0 in intermediate soils. In contrast, spruce forest soils do not display clear modal 324 

distributions, the even C numbered FAs homologues being all present at similar levels in the n-C22:0-n-C28:0 range. 325 

Accordingly, the (n-C26:0+n-C28:0)/Σneven nFA ratio values decreased from an average of 0.65 in grassland soils (n 326 

= 12; Fig.7b) to 0.50 in intermediate soils (n = 4) and down to 0.32 in forest soils (n = 2). Grasslands and 327 

intermediate soils presented higher concentrations of C24diFA followed by C22diFA, while forest soils had higher 328 

concentrations of C22diFA followed by C20diFA and C24diFA homologues. This allows us to propose the C22/C24 329 

diFA ratio as a simple tool to differentiate grassland and intermediate soils from those of forest, in the Aydat 330 

catchment. The dominant ωHOFA homologues were C12, C14 and C16 in forest soils, and C24 and C22 in grassland 331 

soils (Fig. 7a). In intermediate area soils, the relatively high abundance of C16-ωHOFA, C22-ωHOFA and C24-332 

ωHOFA, expressed as the C20-/C20+ωHOFA ratio (Fig. 7d), denotes their mixed grassland/forest influence. 333 

 334 

5.4 FA signatures as biomarkers for identifying land use change  335 

Carbon accumulation in soils depends on many factors, both anthropogenic and environmental (Kasel and 336 

Bennett 2007 and references therein). The Aydat catchment has been used by humans for forest exploitation and 337 

agriculture since at least the fifth century (Michelin 1996). A large part of the area currently predominated by 338 

grasslands or even forests was extensively used for agriculture for a period after the 2nd World War. A general 339 

problem in evaluating the impacts of land-use change is that the landscape is not used at random but with a 340 

preferential selection of soil types or positions best adapted for particular uses (e.g. Powers and Veldkamp 2005). 341 

Changes in vegetation cover affect soil properties, with consequential modifications on the OM content and 342 

molecular composition, which have long term impacts on the plant cover, e.g. plant communities developed after 343 

the afforestation of abandoned lands differ from ancient forests depending on the related modification of the soil 344 

properties (Glatzel 1991; Compton and Boone 2000; Heim et al. 2010). This behaviour has been shown to 345 

control vegetation diversity in forests (Foster 1992; Hermy 1994; Koerner et al. 1997) even 300 years after 346 

afforestation, and it has even been suggested that this situation could persist indefinitely (Dupouey et al. 2002). 347 

Finally, even if the relevant factors (soil characteristics, elevation, slope) do not allow a very clear discrimination, 348 

plant-derived organic acids permit some distinction of soils based on their respective uses (Fig. 7 and Table 1). In 349 

contrast, deoxycholic acid, the major bile acid excreted in the faeces of bovines, clearly identifies grasslands 350 

used as pastures and/or for manure spreading at present and in the recent past in the Aydat catchment (Fig. 8). 351 

This compound was found in notably high levels in almost all grassland soils and intermediate areas except two 352 

of these, which were probably more or less abandoned, as denoted by a rather dense shrub cover (S10 and S33; 353 

Fig. 8). The persistence of relatively high levels of deoxycholic acid in areas that have been abandoned for five 354 

to six decades is fully consistent with the previous statement that this biomarker might even be preserved over 355 

thousands of years in soils and sediments (Bull et al. 2002, 2003).  356 

In addition to land-use, the slope of the soil could also play an important role in the accumulation of carbon and 357 

acid compounds. However, at Aydat, no significant correlation could be deduced from the comparison of slopes 358 

(Fig. 1 and Table 1) with TOC values (all P>0.05, R = 0.26) or slopes with soil FA contents (P>0.05, R = 0.19). 359 

 360 
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5.5 FAs as potential indicators of terrestrial input to the sedimentary record 361 

Lake Aydat is eutrophic, with seasonally abundant algal production (diatoms and cyanobacteria). Consequently, 362 

the amount of OM produced in the lake water body is certainly much more abundant than that provided by the 363 

catchment, thus strongly diluting the latter. A previous study on Aydat lacustrine sediments investigated the 364 

major free and bound lipid compounds recently deposited (> 1950) in the center of the lake (Stefanova and 365 

Disnar 2000). Among the compounds discussed here, only HMW nFAs (i.e. C20+) were ascribed to higher plants 366 

of the watershed. FA distributions of all the other families examined were highly dominated by LMW terms (i.e., 367 

C20-). Beginning with the highly dominant nFAs in n-C16:0 and n-C18:0, all these LMW compounds were 368 

attributed either to autochthonous lacustrine production or to microorganisms. In soil samples, only n-C16:0 was 369 

found and in much lower proportions than HMW nFAs. This is consistent with the previously mentioned high 370 

biodegradability of these light ends (Marseille et al. 1999). In the sediment, diFAs ranging between C16 and C22 371 

and maximizing at C16 were interpreted as originating from diatoms. A microbial source was also considered for 372 

the LMW αHOFAs (C20-) that were found in notable proportions in the sediment albeit not in the free fraction but 373 

in bound form. This origin was also confirmed by the presence of iso and anteiso forms of these components. 374 

Without going into further detail, this brief comparison between FA soil and sediment markers clearly 375 

demonstrated that despite favorable factors such as high contents of SOM in a generally good state of 376 

preservation, a rather wet mountainous climate and relatively steep slopes, few terrestrial plant markers were 377 

transported by runoff waters and finally accumulated in the lake sediments.  378 

 379 

6 Conclusions 380 

As depicted by high TOC contents and relatively high and low HI and OI RE index values, respectively, Lake 381 

Aydat catchment soils that are presently covered by either grassland or forest (spruce dominant), are all rich in 382 

well preserved OM. The soils’ free FA content is globally dominated by various HMW (C20+) compounds: nFAs, 383 

diFAs, αHOFas and ωHOFAs; however, none of these compound families are specific to grasses or trees and 384 

consequently can consistently all be used as indicators of terrestrial OM as a whole, without any further 385 

distinction (as most authors usually do). Nevertheless, the forest soils are particularly rich in LMW ωHOFAs 386 

probably inherited from the cutin of needles and/or leaves. The abundance of these compounds, which increases 387 

with OM alteration, also denotes their relative stability with regard to that of the bulk OM. As generally admitted, 388 

HMW nFAs are mostly derived from plant leaf and needle cuticular waxes, and all the other oxygenated HMW 389 

compounds (αHOFAs and diFAs) very likely from the suberin of roots and/or twigs and branches. Differences in 390 

the abundance of these various compounds between grasslands and forests soils has allowed us to propose the 391 

following molecular ratios: (C26:0+C28:0)/ΣCeven nFAs, C22/C24 di-FAs, and C20-/C20+ω-HOFAs to discriminate 392 

between soil samples. Consistently, grassland soils contained notable amounts of the bile acid deoxycholic acid. 393 

The preservation of this compound in soils that have changed use (e.g., from grassland to forest) witnesses their 394 

past use as pastures much more clearly than plant-derived FAs. Despite the abundance of a variety of HMW FAs, 395 

saturated nFAs were the only ones that had been previously found in sediments taken at the center of the lake 396 

(Stefanova and Disnar 2000). The exclusive presence of these compounds strongly suggests that: (i) there is only 397 

a very small delivery of FAs from these catchment soils to the lake and consequently (ii) these nFAs were most 398 

probably introduced directly by leaves and/or needles brought to the lake by the wind or runoff waters. Results 399 
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showed here question the importance of other processes that are generally overlooked, beginning with the mode 400 

of transportation of the FAs from the soils to the lake sediments. 401 

   402 

Acknowledgments This work received financial support from the ERODE (EC2CO, Centre National de la 403 

Recherche Scientifique/Institut National des Sciences de l’Univers) and OTARIE (Région Centre) projects. M. 404 

L. also acknowledges the Région Centre for attribution of PhD grant. E. Rowley-Jolivet is greatly thanked for 405 

corrections to the English. The authors wish to thank two anonymous reviewers for their constructive comments. 406 

 407 

References 408 

Almendros G, Sanz J, Velasco F (1996) Signatures of lipid assemblages in soils under continental Mediterranean 409 

forests. Eur J of Soil Sci 47:183–196 410 

Amblès A, Jambu P, Parlanti E, Joffre J, Riffe C (1994) Incorporation of natural monoacids from plant residues 411 

into a hydromorphic forest podzol. Eur J of Soil Sci 45:175–182 412 

Amelung W, Brodowski S, Sandahge-Hofmann A, Bol R (2008) Combining biomarker with stable isotope 413 

analyses for assessing the transformation and turnover of soil organic matter. In: Sparks DL (ed) Advances 414 

in agronomy, vol 100. Academic Press, Burlington 415 

Baudin F, Disnar J R, Martinez P, Dennielou B (2010) Distribution of the organic matter in the channel-levees 416 

systems of the Congo mud-rich deep-sea fan (West Africa). Implication for deep offshore petroleum source 417 

rocks and global carbon cycle. Mar and Pet Geol 27:995–1010 418 

van Bergen PF, Bull ID, Poulton PR, Evershed, R P (1997) Organic geochemical studies of soils from the 419 

Rothamsted classical experiments: I total lipid extracts, solvent insoluble residues and humic acids from 420 

broadbalk wilderness. Org Geochem 26:117–135 421 

van Bergen PF, Nott CJ, Bull ID, Poulton PR, Evershed RP (1998) Organic geochemical studies of soils from 422 

the Rothamsted classical experiments. IV. Preliminary results from a study of the effect of soil pH on 423 

organic matter decay. Org Geochem 29:1779–1795 424 

Bull ID, van Bergen PF, Nott CJ, Poulton PR, Evershed RP (2000a) Organic geochemical studies of soils from 425 

the Rothamsted classical experiments. V. The fate of lipids in different long-term experiments. Org 426 

Geochem 31:389–408 427 

Bull ID, Nott CJ, van Bergen PF, Poulton PR, Evershed RP (2000b). Organic geochemical studies of soils from 428 

the Rothamsted classical experiments. VI. The occurrence and source of organic acids in an experimental 429 

grassland soil. Soil Biol and Biochem 32:1367–1376 430 

Bull ID, Betancourt PP, Evershed RP (2002) An organic geochemical investigation of the practice of manuring 431 

at a Minoan site on Pseira Island, Crete. Geoarchaeology 16:223–242 432 

Bull ID, Elhmmali MM, Roberts DJ, Evershed RP (2003) Using steroidal biomarkers to track the abandonement 433 

of a Roman wastewater course at the Agora (Athens, Greece). Archaeometry 45:149–161 434 

Buurman P, Schellekens J, Fritze H, Nierop KGJ (2007) Selective depletion of organic matter in mottled podzol 435 

horizons. Soil Biol Biochem 39:607–621 436 

Compton JE, Boone RD (2000) Long-term impacts of agriculture on soil carbon pools and nitrogen dynamics in 437 

New England forests. Ecology 81:2314–2330 438 



 

 12 

12

Cranwell PA (1974) Monocarboxylic acids in lake sediments: indicators derived from terrestrial and aquatic 439 

biota of paleoenvironmental trophic levels. Chem Geology 14:1–14 440 

Cranwell PA (1977) Organic geochemistry of Cam Loch (Sutherland) sediments. Chem Geology 20:205–221 441 

Cranwell PA (1978) Extractable and bound lipid components in a freshwater sediment. Geochim et Cosmochim 442 

Acta 42:1523–1532 443 

Cranwell PA (1981) Diagenesis of free and bound lipids in terrestrial detritus deposited in a lacustrine sediment. 444 

Org Geochem 3:79–89 445 

Dinel H, Monreal CM, Schnitzer M (1998)  Extractable lipids and organic matter status in two soil catenas as 446 

influenced by tillage. Geoderma 86:279–293 447 

Disnar JR, Guillet B, Kéravis D, Di-Giovanni C, Sebag D (2003) Soil organic matter (SOM) characterization by 448 

Rock-Eval pyrolysis: scope and limitations. Org Geochem 34:327–343 449 

Disnar JR, Stefanova M, Bourdon S, Laggoun-Défarge F (2005) Sequential fatty acid analysis of a peat core 450 

covering the last twomillennia (Tritrivakely lake, Madagascar): diagenesis appraisal and consequences for 451 

palaeoenvironmental reconstruction. Org Geochem 36:1391–1404 452 

Dupouey JL, Dambrine E, Laffite JD, Moares C (2002) Irreversible impact of past land use on forest soils and 453 

biodiversity. Ecology 83:2978–2984 454 

Eglinton G, Hunneman DH (1968) Gas chromatographic-mass spectrometric studies of long chain hydroxy 455 

acids-I: The constituent cutin acids of apple cuticle. Phytochem 7:313–322 456 

Embrapa (1997) Manual de métodos de análise de solo. 2 ed. Empresa Brasileira de Pesquisa Agropecuária, Rio 457 

de Janeiro 458 

Espelie KE, Kolattukudy PE (1979) Composition of the aliphatic components of ‘suberin’ from the bundle 459 

sheaths of Zea mays leaves. Plant Science Letters 15:225–230 460 

Espitalié J, Derro G, Marquis F (1985) La pyrolyse Rock-Eval et ses applications. Revue de l'IFP 40:563–579 461 

Feng X, Xu Y, Jaffé R, Schlesinger WH, Simpson M J (2010) Turnover rates of hydrolysable aliphatic lipids in 462 

Duke Forest soils determined by compound specific 13C isotopic analysis. Org Geochem 41:573–579 463 

Ficken KJ, Li B, Swain DL, Eglinton G (2000) An n-alkane proxy for the sedimentary input of 464 

submerged/floating aquatic macrophytes. Org Geochem 31:745–749 465 

Fisher E, Oldfield F, Wake R, Boyle J, Appleby P, Wolff G (2003) Molecular marker records of land use change. 466 

Org Geochem 34:105–119 467 

Foster DR (1992) Land-use history (1730-1990) and vegetation dynamics in central New England, USA. J of 468 

Ecol 80:753–772 469 

Franke R, Briesen I, Wojciechowski T, Faust A, Yephremov A, Nawrath C, Schreiber L (2005) Apoplastic 470 

polyesters in Arabidopsis surface tissues – a typical suberin and a particular cutin. Phytochem 66:2643–471 

2658 472 

Glatzel G (1991) The impact of historic land-use and modern forestry on nutrient relations of Central European 473 

forest ecosystems. Fertilizer Research 27:1–8 474 

Gleixner G, Czimczik C J, Kramer C, Lühker B, Schmidt MWI (2001) Plant compounds and their turnover and 475 

stabilization as soil organic matter. Global Biogeochemical Cycles in the Climate System, pp 201–215 476 

Goñi MA, Hedges JI (1990) The diagenetic behavior of cutin acids in buried conifer needles and sediments 477 

from a coastal marine environment. Geochim et Cosmochim Acta 54:3083–3093 478 



 

 13 

13

Heim A, Hofmann A, Schmidt M (2010) Forest-derived lignin biomarkers in an Australian oxisol decrease 479 

substantially after 90 years of pasture. Org geochem 41:1219–1224  480 

Hermy M (1994) Effects of former land use on plant species diversity and pattern in European deciduous 481 

woodlands. In: Boyle TJB, Boyle CEB (eds) Biodiversity, temperate ecosystems, and global change. 482 

Springer-Verlag, Berlin, Germany, pp 123–144 483 

Ho ES, Meyers PA (1994) Variability of early diagenesis in lake sediments. Evidence for the sedimentary 484 

geolipid record in an isolated tarn. Chem Geol 112: 309–324 485 

Holloway PJ (1982) The chemical constitution of plant cutins. In: Cutler DF, Alvin K, Price CE (eds) The Plant 486 

Cuticle. Linnean Society Symposium Series No 10. Academic Press, London, pp 45–85 487 

Huang Y, Lockheart MY, Logan GA, Eglinton G (1996) Isotope and molecular evidence for the diverse origins 488 

of carboxylic acids in leaf fossils and sediments from Miocene lake Clarkia deposit Idaho USA. Org 489 

Geochem 24:289–299 490 

Institut Géographique National. Aerial pictures of 1946. http://www.ign.fr/. Accessed 10 July 2010  491 

Jacob J, Disnar JR, Boussafir M, Ledru M-P, Albuquerque ALS, Sifeddine  A, Turcq B (2005) Pentacyclic 492 

triterpene methyl ethers in recent lacustrine sediments (Lagoa do Caçó, Brazil). Org Geochem 36: 449–461 493 

Jacob J, Huang Y, Disnar JR, Sifeddine, A, Boussafir M, Albuquerque ALS, Turcq B (2007) Paleohydrological 494 

changes during the last deglaciation in Northern Brazil. Quat Sci Rev 26:1004–1015 495 

Jandl G, Leinweber P, Schulten R, Ekschmitt K (2005) Contribution of primary organic matter to the fatty acid 496 

pool in agricultural soils. Soil Biol Biochem 37:1033–1041 497 

Jambu P, Mouçawi J, Fustec E, Amblès A, Jacquesy R (1985) Interrelation entre pH et la nature des composés 498 

lipidiques du sol: étude comparée d’une rendzine et d’un sol lessivé glossique. Agrochimica 29:186–198 499 

Jambu P, Bilong P, Amblès A, Ntsikoussalabongui B, Fustec E (1987) Influence d’apports minéraux sur 500 

l’évolution des lipides naturels des sols acides. Sci du sol 25:161–172 501 

Järvinen R (2010) Cuticular and suberin polymers of edible plants. Analysis by gas chromatographic-mass 502 

spectrometric and solid state spectroscopic methods. Dissertation, Turku University 503 

Kasel S, Bennett L (2007) Land-use history, forest conversion, and soil organic carbon in pine plantations and 504 

native forests of south eastern Australia. Geoderma 137:401–413 505 

Koerner W, Dupouey JL, Dambrine E, Benoit M (1997) Influence of past land use on the vegetation and soils of 506 

present day forest in the Vosges mountains, France. J Ecol 85:351–358 507 

Kolattukudy PE (1980) Cutin, Suberin and Waxes. The Biochemistry of Plants: IV. Lipids, Structure and 508 

Function, Academic Press, New York 509 

Kusch S, Rethemeyer J, Schefuß E, Mollenhauer G (2010) Controls on the age of vascular plant biomarkers in 510 

Black Sea sediments. Geochim et Cosmochim Acta 74:7031–7047  511 

Lafargue E, Marquis F, Pillot D (1998) Rock-Eval 6 applications in hydrocarbon exploration, production, and 512 

soil contamination studies. Revue de l'IFP 53:421–437 513 

Lecomte J (2009) Les cires végétales : sources et applications. OCL 16:4, 262–266. doi: 10.1684/ocl.2009.0273 514 

Margesin R, Schinner F (2005) Manual of Soil Analysis. Monitoring and Assessing Soils Bioremediation. 515 

Springer-Verlag, Berlin Heidelberg, Germany 516 

Lichtfouse E, Elbisser B, Balesdent J, Mariotti A, Bardoux G (1994) Isotope and molecular evidence for direct 517 

input of maize leaf wax n-alkanes into crop soil. Org Geochem 22:349–351 518 



 

 14 

14

Marseille F, Disnar JR, Guillet B, Noack Y (1999) n-Alkanes and free fatty acids in humus and A1 horizons of 519 

soils under beech, spruce and grass in the Massif Central (Mont-Lozère) France. Eur J of Soil Sci 50:433–520 

441 521 

Martins CMC, Mesquita SMM, Vaz WLC (1999) Cuticular Waxes of the Holm (Quercus ilex L. subsp. ballota 522 

(Desf.) Samp.) and Cork (Q. suber L.) Oaks. Phytochem Anal 10:1–5 523 

Matzke K, Riederer M (1991) A comparative study into the chemical constitution of cutins and suberins from 524 

Picea abies (L.) Karst., Quercus robur L. and Fagus sylvatica L. Planta 185:233–245 525 

Meyers PA, Ishiwatari R (1993) Lacustrine organic geochemistry – An overview of indicators of organic matter 526 

sources and diagenesis in lake sediments. Org Geochem 20:867–900  527 

Michelin Y (1996) Les jardins de Vulcain : Paysages d'hier, d'aujourd'hui et de demain, dans la chaîne des Puys 528 

du Massif central français. Maison des Sciences de l’Homme, Paris 529 

Moucawi J, Fustec E, Jambu P (1981) Decomposition of lipids in soils: free and esterifed fatty acids, alcohols 530 

and ketones. Soil Biol Biochem 13:461–468 531 

Naafs DFW, van Bergen PF, Boogert SJ, de Leeuw JW (2004) Solvent-extractable lipids in an acid andic forest 532 

soil; variations with depth and season. Soil Biol Biochem 36:297–308 533 

Verstraten JM (2003) Occurrence and distribution of ester-bound lipids in Dutch coastal dune soils along a pH 534 

gradient. Org Geochem 34:719–729  535 

Nierop KGJ, Verstraten JM (2003) Organic matter formation in sandy subsurface horizons of Dutch coastal 536 

dunes in relation to soil acidification. Org Geochem 34:499–513 537 

Nierop KGJ, Naafs DFW, van Bergen PF (2005) Origin, occurrence and fate of extractable lipids in Dutch 538 

coastal dune soils along a pH gradient. Org Geochem 36:555–566 539 

Otto A, Simpson MJ (2006) Sources and composition of hydrolysable aliphatic lipids and phenols in soils from 540 

western Canada. Org Geochem 37:385–407 541 

Pollard M,  Beisson F, Li Y,  Ohlrogge JB (2008) Building lipid barriers: biosynthesis of cutin and suberin. 542 

Trends Plant Sci. 13:236-246 543 

Powers JS, Veldkamp E (2005) Regional variation in soil carbon and δ13C in forests and pastures of northeastern 544 

Costa Rica. Biogeochem 72:315–336 545 

Prartono T, Wolff GA (1998) Organic geochemistry of lacustrine sediments: evidence for the changing trophic 546 

status of the lake, Rostherne Mere, UK. Org Geochem 28:729–747  547 

Priigelt B, Lognay G (1996) Composition of the Cuticular Waxes of Picea abies and P. sitchensis. Phytochem 548 

Anal 7:29–36  549 

Quenea K, Largeau C, Derenne S, Spaccini R, Bardoux G, Mariotti A (2006) Molecular and isotopic study of 550 

lipids in particle size fractions of a sandy cultivated soil (Cestas cultivation sequence, southwest France): 551 

Sources, degradation, and comparison with Cestas forest soil. Org Geochem 37:20–44 552 

Rieley G, Collier RJ, Jones DM, Eglinton G (1991) The biogeochemistry of Ellesmere Lake, UK-I source 553 

correlation of leaf wax inputs to the sedimentary lipid record. Org Geochem 17:901–912 554 

Ruess L, Chamberlain PM (2010) The fat that matters: Soil food web analysis using fatty acids and their carbon 555 

stable isotope signature. Soil Biol Biochem 42:1898–1910 556 

Shepherd T, Griffiths DW (2006) The effects of stress on plant cuticular waxes. New Phytologist 171: 469–499 557 



 

 15 

15

Six J, Conant RT, Paustian PEA (2002) Stabilization mechanisms of soil organic matter: Implications for C-558 

saturation of soils. Plant Soil 241:155–176 559 

Stefanova M, Disnar JR (2000) Composition and early diagenesis of fatty acids in lacustrine sediments, lake 560 

Aydat (France). Org Geochem 31:41–55 561 

Tissot BP, Welte DH (1984) Petroleum Formation and Occurrence, 2nd ed. Springer-Verlag, Berlin, 700 p 562 

Torn MS, Trumbore SE, Chadwick OA, Vitousek PM, Hendricks DM (1997) Mineral control of soil organic 563 

carbon storage and turnover. Nature 389:170–173 564 

Wakeham SG (1999) Monocarboxylic, dicarboxylic and hydroxy acids released by sequential treatments of 565 

suspended particles and sediments of the Black Sea. Org Geochem 30:1059–1074 566 

Wiesenberg GLB, Schwark L (2006) Carboxylic acid distribution patterns of temperate C3 and C4 crops. Org 567 

Geochem 37:1973–1982 568 

Wiesenberg GLB, Schwarzbauer J, Schmidt MWI, Schwark L (2004) Source and turnover of organic matter in 569 

agricultural soils derived from n-alkane/n-carboxylic acid compositions and C-isotope signatures. Org 570 

Geochem 35:1371–1393 571 

Wiesenberg GLB, Schwarzbauer J, Schmidt MWI, Schwark L (2008) Plant and soil lipid modification under 572 

elevated atmospheric CO2 conditions: II. Stable carbon isotopic values (δ
13C) and turnover. Org Geochem 573 

39:103–117 574 

Wiesenberg GLB, Dorodnikov M, Kuzyakov Y (2010) Source determination of lipids in bulk soil and soil 575 

density fractions after four years of wheat cropping. Geoderma 156:267–277 576 

Zelles L (1997) Phospholipid fatty acid profiles in selected members of soil microbial communities. 577 

Chemosphere 35, 275–294  578 



 

 16 

16

Table 1  Edaphic and topographic characteristics of soil samples of Lake Aydat catchment with Rock Eval pyrolysis data and FA concentrations. IH values are expressed in 579 

mg HC.g–1 TOC and OI in mg CO2. g
–1 TOC 580 

Site Vegetation Geological Granulometry Slope Elevation pHCaCl2 TOC HI OI FA conc. FA conc. 

 (humus type) substratum 
Sand Silt Clay 

(°) (m)  (%)   (µg.g soil-1) (µg.g TOC-1) 
(%) (%) (%) 

S08 grassland Basaltic     3.4 1096 5.27 12.5 310 178 186 1491 

S09 grassland Basaltic    9 1081 5.48 14.3 322 230 150 1048 

S10 grassland (+ shrubs) Basaltic    13.2 1061 4.96 13.7 257 188 113 823 

S11 grassland (+ shrubs) Basaltic    13.4 1047 4.66 11.2 267 197 145 1303 

S12 grassland Basaltic    9.3 1034 5.78 25.7 322 209 317 1230 

S13 grassland Basaltic    2.4 1023 5.26 6.6 327 176 120 1813 

S14 grassland Basaltic    9.8 1032 5.53 5.2 271 209 63 1210 

S15 grassland Basaltic    10.4 1045 5.24 6.2 262 255 312 5029 

S17 grassland Basaltic    3.4 1075 5.52 7.1 286 182 485 6794 

S02 grassland Quat. Alluv.    0.5 956 5.54 10.6 285 206 322 3025 

S03 grassland Basaltic    2.4 957 5.27 6.6 218 207 236 3583 

S20 grassland Basaltic 22 75 4 5.7 975 5.76 9.4 271 192 146 1561 

S05 intermediate Doreit    2.4 1268 4.52 16.2 352 167 843 5216 

S28 intermediate Basaltic    8.7 1055 5.32 7.5 236 208 501 6636 

S33 intermediate Basaltic    4 1038 5.01 29.7 378 176 486 1639 

S34 intermediate Basaltic 49 47 4 11 980 5.2 10.8 232 211 370 3418 

S26 forest Basaltic    16.6 1075 4.2 38.2 364 248 317 833 

S36 forest Basaltic 58 40 2 14.9 995 5.45 8 220 378 1877 23349 

Legend: Quat. Alluv. = Quaternary Alluvion, HI = hydrogen index, OI = oxygen index. 581 
  582 



 

 

17 

FIGURE CAPTIONS 

 

Fig. 1  Location of lake Aydat catchment area (French Massif Central). Soil sampling sites are represented by 

white circles. The profile shows the topography of a transect from S08 to S17 sites. 

Fig. 2  Partial GC-MS chromatograms (TIC) of the methylated and silylated acid fractions of soil lipid extracts 

from Lake Aydat catchment. S14: grassland soil sample; S26: forest soil sample. 

Fig. 3  Histograms showing the distributions of nFAs in lipid extracts of soil collected in grassland (S09 and 

S14), intermediate (S33 and S34) and forest regions (S26 and S36) of the Lake Aydat catchment. 

Fig. 4  Histograms showing the distributions of ωHOFAs in lipid extracts of soil collected in grassland (S09 and 

S14), intermediate (S33 and S34) and forest regions (S26 and S36) of the Lake Aydat catchment soils. 

Fig. 5  Histograms showing the distributions of αHOFAs in lipid extracts of soil collected in grassland (S09 and 

S14), intermediate (S33 and S34) and forest regions (S26 and S36) of the Lake Aydat catchment.  

Fig. 6  Histograms showing the distributions of diFAs in lipid extracts of soil collected in grassland (S09 and 

S14), intermediate (S33 and S34) and forest regions (S26 and S36) of the Lake Aydat catchment.  

Fig 7  Summary of the most informative parameters yielded by the analysis of free lipids extracted from soils 

developed in the catchment of Lake Aydat. (a) Distribution of nFAs, ωHOFAs, αHOFAs and diFAs homologues 

according to the type of soil. Darker greys indicate the predominance of distinct homologues (b) Distribution of 

selected parameters [(C26:0+C28:0)/ΣCeven nFAs, (c) C22/C24 diFAs, and (d) C20-/C20+ω-HOFAs] depending on soil 

type. 

Fig. 8  Concentrations in deoxycholic acid in grassland, intermediate and forest soil samples from Lake Aydat 

catchment. 
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