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ABSTRACT: While LCA (Life Cycle Assessment) is considered to yield either generic or 

regionally/technologically specific data on products, this method's implementation can reveal a 

certain variability due to the nature of the local industrial process as well as to heterogeneous site 

characteristics in the case of natural aggregate production. Energy consumption and the release of 

atmospheric emissions from aggregate production processes have been investigated in this study at 

three quarry sites, which encompass two types of rock (and include explosives). This paper describes 

the methodology adopted for the specific local production investigation and offers results for the three 

quarry sites using seven indicators derived from the LCA framework. Site characteristics and 

differences have been assessed in terms of plant equipment and off-road vehicles, and a detailed 

description is provided of the grading conducted onsite. It is found that fine grading consumes more 

energy for production, given the fact this type of grading is recycled inside the plant. 

This assessment has been performed for one ton of aggregate produced during one year and with         

distinction in grading category. Results indicate that the discrepancy in local energy consumption due 

to site differences lies within an interval between -9.5% and +13.7%, while the interval for impacts is 

situated at -24.5% to +27.5% whereas for global warming potential the range is from -15.4% to 

+12.9% as a maximum. Explosives are assumed to contribute less than 1% to the total impacts. Both 

the electrical energy and fossil fuel consumption ratios are displayed. The upstream processes specific 

to electricity production significantly contribute to human toxicity potential and ecotoxic potential 

indicators,  as for other indicators and also diesel production (all indicators) the contribution is in 

proportion close to site results ones. However, this study indicates that an environmental load 

decrease may be investigated with respect to quarry processes as well as equipment age and use. 
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1. Introduction 

1.1 General background 

The level of construction activity is inextricably linked with a given country's concept of a 

development process. Such a concept is based on a number of human activities, and these depend in 

part on the kinds of infrastructure already built. The construction methods that best meet society's 

current expectations incorporate the use of aggregates; these materials all stem from a nearly universal 

resource and give rise to relatively simple production processes. Moreover, they are easy to transport 

and allow for rapid implementation. Today's granular mixtures, i.e. concretes, mortars, stabilized and 

unbound gravels, and bituminous mixes, offer the most rational and economical solution when it 

comes to building infrastructure. 

France consumes a quantity of aggregate that has been estimated at approximately 400 million tons 

annually (UNPG, 2006). At a time when environmental conservation is imposed upon society, the use 

of natural aggregates from quarries requires ensuring a durable supply. Preserving the environment 

can therefore be associated with: i) reducing both the use of natural raw materials and energy 

consumption; ii) extracting and processing raw materials under a minimum waste production scenario; 

and iii) minimizing pollutant release into the air, water and soil during processing. The energy 

consumption decrease associated with aggregate production or use, can thus significantly improve       

environmental practices as regards the amount of aggregates being consumed, which in turn makes it 

highly valuable to study production process inside a quarry in great detail. 

1.2 Environmental assessment framework 

Life Cycle Assessment (SETAC, 1993) serves as the basic method for conducting an environmental 

assessment of manufactured products; its scope is known to be limited to environmental issues, even 

though Miettinen et al. (1997) recalled that LCA should be perceived, from a broader perspective, as a 

method that yields information on a product's environmental impacts as input into the decision-making 

process. Today's international context favors LCA when conducting an environmental assessment of 

products used in the field of civil engineering, yet the protocol according to which an LCA is 

performed depends on the specific field of application (roads or buildings). In Quebec (Canada), both 

LCA (Life Cycle Assessment) and LCCA (Life Cycle Cost Analysis) methods have been recognized 

by the Ministry of Transport as basic tools (Cormier and Thébeau, 2003) for selecting pavement type. 

In Europe, the Integrated Product Policy (IPP) reveals a preference for the use of LCA in carrying out 

environmental assessments on all kinds of products. As for the French situation, a national standard 

(AFNOR, 2004) has been adopted for the purpose of introducing LCI (Life Cycle Inventory) 

techniques applicable to building industry materials. 

A significant body of literature relative to road pavements and materials has, until now, been devoted 

to either Life Cycle Assessments for environmental load determinations or Life Cycle Cost 

Assessments for the economic optimization of road service life (Horvath et al., 1998; Tighe, 2001; 

Zimmerman et al., 2000). As a consequence, all French studies (Chappat et al., 2003; Peuportier et al., 

2003; Ventura et al., 2008) focusing on aggregates in road-based environmental assessments have 

relied upon quarry data obtained from Stripple's European LCA (2001). When considering aggregate 
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production LCA in the literature, only a few references could therefore be found, and some of these 

merely discuss partial LCI data (e.g. Flower et al., 2007), while others focus on fine grading and 

aggregate size differentiation (e.g. Schuurmans et al., 2005). Stripple (2001), on the other hand, 

provided a Northern European aggregate LCI as a mean generic set of inventory data. Examining 

Stripple's results (2001) in detail reveals that though many quarry sites have been studied throughout 

Sweden, no distinctions were drawn either between massive rock (crushed) and soft (round 

aggregates) quarry sites or between the kinds of grading produced across the various sites. The mean 

available LCI in the literature thus includes various types of aggregates and provides a generic 

assessment for a country's entire set of quarries, without discussing site-specific data variability. 

Besides, international databases like ELCD or Ecoinvent provide also generic data for aggregates 

production with refinements on upstream processes related to energy production (diesel and 

electricity). In such databases, the energy profile can be chosen, namely electricity LCI for France or 

Europe for instance. 

An investigation into the differences existing among several quarry sites has therefore been chosen as 

the key emphasis of the present paper. 

2. Presentation of this study 

2.1 Study scope 

Aggregates are produced with respect to their potential use, so as to match the required grading and 

thereby ensure marketability. Moreover, the requirements associated with aggregate mechanical 

properties will generally undergo investigation as well by applying standards (EN 12620, EN 13040, 

EN 13242, EN 13450, EN 13383-1, EN 13383-2 and EN 13139). Rock hardness is one of the 

geological properties that lead to a raw material classification, provided aggregate use properties are 

determined through laboratory testing. 

As regards the environment and depending on the types of operations performed, a quarry site is 

capable of generating various impacts as a result of raw material transformation. Such impacts are 

directly correlated with electricity consumption, emission releases into the air and water, and waste 

production, all of which are assumed to represent global environmental loads. In contrast, a quarry can 

also be responsible for degradation to the landscape, as studied by Schuurmans et al. (2005), and 

generate biodiversity modifications (whether negative or positive) both during operations and 

following shutdown. Moreover, other potential impacts on local population through noise pollution, 

vibrations, dust or even visual blight must not be overlooked. In this context, the present article is 

intended to describe a methodology capable of quantifying environmental loads at the scale of a quarry 

site. Such a methodology takes into account, over a reasonable time scale, a mix of quarry production 

scenarios directly tied to grading ratios, yet only the global environmental loads associated with 

extraction will be analyzed herein. 

The number of production scenarios can typically be considered to vary from one to four at any given 

quarry site during a full year of production, depending on market conditions and specific onsite 

equipment (Nouvion et al., 2009). Transitioning from one scenario to the next is a topic not covered in 

the present study, as the objective here is to investigate one year of production for each site. This study 

is therefore focused on the method introduced to perform a detailed environmental assessment of 

aggregate production; the procedure considered a wide range of production conditions and various 

types of rocks and potential uses. For this purpose, a massive rock site was chosen (denoted Site 1) as 
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being typical for aggregates dedicated to road construction. Two additional soft aggregate sites (2 and 

3) were then studied so as to expand the analysis. Various production conditions and products 

(grading) were evaluated as well. The range of quarry production extends from 70,000 tons a year for 

the soft aggregates at Site 3 to a mean of 150,000 - 180,000 tons a year for the hard aggregates at Site 

1 and the soft aggregates at Site 2. 

According to the LCA framework, the main component of this work program focused on in situ quarry 

processes at all sites, which in fact are secondary processes, while the primary processes (energy 

production, explosives production) were assessed by entering data only from the literature into the 

discussion. This study has included the following steps involved in a local analysis: i) assessment of 

various grading output at the plant; ii) development of a method to calculate energy indicators from 

quarry data relative to the specific grading; and iii) use of the literature to obtain empirical data on 

airborne emissions for non-road diesel equipment, which requires a model to determine the local 

release amounts. All models used to assess secondary processes are described in this paper. 

2.2 Site characteristics 

The grading output produced at a given quarry site depends on both the owner's strategy and raw 

material quality. Table 1 presents the grading produced and then studied for the three selected sites in 

2004. According to this table, the grading range ratios vary significantly from one site to the next. It 

can be noted that the main grading production sold (Table 1) is as follows: 10/14 (approx. 24%) for 

Site 1, and 0/4 for Site 2 (64%) and Site 3 (73%). The origin and use properties of the targeted 

aggregates are discussed below. 

Site 1 is composed of a set of formations that have undergone extensive metamorphosis in the North 

Armoricain (French rock) field, which is extremely complex and contains units with ages ranging 

from 540 million to 2 billion years. This quarry mines relatively homogeneous rocks: amphibolites 

from Roselier (Egal et al., 1996). The geotechnical characteristics of the quarried rock allow for 

various potential aggregate uses: a roadway wearing course, or a civil engineering structure. The 

results of laboratory tests designed to identify mechanical properties indicate values of the Los 

Angeles abrasion test , the results being given in accordance with the AFNOR NF EN 1097-2 (2010) 

and  lying between 14 and 16, while those of the Micro DEval (MDE) test range from 14 to 22, with a 

PSV (Polished Stone Value) equal to 0.54. For Sites 2 and 3, aggregates are produced from alluvial 

deposits (Fz and Fy), which are composed of beige and clear brown sands and gravels. This 

composition results for Sites 2 and 3 respectively in LA values of 20 and 24 and MDE results of 4 and 

11. 

Table 2 lists the non-road vehicles counted on each quarry site. The non-road equipment used at Sites 

1 and 3 (as shown in Table 2) is older, i.e. dating on average from 1988 to 1988, than the equipment at 

Site 2 (introduced on average in 2003). 

3. Models 

3.1 System description 

A quarry may be considered as a system physically bounded by its limits, in accordance with the Life 

Cycle Assessment standard (AFNOR, 2006). Various matter and energy exchanges, both entering and 

exiting this system, pertain to aggregate production; these flows are typically indexed according to: 
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raw material and energy consumption, atmospheric and aqueous emissions, and waste. The 

environmental system chosen to perform the aggregate grading LCI was based on the path followed by 

raw materials inside the quarry as part of the aggregate production process (see Fig. 1). In this figure, 

the various areas typically found inside a quarry are depicted by a rectangle. For production purposes, 

aggregates are transported between these areas by dumpers or continuously channeled via a conveyor 

belt or else moved all at once by quarry vehicles. These flows entering the system generate 

environmental loads, i.e. at the extraction site, non-road vehicles: consume energy (diesel fuel), 

generate airborne emissions (combustion gas, dust and noise), and produce waste such as oils. 

3.2 Input/output flows 

At any given quarry site, three types of input flows need to be considered in order to perform an 

aggregate LCI: soil consumption (mass), energy consumption (MJ), and water consumption (m
3
). Soil 

consumption is indirectly taken into account through the total mass of aggregates produced over the 

year, since the residual mass of all extracted soil is deposited locally once quarry operations have 

ceased. The water used onsite is in fact not consumed given that it is pumped and released directly into 

the soil, meaning that it must be considered as recycled onsite. Hence, only the energy consumed to 

pump water for aggregate production has actually been taken into account. Moreover, as regards LCI, 

all input flows relate to energy consumption, which is viewed as the key parameter in the LCI process. 

The system therefore does not take water consumption directly into account because the water cannot 

be considered as consumed (as was explained above). Among the emissions that typify aggregate 

production, two sources of particulate matter can be identified in connection with raw material 

extraction. One source pertains to the dumpers carrying material on the tracks, while the other is 

specific to crushing and screening inside the plant. The first source was not investigated since it was 

considered that water is spread on the tracks in order to prevent dust emissions, which are still 

believed to be negligible according to a state of the art dealing with natural resources 

(http://ofrir.ifsttar.fr, see the text entitled “reference”). On the other hand, the second source of dust 

remains confined inside the plant and, consequently, is not released into the air. Regarding unit 

emissions for these engines, a set of generic data correlated with engine power and year of production 

are given in Table 3. The Roman Numerals given in table 3 correspond to periods of time according to 

the Directive 97/68/CE (1997). Lastly, the study has not considered waste and worn parts, since the 

focus is on site optimization relative to input flows. 

3.3 Hypotheses adopted for each site LCA 

The study focuses on local variations in local quarry processes and more specifically on input flows. A 

specific indicator was first developed for investigating energy consumption, which takes the 

contributions from quarry vehicles and plant equipment into account separately. The vehicles release 

atmospheric emissions onsite, and these were taken into account, whereas the equipment only 

consumes electricity at the quarry site. 

The selected functional unit is 1 ton of aggregate produced during a year considered to be of average 

grading output. The results expressed in tons always refer to metric tons throughout the paper.  

All production scenario variations are thus implicitly set on a 1-year scale. A dataset was then 

collected within a given one-year period for each production site. 

Since this LCA study was performed by taking secondary site processes into account, no indirect 

airborne emissions were considered either for the energy and material production capacities, in 

http://ofrir.ifsttar.fr/
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particular with respect to electricity and fuel extraction, or for refineries and explosives production. To 

more effectively discuss the aforementioned site variations, detailed calculations were evaluated 

before considering any of the upstream processes tied to: 

- indirect impacts of electricity production and explosives production; 

- indirect impacts of fuel production. 

In respecting the aforementioned restrictions, several models were devised to quantify the LCI and 

impacts due to quarry operations. For the various grading runs, the purpose of this modeling exercise 

was to consider the production lines inside the plant as well as associated equipment. This task was 

accomplished by: 

- performing measurements at Site 1 in order to determine aggregate paths; 

- developing a method based on several energy assessment models for application on the aggregate 

paths derived from the Site 1 analysis; 

- applying this same method to Sites 2 and 3. 

The chosen impact categories (and indicators for quarry site assessment) derived from classical LCA 

comprise: 

- Energy consumption: the specific energy consumption of each equipment (named CESP, as it is the 

French acronym for Specific Production-related Energy Consumption), 

- Global Warming Potential (GWP), from IPCC (2001), 

- Acidification Potential (AP), from Goedkoop(2001), 

- Photochemical Ozone creation potential (POCP), from Goedkoop (2001), 

- Eutrophication Index (EI), from Goedkoop (2001), 

- Human toxicity potential and Ecotoxic Potentials (TP and EP), from Huijbregts et al. (2000). 

 

Since all the raw materials extracted from the earth within the extraction zone (Fig. 1) are either sold 

or placed in stockpiles with no possible industrial use, all consumption and impact determinations are 

thus allocated to the category of sold aggregates. Finally, the energy content for explosives blasting is 

not included as it is not a consumed energy. 

 

3.4 Data implementation 

 

The methodology's detailed steps are described as follows. 

The main difference between these study sites is the use of explosives for Site 1; in general, the site 

equipment characteristics both at the plant and specific to quarry vehicles (which include dumpers, 

loaders and wheelers, as shown in Table 2) are implemented in the model. The vehicles are described 

by their type, year the engine was manufactured, horsepower and running-in operation time every day, 

hence allowing the use of Table 3 as a database. As regards the plant, a number of modeling 

considerations could be based on theoretical aspects or on crusher characteristics, as exposed by Csoke 

et al. (1996), who extensively detailed the grading process and determined the set of optimal 

technological parameters that meet market demand. Only an empirical ratio however has been 

determined for aggregate path identification inside the plant, which has necessitated verifying the type 

of equipment used for crushing, screening and maintaining electrical intensity. Used explosives are 
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considered as well. Hence, this method allows assessing energy use and impacts at any quarry site 

over a one-year period, in taking into account all monthly variations in the mass produced. Besides 

data for the full year, monthly production figures are recorded for each quarry site investigated. 

Details on site processes are introduced into the model using quantified values provided by the site 

owner, for the purpose of performing aggregate production assessments. These details include defining 

a production line around the installed equipment, along which aggregates flow during their production 

process paths inside the plant, while respecting the production line layout and corresponding mass 

ratio of grading produced inside each plant. 100% of each grading output is controlled relative to the 

total produced mass of grading on a given line. An example of such a path is provided in Figure 2 for 

Site 1. According to the quarry owner, the grading output from sold aggregates has been identified so 

as to implement data that usually remain confidential otherwise. 

 

All these assessments are based on energy calculations. For quarry operations, the energy consumption 

is determined as follows: 

i) Fuel consumption is governed by use of the various quarry vehicles; their consumption is either 

directly available from the owner or determined during the measurement campaign by means of a 

daily recording of the number of liters consumed and the amount of vehicle operating time. By 

inputting this consumption back into the daily productions, it then becomes possible to determine the 

quantities of fuel necessary to produce a ton of aggregate. 

 

ii) With electrical energy consumption, two sets of data appear to be essential: actual consumption of 

the various electrical motors and material flows crossing the processing plant. The first can be 

obtained by direct measurement of the intensity crossing each engine. On the other hand, material 

flows can be estimated by: crossing speeds on the conveyor belts (m.s
-1

) (as calculated using a 

tachometer), material weight over one meter of conveyor belt (in the output direction, according to 

AFNOR, 1996), and a sieve analysis (AFNOR, 1997) conducted on each sample. The method chosen 

to calculate energy consumption per ton of aggregate produced consists of: summing the daily 

consumption at the various stations considered, entering the engine operating time, and then 

transferring the quantities that passed through this station. 

 

4. Environmental assessment 

4.1 Energy consumption 

As explained above, the machines used for extraction at all sites are wheel loaders, dumpers, shovels 

and drills (see Table 2); their average annual fuel consumption (in liters/year) is converted into 

liters/ton by dividing the amount of fuel by the quantity of mass extracted, for the given year of 

production. 

Depending on the type and configuration of the quarry being considered, electricity demands may be 

associated with all 3 stations (as shown in Fig. 1): the plant (i.e. the treatment plant for crushing and 

screening, as well as the recombination plant for grading mixes) and internal transport (involving the 

use of conveyor belts and vehicles) between the extraction area and the treatment plant or washing 

plant. 
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In order to write the equations governing electricity consumption for each piece of equipment, two 

types of data are essential: the actual electricity consumed by each machine, and the quantities of 

material being processed through these machines. The latter is managed in the model via the 

production line concept, which relates to a certain number of machines constituting a path and yielding 

a material with a known particle grading (Martaud, 2008). Each machine can then be associated with 

one or more production lines. Once the production lines have been defined, the amount of material 

processed through each machine is determined. The masses per production line are obtained by 

starting from the owner's production parameters. 

The specific energy consumption of each machine can therefore be given by evaluating the 

consumption of the considered machine per quantity passing through on an hourly basis. The average 

power used by these machines is determined from both the operating periods and active energy at the 

plant (P = UI √3 cos ), where U denotes the voltage (380 V) and the intensity I is measured in (A) for 

many machines taken together. The rated power ranges between 80% up to 90% of the maximum 

power available as indicated by quarry equipment engineers; the value used herein has been set at 

0.81. From the power supply U, CESP can then be derived by a division operation using the mass 

produced (as shown in Equation 1): 

CESP = U × (√3 × I  × 0.81 × x ×  y ) / M        (MJ/t) (1) 

Where, U, voltage in V (U = 380 V); with  cos φ= 0.81; I, measured intensity (A); x, number of days 

of production; y, number of hours worked per day; and M, aggregate production output in metric tons. 

The model is able to determine the specific consumption per production line (CESPline) by applying 

the following formula for n equipments: 

 




n

j

jline CESPCESP
i

1

 (2) 

Where:  CESPj, specific consumption of equipment j, which has been defined in production line i. 

The method then assigns to each product a value of specific electricity consumption (CESPd/D) by the 

following for n lines: 

 

)( /

1

/ ilineDd

n

i

lineDd PCESPCESP
i




 (3) 

where: CESPline I, specific consumption of production line i; Pd/D linei, proportion of the d/D fraction 

produced by line i. 

The quantity of electricity necessary for the overall production of the considered quarry is then 

obtained from for n fractions: 

 
 

n

Dd

DdDd QCESPE
/

//
  (4) 

Where: E, specific energy consumption of the product; Qd/D, production of the d/D fraction. 

4.2 Atmospheric emissions 

The pollutants released into the air at a quarry site stem from emissions produced during explosions 

(should explosives be used) as well as from operating quarry vehicles, as described below: 



 9 

i) The emissions generated when using explosives are variable in both quantity and nature and 

moreover depend on the type of explosive introduced. A quantity (Fi) of detonation gas released per 

ton of blasted rock may be given by applying the following formula: 

 Fi = (qi × Mi × Si) / (V × Mνr)                          (g/t) (5) 

where: Fi, emissions factor for gas I, qi the gas emission (mol.kgexplosive
-1

); Mi, molar mass of gas i 

(g.mol
-1

); Si, quantity of explosives used (kgexplosive); V, theoretical volume of blasted rock (m
3
); and 

Mvr, rock density (t.m
-3

). 

The types of explosives used as well as the shot-firing patterns can be collected from the actual 

operating site. The data on gas volumes, as an ideal theoretical composition, are obtained from 

explosives manufacturers. 

ii) Engine emissions can be estimated based on quarry vehicle consumption, in knowing that these 

parameters are correlated with the type of fuel consumed, type and power of machines, engine age, 

etc. Emissions (HC, CO, VOC, NOx and PM) from quarry operating machines are based on various 

factors. The factors included in calculations would thus be the emission limiting values suggested in 

European regulations for engines manufactured before 1999, or the emission limiting values indicated 

by the U.S. Environmental Protection Agency (EPA, 2004). 

The emissions for each pollutant considered (Eji) are given by the following expression: 

 Eji =  (Fji × Pi) / Q                                              (g/t) (6) 

Where: Fji: gas emission factor; j, a function of the engine manufacturing year for machine i and its 

power (g.kWh
-1

); Pi,  power of machine i (kW); and Q, aggregate production output (t.hr
-1

). 

The emissions of both SO2 (g.t
-1

) and CO2 (g.t
-1

) may be directly evaluated from the level of fuel 

consumption. Beardsley and Lindhjem (1998) proposed the following calculation method: 

 SO2i    =   [(Cfi × a × b  × c    - b  × c    HC) ] × Pi   / Q        (g/t) (7) 

Where: Cfi is the fuel consumption (in g.kWh
-1

); a an adjustment factor corresponding to the 

proportion of sulfur emitted in particulate form = 1-0.022; HC the emission factor (g.kWh
-1

); b the 

default value of sulfur in diesel = 0.0033; c the number of grams of SO2 formed from one gram of 

sulfur = 2; Pi ,the machine power (kW); and Q, the aggregate production rate (t.hr
-1

). 

With a known vehicle consumption and in order to calculate CO2 emissions, Beardsley and Lindhjem 

(1998) forwarded the hypothesis that all carbon contained in consumed fuel will be emitted as CO2. 

However, since combustion is never 100% efficient, the values obtained must be drawn from results of 

CO, VOC and HC. The quantities of CO2 emitted by each machine can thus be estimated using the 

following formula:

 

 

 CO2i =[(0.87 × (44 / 12) × Cfi × 0.85 ×10
3
) / Q ] - COi - VOCi - CH4i               (g/t)         (8) 

with: 0.87, the mass content of carbon in fuel oil; Cfi, the fuel consumption (l.hr
-1

); 44, the molecular 

mass of CO2; 12, the atomic mass of C; 0.85, the FOD density, in kg.l
-1

; Q, aggregate production rate 

(t.hr
-1

); COi, VOCi (non methanic) and CH4i, estimated machine i discharges taken from Equation 3. 
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The quantities of gas i emitted by machines at the given quarry and then simplified into ton per 

aggregate produced may be estimated by summing the quantities discharged by each of the machines 

listed in Table 3. The unit emission rates, which depend on engine age, are also given in Table 3. 

4.3 Impact assessment 

The calculation of impact indicators, according to a model dedicated to site impacts assessment as 

explained in a previous work by Sayagh et al. (2010), is described as: 

 Ind 
j
 = Σi  αi 

j
 × Ci 

j
 × mi (9) 

 

with: Ind 
j
, indicator associated with impact category j; mi, mass of inventory flow i (kg); Ci

j
, 

contribution coefficient of inventory flow i to impact category j; and αi
j
: classification coefficient. 

Each indicator is expressed in specific units per kg or t. 

The list of indicators given in section 3.3 from the literature and implemented for the impact 

calculations in this study  use both Eq (9) formula and the associated contributions coefficients 

recommended by Sayagh et al. (2010). The local flows that are determined for quarry sites study are 

detailed in section 4.2. As for the classification coefficients, usually equal to 1 in impacts literature 

models (i.e. CML 2001), they are considered to be site dependent in our approach as presented in 

Sayagh et al. (2010) and to range between 0.33 and 1. When compared to CML 2001 results there 

must be some difference. 

 

 

5 Results 

5.1 Energy consumption results 

Table 4 presents the CESP results for all study sites. CESP values range between 6.30 and 12.38 MJ 

per ton of aggregate for electricity consumption (a threefold range) and between 15.08 and 20.70 MJ 

per ton of aggregate for fuel (twofold). Regardless of the site, the CESP indicator for fuel consumption 

is always greater than the CESP for electricity consumption. Total CESP for 2004 varies from 25.59 

MJ per ton of aggregate
 
to 32.18 MJ per ton of aggregate, displaying a 23% indicator variation interval 

for all three sites. 

5.2 Airborne emissions results 

Some emissions results relate to the use of explosives (data from Site 1 only). For Site 1, which 

produces 180,000 tons a year, the explosives consumption is as follows, 4.32 tons of dynamite, 3.22 

tons of emulsion, and 13.54 tons of fuel nitrate. Table 5 gives the corresponding emissions due to 

explosives use on Site 1. The data on emissions related to dynamite could not however be verified 

from the literature; therefore, only the fuel nitrate and emulsion emissions were taken into account. 

In the plant, only electricity is consumed and therefore no emissions to air are locally considered. 

Hence, dust emissions from crushing or cribling could be considered from plant machinery, but dust is 

neglected as it is produced within the plant building which provides air confinement.  
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When not obtained from measured consumptions, equipment engine emissions (regarding data from 

all sites) can be estimated from the empirical information found in Table 3. In other words, when 

engine emission measurements are not available, they may be estimated using emission factors. Such 

factors, selected from the literature, have been proposed by EU regulations (in the 1997 and 2004 

Directives) (EMEP/CORINAIR, 2003). For engines built before 1999, the factors proposed by the 

U.S. Environmental Protection Agency (Beardsley and Lindhjem, 1998) have been adopted. The data 

for major pollutants, heavy metals and organic pollutants were only identified for Stages I and II (see 

table 3). Given that they exhibit a constant value during both stages, these factors were considered 

identical regardless of the year the engine was built.  

LCI data for the three sites are shown in Figure 3 for all quarry vehicles (engines). According to 

calculation hypotheses, the variations from one site to the next depend mainly on: the number of 

vehicles (Table 2), i.e. 5 vehicles for Site 1 and 6 for Sites 2 and 3; and the type of vehicles (indirectly 

defined from their engine power rating).  

5.3 Site impacts for the three quarries and the effect of upstream processes 

The data given in the international literature about aggregates LCA (i.e. Ecoinvent, ELCD) are often 

strongly aggregated, and include: site production, upstream processes and extended systems so that it 

is difficult to only investigate the quarry local processes which was the main aim of this study. The 

site indicators obtained in the present study are detailed below taking into account both local and 

upstream processes for site impacts assessment. 

Impacts from local processes 

The total energy consumptions and impacts values from Eq (9) for one ton of aggregate produced are 

summarized in Table 6 for the sites data. The type of energy consumed (diesel fuel and electricity) on 

each site is also given in table 6 . Then, the impacts of all the sites are compared on figure 4, that is, 

GWP, EI, AP, POCP, TP and EP while table 6 gives mean values and variations considering the three 

sites. For all sites (Table 6), the variations of each indicator are expressed in terms of mean values and 

minimum and maximum values. The variations maximum range including all indicators ranges 

between -35.7% and +27.5%. Table 6 displays differences in result ranges for energy consumption and 

impacts of sites separately. 

Impacts from upstream processes linked to energy production 

 The upstream processes to be considered here are linked to energy production (diesel fuel and 

electricity) as well as to explosives production. To perform the assessment of the upstream processes 

part,  Figure 5 indicates for each site the ratio of primary energy consumption to consider (fuel ratio 

and electricity ratio). As shown, this ratio significantly varies from one site to another (i.e. 23% up to 

41% for the electricity part) whereas the mean ratio is of 35% for electricity (that is 9.8 MJ/t) and 65% 

for diesel fuel (that is 18.5 MJ/t) as indicated in table 6 (column “mean site values”) for a mean total 

amount of 28.3 MJ/t consumed on the site. The part of indirect impacts due to these upstream 

processes as regards the local impacts of the quarry site production is then investigated, using 

literature additional data. Fig 6 to 8 present upstream impacts ratios together with site impacts ratios. 

Upstream impacts are precisely obtained according to the available literature data derived from ELCD 

and Ecoinvent data bases and from the FD P 01-15 technical notice (AFNOR, 2006) considering either 

French or European electricity production. Figures 6  and 7 examine the primary diesel and electricity 

impacts related to the mean energy ratios (table 6 column “mean site values”)  for all indicators 

(CESP, GWP, EI, AP, POCP, TP and EP) using French electricity production data, whereas Figure 8 
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considers European energy production. More, the relative importance of each indicator when 

compared to site impacts ranges between several% and 80% for European electricity while this values 

are lower for French electricity.    

Impacts from upstream processes linked to system boundaries 

As for the upstream energy linked to explosives production, it was neglected in the upstream processes 

analysis as no data were found during the study. However, the mass of explosives consumed during 

2004 on site 1 represents a ratio of 10
-4

 of total aggregate production, which suggests that the 

contribution of this upstream process, even if highly impacting can be considered as negligible.  More 

some other impacts linked to the production of raw materials inputted on the quarry site were 

neglected, that is, wear pieces of equipment namely and of course installation construction and general 

maintenance.  

Sensivity to quarry grading 

This kind of results linked to grading influence has been recognized in the literature to be of interest 

(Schuurmans et al., 2005). According to the sites studied here, the influence of grading on indicators is 

only linked to the electricity consumption inside the plant, while the local impacts due to diesel fuel 

consumption are the same whatever the grading is.  

The CESP for each grading produced inside the plants was evaluated at each site, after identification 

of the production lines along with the mass ratio of each grading produced inside the plant. The 

detailed results are shown in Table 1. As the grading becomes finer, production time increases and the 

path inside the plant lengthens, thus requiring recycling loops and greater energy consumption as 

shown in Table 1. The range of electrical CESP variations from the mean values of table 6 lies 

between -71.4 % for primary aggregates (0/31.5) and tertiary aggregates (+29.8%) indicating that for 

refined studies grading specific data should be chosen. 

As for the impacts of grading related to upstream processes, they are given in table 1 as well, 

according to Ecoinvent data base and grading energy consumption on each site. The results 

significantly vary for the range of grading that are elaborated in the quarries. Therefore, a set of data is 

now available for both energy consumption and impacts of various aggregates grading for future 

assessment.  

 

6 Discussion 

The goal of this section is to evaluate the utility of local quarry assessment with respect to future LCA 

efforts for environmental load decrease, namely the idea of considering a set of site data, country data 

(using Ecoinvent as a basis of analysis) and data corresponding to specific grading is analyzed below. 

6.1 Comparison with generic data from literature  

The results are discussed below within the international Framework, that is, Stripple‟s data (2001) that 

are generic data for a quarry in Sweden (Europe), and Ecoinvent and ELCD databases that give either 

European or international data for aggregates LCA. 

The mean values of on-site emitted pollutants obtained in this study (Fig. 3) are first compared to 

Stripple‟s LCI data (2001) that include both extraction and on site-transport. It then comes for 
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Stripple‟s results versus mean site 1 to 3 results:  1,420 g/t of CO2  vs 1000 g/t ;  12.3 g/t of NOx vs 

50 g/t;  0.48 g/t of dust vs around 3g/t of PM2.5; 1.49 g/t of CO, and 0.873 g/t of HC (no equivalent 

here). Energy consumption equals 16.99 MJ/t for diesel fuel vs 18.5 MJ/t. Hence all these values 

indicate the same order of magnitude for results, yet with some significant differences. 

The mean values of the total impacts obtained from Ecoinvent are given for one ton of aggregates 

produced in table 6 for comparison and validation with the site results obtained herein, whereas table 1 

allows to compare the indirect impacts of the various grading (only on upstream processes). These 

values were finally extracted from an Ecoinvent base as follows :  base N°589 for French electricity, 

N° 1540 for fuel , N°465 for non specified aggregates (mix of both crushed and round aggregates). 

The differences highlighted are significant for some impacts and the trends observed can be due to : 

difference of equipment energy supply, and engines emissions calculations. No further detailed 

comments can be given about Ecoinvent or ELCD database variability as the data origin is neither 

discussed in details by the Authors of databases nor in Stripple‟s study.  

One explanation of the significant differences between this study and the Ecoinvent data on aggregates 

production (table 6) could be that the quarry sites considered in the Ecoinvent study are strongly 

different in terms of i) quarry buildings and equipments ii) site distances between the plant and the 

extraction area. Another explanation would be that a set of only 3 quarries to study site variations is 

not an enough big sample to obtain real variations between quarry sites, leading to underestimate site 

variations given in table 6. Finally, in France quarry sites use electricity plants, may be the plants 

considered by Ecoinvent provide different technologies using diesel rather than electricity that are 

more energy consuming. However the main idea is that the huge difference between our results 

including upstream production impacts is due to the fact that in Ecoinvent results all upstream 

processes are included and these are very influent on mainly ecotoxicity and human toxic potential.   

Therefore Ecoinvent gives maximum impacts, except for POCP because of the VOC flux for engines 

from table 3 which is much higher then Ecoinvent one. 

It is indeed believed from these considerations, that aggregates production improvement from 

environmental criteria is strongly dependent on site equipment, site organization and site geography 

(distances between extraction and plant).Although the results of direct impacts calculations are not 

obtained with the same allocation models as upstream processes (see section 4.3), the trends obtained 

adding upstream  processes impacts to local quarry impacts do not change the fact that site 

optimization should be investigated working on processes and equipment performances. Finally one of 

the purposes of this paper was to distinguish crushed and round aggregates as it is done in 

Encoinvent.. At present, the collected site data do not really allow to ensure that and grading 

importance is finally one of the main findings here. 

 

6.2 Quarry site characteristics and variability of impacts 

Energy consumption 

 In the present study, site analyses have been performed by considering the extraction zone, the mixing 

plant and washing/stockpile areas (Fig. 1). When initiating these studies with energy consumption 

data, all onsite processes were included (involving electricity and fuel). Only pollutant releases caused 

by running engine equipment on each site were taken into account, as regards airborne emissions. 

These emissions were correlated with engine consumption through the emissions assessment model; 

when considering the ratios in Table 3. Considering the total CESP at Site 1 as the reference for roads 
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aggregates use; CESP values for Sites 2 and 3 can be compared to Site 1 (table 6). Such differences 

cannot be explained using total aggregate production (in tons) at the quarry, since these data are close 

for Sites 1 and 2. This focuses attention on quarry owner practices and possibly on site organization 

(i.e. distance between extraction area and plant, i.e. not among the investigated parameters). The mean 

CESP is 28.3 MJ per ton and the relative variability with respect to this mean value is evaluated at: -

9.5% for Site 1, +13.7% for Site 2, and -4.5% for Site 3. This value however can be interpreted as an 

initial figure relative to aggregate production LCI. Further air pollution assessments should be based 

on the uncertainty for each emission and on the dates of engine manufacturing (see description in 

Table 3). The ratio of consumed energy at each quarry site varies from 23% (Site 3) to 41% (Site 1), as 

shown in Figure 5 whereas the electricity consumption ratio is always lower than the fuel consumption 

ratio. This could be investigated from other sites in future work. Finally, besides plant equipment that 

are different for each quarry, and engines age and equipment quantity which are also site dependent, 

the distances between the extraction area and the plant could be another explanation of variations 

between the three sites to investigate. 

Grading and production 

 As regards grading, the contribution of fuel site emissions and upstream production is the same for a 

given site, while only the indirect impacts linked to electricity production change with grading. Table 

1 gives refined results from Ecoinvent (base N° 465) of the upstream impacts of each grading linked to 

electricity production. These values are to be considered for LCA studies considering amounts of with 

either coarse or fine aggregates as the range of variations is very wide. Besides all the international 

generic data from databases, the differences of grading results obtained in this paper (table 1) indicate 

that is it useful to check the grading specific consumptions and associated impacts for civil 

engineering or infrastructure design for which resources consumption is a significant load. The data 

set produced in this study (table 1 and 6) can be extrapolated for future work. 

A large environmental dataset was collected at the quarry sites in order to accurately characterize local 

aggregate processing and production practices. After collecting some data of two consecutive years at 

only two sites (site 2 and 3) and analyzing significant changes in production, the production 

repeatability at France scale using data collected at each department scale (UNPG, 2009) was 

investigated. About 1640 producers extract aggregates in France spread on 95 departments for a global 

production of 430 10
6
 tons within a year (2009, source UNPG) : a global decrease of the country 

production of 12.7% between two years is noticed. Hence, an investigation of production variability 

within a range of years can not be investigated  seriously considering only 3 sites spread on different 

departments and considering only two years of production (site 1, 2 and 3 of the study are not in the 

same department).   

Besides, one has to say that the grading ratios production as given in table 1 for the three sites also 

result of economics needs.  So finally, year data linked to the quarries production variations were not 

integrated in the environmental quarry variations analysis provided in this paper because of their 

incomplete characterization that should be performed on several years and not only two years as done 

in the data collection .   

Hence, the differences observed between sites suggest therefore a possible impact reduction linked to 

local process optimization based on site results. Equipment characteristics were detailed (e.g. year of 

production, power rating) for input into the energy consumption model. According to the emissions  

model (Tables 2 and 3), the emissions levels depend on engines age.  

Rock type  
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The main result is that no significant trend can be highlighted from this LCA site assessment, covering 

both hard and soft rocks. Moreover, the total production output, ranging from 70,000 to 180,000 tons 

of aggregate per year, could not be found to induce any differences either. These results therefore lead 

to the conclusion that a greater amount of quarry data would be necessary to distinguish differences 

from statistical analyses drawn from rock type and quarry production capacity, as initially thought 

possible. This trend is however considered to be sound but not discussed by Ecoinvent that provides 

data sets (based on about 8 quarries) differentiating round and crushed aggregates. In addition a mix 

called  „non specified aggregates „(base N°465) was used here for comparisons and validation of site 

results mean data in table 6 using the hypothesis of 33% crushed (like site 1) and 67 % round (site 2 + 

site 3).  By now this study indicates that taking into account aggregates grading is a significant output 

of site investigation performed mainly for energy consumption assessment, rather than year variations 

or rock type characteristics deriving from table 1 and 6 results.  

New emissions data on explosives used in quarries  

For the explosives, a specific data collection effort was undertaken, given the lack of other literature 

data on the topic when our study got underway in 2005. Emission factors for explosive CO2 emissions 

are presented in Flower and Sanjayan (2007) for emulsions; these factors are less than those 

introduced in this research (10 times lower), yet both studies do not actually concentrate on explosives 

data and moreover both emulsions cannot be compared reliably. Hence, it is thought that explosives 

emissions should be added to the aggregates LCI when used. 

6.3 Towards impact reduction  

When considering the data for France, in the framework of all the presented results (Section 5) as well 

as the direct and indirect processes (Fig. 6 and 7 for French electricity, Fig. 8 for European electricity), 

it is shown that under the given assumptions: 10% of GWP is due to electricity production and 8% due 

to diesel production. On the other hand, for EI, AP and POCP, the contribution of primary processes 

lies below 5%; explosives production is estimated at 1% of the secondary process energy 

consumption. Lastly, the main contribution of energy production is revealed on the TP, EP indicators 

(maximum of 60%).  

In order to clarify the methods to add upstream processes into the analysis, one has to say that 

upstream processes impacts (fig 6 to 8) are not obtained with exactly the same methods. It can be then 

acceptable to use a model for impact calculations which does not necessarily account for impact 

localization as given by Sayagh et al (2010) for Ecoinvent data and ELCD  instead of our local model. 

Hence, at this step of the study the impacts calculations related to the electricity production and fuel 

production do not distinguish CML 2001 method, and our method (Sayagh et al., 2010). These 

impacts as given in figure 6 to 8 (percentage compared to site impacts) exhibit trends as follows. 

Electricity impacts are either higher or lower than the impacts generated by diesel fuel production, 

according to all the literature data sets considered (ELCD, Ecoinvent and FD P 01-15), depending on 

the indicator considered.  

Based on all these findings, it can be concluded from this study that the range of site data variations is 

significant in comparison with the amount of impacts of upstream processes. Regarding international 

data on energy production and various energy contents (from the ELCD and Ecoinvent databases), the 

same trend is observed for upstream process impacts but with higher upstream processes contributions 

(figures. 7 and 8). The contributions to impacts of electricity production processes (as derived from 

both databases considered) are higher than those of diesel production from several calculated 
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indicators, as compared to French energy production data. This indicates that in France at least site 

data collection is pertinent for local impacts improvement. 

Depending on the magnitude of aggregate consumption around the world, a key issue in pursuit of 

decreasing the environmental loads of quarry activity lies in reducing onsite energy consumption, 

which happens to be the most significant LCI input quantity for quarry processes. Besides, the impact 

assessment from engine emissions leads to the conclusion that a major effort is required on the fluxes 

introduced in the impact calculations to use reliable models for aggregates production assessment. As 

data are based on Table 3, one should verify this data set according to the use conditions inside 

quarries through emissions measurements.  Before such improvement engines emissions should be 

accurately measured by dedicated experiments. It can be stated that accurate and reliable data 

measurements, as derived from engine emissions, should be investigated in future work rather than 

using generic data obtained from empirical results like those in Table 3. 

According to the above observations, the mean onsite fuel (diesel) consumption is roughly twice the 

electricity consumption, whereas the primary impacts of both types of energy sources are similar, 

when considering French data from ELCD (2011) and FD P 01-15 (AFNOR, 2006). Lastly, it can be 

stated that the range of CESP and impact variations among the three study sites, when looking at 

French energy production (Fig. 6), are all of the same order of magnitude as the variations between 

quarry sites. This supports the fact that significant reduction of environmental impacts can be achieved 

on-site through process optimization (changing non road vehicles and engines, changing equipments). 

The results combined in Table 6 with inter-site variations show also significant differences between 

the present study and Ecoinvent results for aggregates assessment. The observed trend is that the 

values given by Ecoinvent are for some of them much higher or lower than those of the present study,. 

May be this trend would be the same regarding site emissions alone, but they cannot be uncoupled 

from upstream emissions looking at Ecoinvent results.  

 

7 Conclusion 

Environmental impact mitigation does not entail just a single input, but rather a whole array of aspects 

combined under a single heading. Their consequences target the environmental component as well as all 

other sustainable development components (i.e. economic and social). The objectives of this paper have 

been to assess the energy and impacts due to aggregate production within the LCA framework. Towards 

this end, a methodology has been presented specific to the impacts of aggregate production for various 

quarries. One year was deemed to be the appropriate time scale to study a given production run. 

Upstream processes (i.e. electricity production, diesel fuel production and explosives production) have 

therefore not been initially included for site comparisons. A range of indicators have been finally 

provided, including refined energy consumption (fuel and electricity) and local impacts obtained from 

LCA. For these impacts, the study has proposed an analysis of global warming potential, acidification, 

eutrophication, atmospheric ozone contribution, ecotoxicity and toxicity. 

 

Awareness of the importance of environmental protection thus necessitates developing comprehensive 

methods to evaluate the pressures generated and their ensuing impacts, in order to identify potential 

process improvements. A model was developed for this specific purpose. The present study has mainly 

consisted of building an environmental model of the aggregate production process. Moreover, an 

environmental assessment of aggregates was performed at three selected quarry sites featuring several 
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typical production scenarios (grading output ranging between 0/2 and 0/31.5), with each changing 

within a one-year period. The model was based on empirical correlations between engine characteristics 

and emissions. The main results indicate that the impacts are linked to the quarry equipment and 

organization rather than to the rock nature which means that for such material a local approach seems 

more valuables than a generic approach. 

 

The Life Cycle Inventory and impacts for a ton of aggregate for each site were then determined using 

the model coupled with the chosen hypothesis. The rules for impact calculations and their data 

sensitivity derived from the three quarry sites were studied and expressed as a range of mean CESP and 

impact values. The study's limitation has been found to depend on engine model, though the need has 

also been observed to refine both the pollutant emission measurements and the impact model. 

 

Though known to exert an influence, the grading difference, with respect to CESP and impacts, was 

deeply explored within the scope of this study, although it was principally devoted to overall site 

comparisons. Along these lines, the CESP values implicitly integrated various production scenarios 

over a one-year period. A data range was determined from the mean CESP and impacts to equal: 

arrange of  [+ 13.7%,-9.5 %] regarding energy and  [+27.5 %, - 24.5 %] for impacts. A more detailed 

investigation of engine pollutant emissions should be conducted to extend such an assessment to a 

larger number of quarries. As shown, the energy characteristics (countries of production being France 

or Europe) do not influence the general observed trends for proportions between global and local 

impacts, suggesting that local decrease is the best way to reduce environmental loads when quarrying. 

Some other data were finally proposed and discussed to analyze quarry production time variability at 

the scale of France regarding the different departments of the country comparing one year and the next 

year. It seems to us that this kind of variations is rather governed by economy than by environment so 

no year data were finally included in our analysis.    

The correlation between quarry geography, namely slopes and track surface, and its consequences on 

vehicle consumption might be an interesting avenue of investigation during subsequent research, as 

this category of consumption would also influence the impacts on resultant engine emissions. 
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Figure 8: Indirect impacts from diesel and electricity production using based on ELCD and FD P01015 for 

European data using the methods of calculation of Sayagh et al (2010) for all impacts local contribution 

using pollutant fluxes. 
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List of tables: 

Table 1: Quarry output for the three study sites ordered by grading ratio for year 2004 the grading 

notations d/D (i.e. 10/14) are given according to the European standards for road materials use. 

Table 2: Equipment and off-road vehicle characteristics for all quarry sites for diesel fuel 

consumptions. 

Table 3: Unit emissions factors for vehicles vs. year of vehicle construction( Beardsley M. and 

Lindhjem C., 1998). 

Table 4: Details of energy indicator results (Year 2005 is not available for site 1). 

Table 5: Atmospheric emissions from mining at Site 1. 

Table 6: Energy and impact indicators for all sites vs Ecoinvent data (data base  : N°589 for French 

electricity, N° 1540 for fuel , N°465 for non specified aggregates (mix of both 33% crushed and 67 

round aggregates). 

 1
EPi = FAETPi + MAETPi + FSETPi + MSETPi + MTETEPi 

with FAETP  : fresh water Aquatic EcoToxicity Potential ;  MAETP : marine EcoToxicity Potential ; 

FSETP : fresh water Sediment  EcoToxicity Potential; MSETP : marine Sediment EcoToxicity 

Potential; TETP  : Terrestrial EcoToxicity Potential 
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Table 1:  

 

Upstream 

impact 

Grading 

(mm) 

Production 

(%) 

CESP - electricity  GWP EI AP POCP HTP EP 

MJ/t / average Eq CO2/t Eq PO4/t eq SO2/t 
Eq 

ethylene/t 

kg 1.4 

DCB/t 

kg 1.4 

DCB/t 

Site 1 

Massive 

rock 

(10.51 

MJ.t
-1

) 

10/14 24 
11.0 +4.8 % 0.28 5.0E-04 1.5E-03 5.9E-05 0.37 643.29 

0/31.5 20 
3.0 -71.4 0.08 1.4E-04 4.2E-04 1.6E-05 0.10 175.44 

6.3/10 19 
13.6 29.8 0.34 6.2E-04 1.9E-03 7.3E-05 0.46 795.34 

0/4 19 
13.6 29.8 0.34 6.2E-04 1.9E-03 7.3E-05 0.46 795.34 

4/6.3 13 
13.6 29.8 0.34 6.2E-04 1.9E-03 7.3E-05 0.46 795.34 

< 6.3 5 
8.1 -22.9 0.20 3.7E-04 1.1E-03 4.4E-05 0.28 473.69 

Fuel production 0.23 1.7E-04 7.4E-04 7.3E-05 0.07 89.29 

Fuel emission on site 1.76 1.1E-03 1.2E-02 3.5E-03 0.09 1.44 

Site 2 

Soft 

aggregate 

(12.38 

MJ.t
-1

) 

0/4 semi-

crushed 
33 

20.2 63.1 0.51 9.3E-04 2.8E-03 1.1E-04 0.69 1181.31 

0/4 31 
11.2 -9.5 0.28 5.1E-04 1.6E-03 6.0E-05 0.38 654.98 

8/20 14 
12.8 3.4 0.32 5.9E-04 1.8E-03 6.9E-05 0.44 748.55 

4/12.5 11 
9.5 -23.1 0.24 4.4E-04 1.3E-03 5.1E-05 0.32 555.56 

2/6 6 
4.9 -60.4 0.12 2.2E-04 6.9E-04 2.6E-05 0.17 286.55 

0/2 5 
15.7 26.6 0.39 7.2E-04 2.2E-03 8.5E-05 0.53 918.14 

Fuel production 0.30 2.3E-04 9.8E-04 9.7E-05 0.09 118.36 

Fuel emission on site 2.13 7.3E-04 8.6E-03 4.8E-03 0.10 1.90 

Site 3 

Soft 

aggregate 

(6.3 MJ.t
-

1
) 

0/4 73 
4.1 -34.6 2.79 0.00 0.01 0.00 0.67 942.14 

4/22.4 16 
4.7 -24.7 0.10 1.9E-04 5.8E-04 2.2E-05 0.14 239.77 

4/12.5 9 
5.9 -7.0 0.12 2.2E-04 6.6E-04 2.5E-05 0.16 274.86 

0/2 2 
10.7 69.1 0.15 2.7E-04 8.3E-04 3.2E-05 0.20 345.04 

Fuel production 0.38 2.9E-04 1.2E-03 1.2E-04 0.11 147.26 

Fuel emission on site 2.37 8.8E-04 1.1E-02 3.0E-03 0.12 2.37 
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Table 2:  

 

 

 

 

Sites and 

equipment 

Off-road diesel-

powered vehicles 

Year Engine power 

(kW) 

Consumption 

(liters/hour) 

 

Site 1 

 

(5 vehicles. 

average year of 

construction: 

1998) 

 

Drill 2002 220 55 

Dumper 2001 238 11.8 

Shovels 1999 169 17 

Loaders 1997 134 14.5 

Dumper 1990 179 5.8 

 

Site 2 

 

(6 vehicles. 

average year of 

construction: 

2003) 

Wheel loaders 2005 235 20 

Wheel loaders 1998 197 23 

Shovel 2004 67 13 

Shovel 2004 184 20 

Dumper 2002 248 15 

Other 2007 149 15 

 

Site 3 

 

(6 vehicles. 

average year of 

construction: 

1988) 

Wheel loaders 2002 195 29 

Wheel loaders 1992 130 19 

Other 1972 90 14 

Dumper 1985 135 22 

Shovel 1990 100 15 

Wheel loaders 1982 150 30 
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Table 3:  

 

 

CO VOCNM* NOx PM N2O CH4 POP Cd Cu Ni Se Zn

37-75 4.68 1.33 11.13 0.97 0.35 0.05 3.32 0.01 1.7 0.07 0.01 1

75-130 3.62 0.91 11.24 0.54 0.35 0.05 3.32 0.01 1.7 0.07 0.01 1

130-560 3.62 0.91 11.24 0.54 0.35 0.05 3.32 0.01 1.7 0.07 0.01 1

>560 3.62 0.91 11.24 0.54 0.35 0.05 3.32 0.01 1.7 0.07 0.01 1

37-75 6.5 1.3 9.2 0.85 0.35 0.05 3.32 0.01 1.7 0.07 0.01 1

75-130 5 1.3 9.2 0.7 0.35 0.05 3.32 0.01 1.7 0.07 0.01 1

130-560 5 1.3 9.2 0.54 0.35 0.05 3.32 0.01 1.7 0.07 0.01 1

18-37 5.5 1.5 8 0.8 0.35 0.05 3.32 0.01 1.7 0.07 0.01 1

37-75 5 1.3 7 0.4 0.35 0.05 3.32 0.01 1.7 0.07 0.01 1

75-130 5 1 6 0.3 0.35 0.05 3.32 0.01 1.7 0.07 0.01 1

130-560 3.5 1 6 0.2 0.35 0.05 3.32 0.01 1.7 0.07 0.01 1

19-37 5.5 0.6 0.35 0.05 3.32 0.01 1.7 0.07 0.01 1

37-75 5 0.4 0.35 0.05 3.32 0.01 1.7 0.07 0.01 1

75-130 5 0.3 0.35 0.05 3.32 0.01 1.7 0.07 0.01 1

130-560 3.5 0.2 0.35 0.05 3.32 0.01 1.7 0.07 0.01 1

37-56 5 0.025 0.35 0.05 3.32 0.01 1.7 0.07 0.01 1

56-75 5 0.19 3.3 0.025 0.35 0.05 3.32 0.01 1.7 0.07 0.01 1

75-130 5 0.19 3.3 0.025 0.35 0.05 3.32 0.01 1.7 0.07 0.01 1

130-560 3.5 0.19 2 0.025 0.35 0.05 3.32 0.01 1.7 0.07 0.01 1

56-130 5 0.19 0.4 0.025 0.35 0.05 3.32 0.01 1.7 0.07 0.01 1

130-560 3.5 0.19 0.4 0.025 0.35 0.05 3.32 0.01 1.7 0.07 0.01 1

IIIB 

(2011/2013)

IV (≥ 2014)

Unitary emisson factor (g.kWh
-1

) Unitary emission factor (mg.kgfuel
-1

)Power 

(kW)

7.5

4.7

4

4

4.7

Year 

1988-1999

I(1999)

II 

(2000/2005)

IIIA 

(2006/2010)

 

*VOCNM :  VOC non methanic 
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Table 4:  

 

Site 
Production 

(t) 

CESP - electricity CESP - fuel CESP - total 

kWh.t
-1

 MJ.t
-1

 kWh.t
-1

 MJ.t
-1

 kWh.t
-1

 MJ.t
-1

 

1 180.000 2.92 10. 51 4.19 15.08 7.11 25.59 

2 177.720 3.44 12.38 5.50 19.80 8.94 32.18 

3 84.825 1.75 6.30 5.75 20.70 7.50 27.00 

 

 

 

Table 5:  

 

Explosive 

content 

CO2 

(g.t
-1

) 

NO 

(g.t
-1

) 

CO 

(g.t
-1

) 

NH3 

(g.t
-1

) 

H2 

(g.t
-1

) 

H2O 

(g.t
-1

) 

O2 

(g.t
-1

) 

N2 

(g.t
-1

) 

Aluminum Oxide 

(g.t
-1

) 

Emulsion 1.89 0 0.75 0.11 0.08 8.19 0 4.41 1.91 

Fuel 

nitrate 
10.84 0.12 0.27 0.03 0.02 36.49 0.05 24.61 2.61 

Total 12.73 0.12 1.02 0.14 0.10 44.68 0.05 29.02 4.52 
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Table 6:   

Indicator 

Ecoinvent value 

(CML 2001 

database N°465. 

v2.2- 33% 

crushed 

aggregates and 

67 % round 

aggregates)  

All upstream 

processes 

Mean sites with 

upstream 

processes 

database N° 589 

for French 

electricity 

production and 

N°1540 for fuel 

production 

upstream 

processes  

Mean sites 

values 

% variation 

to mean calculated value  

Site 1 Site 2 Site 3 

CESP (MJ/t) 31.5 28.3 28.3 -9.5% +13.7% -4.5% 

CESP - 

electricity (MJ/t) 
17.2 9.8 

9.8 

(35% of total 

CESP) 

+7.2% +26.3% -35.7% 

CESP - fuel 

(MJ/t) 
14.3 18.5 

18.5 

(65 % of total 

CESP) 

-18.5% +7% +11.9% 

GWP (kg 

eq.CO2 /t) 

2.9 2.63 

  2.1    -15.4% +2.5% +12.9% 

- 9 % 

EI (kg eq.PO4 /t) 

3.8 10
-3

 1.6 10
-3 

 

9 10
-4 

  +20.8% -18.9% -1.9% 

- 58 % 

AP (kg 

eq.SO2/t) 

1.83 10
-2

 1.3 10
-2 

 

1 10
-2

   +15.8% -18.3% +2.5% 

- 29 % 

POCP (kg 

eq.ethylen/t) 

7.1 10
-4

 3.9 10
-3 

 

3.7 10
-3

   -6.2% +27.5% -21.3% 

+ 449 % 

HTP (kg 1.4 

DCB/t) 

3.1 0.52
 
 

0.103  -17.3% -3% +20.3% 

- 83% 

EP ( kg 1.4 

DCB/t) 
1
 

2602 689 

1.9 -24.5% +0.1% +24.5% 

-74 % 
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